
AcmeLab 2—2/14/2013 Page 1

Acme Lab 2:
Defining Styles in AcmeStudio

Introduction
By now, you should be familiar with the basic features of AcmeStudio to manipulate
component-and-connector architectural designs. This lab will introduce you to some of
the advanced features of AcmeStudio and in particular how to modify and create a
family, edit visualizations, edit rules and properties, and check rules.

Example: A Three-Tiered Family
For this lab, you will augment an existing three-tiered family1. We will add a couple of
new types, edit visualizations, and add several properties and rules.

Importing a Project from Zip archive
1. Download AcmeLab2.zip from blackboard.
2. In AcmeStudio, choose File Import.
3. Select Existing Projects into Workspace from the General category of the Import

dialog box and click Next.
4. Select Select archive file and Browse to the location of the Zip file distributed with

this tutorial and click Finish.

Modifying an existing Family
From the project AcmeLab2, open the three-tiered family under
families/ThreeTieredFam.acme. The editor opens the family in the Family editor. We will
work within this family editor for most of the lab.2

Browse types
Before we begin making changes, let’s inspect the types defined in this family. First,
click on the ThreeTieredFam (Press to select) button. This selects the whole family. In
the lower-right quadrant of AcmeStudio, make sure that the Properties View is
activated. In the Types tab you can see the inheritance tree for this family. It combines
three families: RemoteCallReturnFam, LocalCallReturnFam, and RepositoryFam. This is
because three-tiered systems combine two styles of call-return (local and remote) and
the data-centered style (repositories).

1 Note that AcmeStudio can work with built-in families (read-only) and locally created ones. You will be
manipulating a local one that we provide in the AcmeLab2 project that uses some built-in ones.
2 By convention, AcmeStudio looks for Acme families in the families/ directory of the project. This
directory can have structure underneath, so that you can organize the families for the project. However, if
the families are not located in this directory, they may not appear in the dialog boxes when you come to try
to create instances of the families.

AcmeLab 2—2/14/2013 Page 2

Figure 1: AcmeStudio showing the ThreeTieredFam opened in the Family editor.

Inspecting types in families is similar to inspecting instances, as described in
AcmeLab 1. One way to do this is to via the Properties View. To browse a type, click
on the type in the Family editor (e.g., DataNodeT) and look through its properties,
rules, structure, types, and other attributes available in Properties View. Notice the
Show all option for each type list. Clicking it will show all types inherited from other
families. You will not be able to edit these types, but it is useful to know what other
types are available, and whether they can be reused directly in your family (for
example, we will use LocalCallPortT from LocalCallReturnFam without modification in
this lab).

Another way to browse types is to use the Inspect type function, useful in cases when
you cannot edit the family, such as a built-in family:

1. From the menu bar, Choose Family Inspect Type…. The dialog box that opens
shows a list of component, connector, port, role, and property types defined in the
family.

2. Double-click on DataNodeT. Another dialog box appears showing different kinds
of information about this component type, such as its properties, rules
(constraints), sub-structure, inherited types, and Acme source.

3. Explore some of the other types in this family.
4. Click OK to exit this dialog.

AcmeLab 2—2/14/2013 Page 3

Figure 2: Dialog box for inspecting element types.

Change visualization
Presentation is an important aspect of architectural documentation. AcmeStudio has
considerable flexibility in specifying the way a family should look. For example, you
can choose geometric shapes, colors, icon decorations, label fonts and alignments,
and port alignment policy for components and role alignment policy for connectors.

For this tutorial, the first thing we will do is to change the shape of the DataNodeT
component type. Right now it looks the same as ClientNodeT, which is not good for
documenting. We will change DataNodeT to a repository shape and its color to blue
fill, orange outline, and white label.

5. Select DataNodeT. In the right column of the editor, the visualization preview will
change to be the current visualization of the type. Click the Modify… button in the
Visualization section to the right of the type. This will open the Visualization
Editor dialog. Note that there are five tabs to this dialog: Shape, Label, Variants,
Representations, and Port Policy. The first three tabs are standard tabs that appear
in the visualization dialog of every visualized element type (components,
connectors, ports, roles). The fourth appears for component and connector types.
The fifth is specific to the element type and defines layout policies.

6. Let’s change the shape. Back under the Shape tab, look for the Basic shape
section and find the Stock image dropdown menu. Pull down the selection and
choose Repository. Notice that the Preview shape has changed.

