On Patterns for Decentralized Control in
Self-Adaptive Systems
Danny Weyns,
Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese and Karl Goeschka.
In Rogério de Lemos, Holger Giese, Hausi Muller and Mary Shaw editors, Software Engineering for Self-Adaptive Systems II, Vol. 7475 of LNCS , Springer, 2012.
Online links: Plain Text
Abstract
Self-adaptive systems have the ability to adapt themselves to changes in the environment and internal dynamics to achieve particular goals. Self-adaptation is typically realized using control loops. When systems are large, complex, and heterogeneous, a single control loop may not be sufficient. Given the central role control loops play in the way we conceptualize, design, and implement self-adaptive systems, their patterns of interaction should be made explicit to foster comprehension and analysability, and to serve as the basis for developing guidelines and documenting common design choices for engineers. Because of the diversity of ways that existing self-adaptive systems organize the various self-adaptation activities, it is timely to reflect on these systems to: (a) consolidate the knowledge in this area, and (b) to develop a systematic approach for describing different control schema. In this paper, we contribute with a simple notation for describing control schema with multiple control loops, which we believe helps in achieving (b), and we use this notation to describe a number of existing self-adaptation patterns, to begin to fulfill (a). From our study, we outline numerous remaining research challenges and future work in this area. |
Keywords: Coordination, Self-adaptation.
|
|