7. Next we will change the fill color to blue. Under the Color/Line Properties section,
click on the button . A color palette dialog box appears (On Mac, you can
click the “Color Palette” tab). Select the blue color and click OK. Notice the
change in Preview.

8. Next we will change the outline color to orange. Click on the button under the
Properties box. A color palette dialog box appears. Select the orange color and
click OK. Notice the change in Preview.

9. Lastly we will change the color of the label. Click on the Label tab and in the Font
Settings section click the button . Choose the white color on the palette and
press OK. The figure below shows what the result looks like if you return to the
Shape tab.

AcmeLab 2—2/14/2013 Page 4

10. Press OK on the visualization dialog box. The visualization for DataNodeT is now
changed.

At this point, you might try experimenting with other forms of customizations for this
and other element types.

Figure 3. A possible result of DataNodeT visualization change. The exact colors are not important.

Defining Connection Patterns

Figure 4. The Connection Pattern editor.

Connection patterns define shortcuts for connecting components using the Connect tool in
a diagram. In AcmeLab 1, we used connection patterns to simply connect two filters

AcmeLab 2—2/14/2013 Page 5

(without having to create the connector and attach the roles as separate steps). Definition
of these patterns is done in the Connection Patterns part of the Family editor.

Notice that our family has three types of connectors: LocalCallReturnConnT,
RemoteCallReturnConnT (both inheriting from an abstract CallReturnConnT), and
DataAccessConnT. All of these connector types are inherited from other families.

We will construct a connection pattern that connects using LocalCallReturnConnT.

1. Select the Connection Patterns editor page in the Family editor (see Figure 4).
There is currently only the default connection pattern involving Acme’s most
basic types like Component and Port.

2. Press the New… button to open the defining dialog box.
3. This dialog box allows us to define the connection pattern by selecting different

types that will be instantiated by the pattern. We want to define a rule that creates
a port of LocalRequestPortT at caller end, a port of LocalResponsePortT at the
responder end, creates a LocalCallReturnConnT to connect them through
appropriate roles. We want this rule to work on any component, so we will choose
Any as the source and target component types. Do this by selecting from the
combo boxes in the dialog, to make it look like Figure 5.

Figure 5. Defining a new Connection Pattern.

4. Select Finish. Note that you can assign patterns to the names of the elements
created using this pattern. Here, we will just use the default, which uses the type
name as the basis for names of instances. The new connection pattern can be seen
in Figure 6. Note that there are two connection patterns actually created, where
one with use as the source, the other with provide as the source.

You may also analogously define a connection pattern to connect the
RemoteCallReturnConnT using remote ports and roles.

AcmeLab 2—2/14/2013 Page 6

Figure 6. The newly defined Connection Patterns.

Add a new element type
You might notice that although this family is a three-tiered family, it is actually
missing the component type definition for one of the tiers – the business logic tier.
Let’s add a LogicNodeT component type.

11. In the Architectural Types editor, select the New Component type… button in the
Component Types section. A type entry dialog box appears.

12. Enter LogicNodeT for the Type Name.
13. Hold Ctrl (Cmd on Mac) and select the following supertypes: TierNodeT,

DataAccessorCompT, CallerCompT, and ResponderCompT. We do this
because a business logic node will be a tier node, will access data, as well as call
other components as reply to calls. Different types let us partition these
responsibilities.

14. Notice that you can click Next a few times to enter ports, properties, and rules.
This time just click Finish.3

15. Notice that the newly added component type now appears in the Component type
table.

16. Change the visualization of the LogicNodeT so that it is light-green filled with a
black outline of size 2, everything else remaining the same. The outcome is
shown in Figure 7.

3 Note that if you make a mistake in defining the type, you can correct it (or make additions) using the
Properties View.

AcmeLab 2—2/14/2013 Page 7

Figure 7: The resulting ThreeTieredFam description after adding LogicNodeT and changing its

visualization.

Add a new property type
Since this is a three-tiered family, we want to make it explicit that a node belongs to a tier

via a property for each node. This property can be defined using a property type that
specifies an enum with three values. The node of each tier can then instantiate a property

of this type assigning the appropriate tier value. Let’s start by creating a property type
(not the property itself yet!).

Figure 8: New Property Type dialog box.

17. In the Family editor, select the Property Types editor (at the bottom of the family
editor), and open the Property Types section by selecting on the label.

18. Select the New… button in this section. A type entry dialog box appears.
19. Enter TierPropT for the Type Name.
20. Select enum as the Kind of property. The Definition field becomes enabled.

AcmeLab 2—2/14/2013 Page 8

21. For the values, enter client, logic, data.
22. Figure 8 shows what the dialog box looks like at this point. Click OK.
23. Notice that the newly added property type appears in the Property Types section.

To browse the details, you may expand the Property Type Details section.

Editing types with the Properties View
Switch back to the Architectural Types editor. To continue the task of adding a tier
property to each type of node, we will now add a property and a rule.

Add a property
We begin by adding a property called tier to each of the three tier node types. To do
this, we add a property to the parent node type TierNodeT, since the other types are
subtypes. In fact, this is the purpose behind this type.

24. In the Family editor, choose TierNodeT. The details of TierNodeT are shown in the
Properties View. We will call this action “focusing on” an element.

25. Select the Properties tab if it’s not already selected.
26. Right-click in the empty region and select New Property… or click the icon on

the Properties View toolbar at the right-hand corner of the Properties View title bar.
27. For the Name, enter tier.
28. For the Type, choose TierPropT, which we defined in the previous section.
29. Uncheck the Assign Value to Property checkbox. Figure 9 shows what the dialog

box looks like at this point.
30. Click OK.

Note: since TierNodeT is a root type, we want to have sub-types and instances of it
specify the actual value for the tier property. Therefore, we will not assign a value to
the property here. Notice that the property now appears in the Properties tab, and has
<<No Value>>.

Figure 9: Property editing dialog for the "tier" property.

AcmeLab 2—2/14/2013 Page 9

Add a rule
You may have noticed that the TierNodeT component type already defines two
properties called host and allowShareHost. The first property is a string that indicates
the host on which an instance of the TierNodeT component type runs. The second
property is a Boolean that indicates whether some other nodes can run on the same
host. These properties are meant to indicate that a node that doesn’t allow sharing a
host should not be on the same host as any other node.

We would like AcmeStudio to flag a warning if the condition above is violated. To
do this, we will add a rule that captures this constraint. In order to apply to all
elements in the system, this rule needs to reside at the family level.

31. In the Family editor, focus on TieredFam by pressing the button above the
Component Types section labeled TieredFam (Press to select).

32. Select the Rules tab in the Properties View.
33. Click the icon on the Properties View toolbar.
34. Name the rule hostCheck and ensure that the invariant button is selected.
35. Put the following in the Design Rule textbox:

Forall t1 : TierNodeT in self.Components |
 !t1.allowShareHosts -> (Forall t2 : TierNodeT in self.Components |
 t1 != t2 -> t1.host != t2.host)

This is the above rule denoted in the Acme constraint language.

36. Click Parse Rule to make sure there’s no error. You must execute this step in
order to complete the rule definition. If there is a parse error, you must fix it (or
click Cancel) before you can continue.

37. One may write a descriptive label for this rule, which will appear in the Rules list
when the rule is satisfied. Let’s label this one, “Tier nodes respect host
assignment.”

38. One may also write a descriptive error label, which will appear in the Rules list
when the rule is violated. Let’s label this one, “Two nodes that cannot share
a host must not reside on the same host.”

39. Click OK to complete.
 Note: if OK doesn’t respond, you may have to click Parse again.
40. Make sure that you save the family.
Optional challenge problem: See if you can come up with a heuristic that flags a
warning if a particular logic node has more than three clients connected to it. Hint:
Assume that each client node connects to a logic node on separate ports. Then define
a heuristic associated with LogicNodeT that limits the number of ports. To count the
number of ports, use the set constructor select to select the subset of ports in the
component that declares the port type of provideT (e.g., {select p : Port in
SomeSet | declaresType(p, t) }). A component can refer to itself as self. The
set of ports defined on a component can be referenced via self.Ports. Then apply
the size() function to that set.

AcmeLab 2—2/14/2013 Page 10

Acme Source editing
Sometimes it’s easier to make certain changes by directly editing the Acme source, such
as changes that involve significant redundancy where copy and paste becomes handy.
This can be accomplished using the Source editor. Note that ordinarily, using the Source
editor requires sufficient understanding of the Acme syntax. However, we will walk
through a couple of changes without relying on you to create a lot of Acme specs.

Recall that we previously added a tier property to the component supertype TierNodeT.
However, we haven’t made use of that property in each of the component subtypes. We
will now assign the appropriate property value in each subtype – client for
ClientNodeT, logic for LogicNodeT, and data for DataNodeT.4

41. Notice three tabs at the bottom of the Editor region – Overview, Acme Source and
ThreeTieredFam. To switch to the Source editor, click on Acme Source and the
editor shows you the source of the family’s Acme description.

42. Locate the component type TierNodeT, which can be done in a number of ways.
You could scroll through the source until you find it, or you can go to the Outline
view, locate the type there, and double click on it. This will bring the node into
focus in the source editor.

43. Highlight the line containing the declaration of the property tier and copy it to
clipboard (this could be done by pressing Ctrl-C (Option-C on Mac) or Ctrl-Insert
or choosing from the menu bar Edit Copy).

44. Locate ClientNodeT component type and paste the property text inside the
component type definition (between the two curly braces).

45. Before the semicolon of the tier-property text, add “= client”. The entire
component type definition should look like:

Component Type ClientNodeT extends TierNodeT with {
 Property tier : TierPropT = client;
 }

46. Do the same pasting and editing for LogicNodeT (assigning logic) and DataNodeT
(assigning data).

47. After making these changes, the Source editor content must be synchronized with
the Family editor content. Clicking on the TieredFam editor tab will initiate the
synchronization. Note that if there were major errors from the source change,
synchronization will fail, and you will be taken back to the Source editor.
Otherwise, the Family editor appears again.

Error indicators: When you change something that causes a parse error or type-check
error in the Source editor, red error icons appear at the appropriate error locations.
Parse errors must be removed. Certain type-checking and constraint-checking errors in
the Family may be ignored, specifically, “does not satisfy constraint” or “does not satisfy
type”. These will often occur in Family descriptions and can only be satisfied in the
instantiated system. For example, if a port type P declares a rule that at least one role
must be attached, and one port instance p of P is defined in a component type C, the rule

4 Note that the usual way to do this in AcmeStudio would be to add a property via the Properties tab of the
Properties view.

AcmeLab 2—2/14/2013 Page 11

will not be satisfied for p until an instantiated system where instances of C are defined
and roles of connectors attached to the components’ ports.

Visual variants
The visualization of an element can be set to vary depending on the values of its
properties, through a feature called Visual Variant. Let us create a Visual Variant for the
LogicNodeT component type that would change the component outline to a red line if its
property indicates that the tier node cannot share hosts.

48. In the Family editor, select Modify… the visualization of the LogicNodeT
component.

49. Click on the Variants tab.
50. Click New… to create a new variant.
51. Name the variant No Sharing.
52. Make sure the radio button is selected for Trigger is based on a property.
53. Pull the Property dropdown menu and select allowSharedHost, then choose == for

the Condition, and enter false for the Value.
54. From the Shape tab, section Color/Line Properties, make the outline color red.
55. Click OK to create the new variant and return to the Visualization dialog box.
56. Select the newly added variant to make sure it shows a red outline.
57. Click OK to finish.

Testing the redefined Family
Make sure that your family is saved. To test the family you modified, let us now create a
new system based on the family.

58. In the Navigator, right-click anywhere in the current AcmeLab2 project. In the
pop-up menu, choose New Acme System. A progress indicator dialog appears
while AcmeStudio searches for and parses the families available to this project.

59. For the System name, write TestSystem. Click Next.
60. Make sure that the Container says /AcmeLab2. If not, click Browse and choose

AcmeLab2.
61. Click Next.
62. Look a list of Available families. They are grouped by high-level architectural

styles. The ThreeTieredFam family resides into the Call Return category. Choose
ThreeTieredFam. A structured list of the types defined in this family appears in the
Details box.

AcmeLab 2—2/14/2013 Page 12

63. Click Finish, and you have instantiated an empty system of the family
ThreeTieredFam. The default system editor is the Diagram editor. Notice the
palette of types on the right from which you can click-and-drop an element to
create an instance.

64. Compose a simple three-tiered (you may want to try one in Assignment 2).
Change a node’s allowShareHosts property to false and see if the visualization
variant works. Test the constraint you defined that limits the number of clients
and see if it works. You can do this by instantiating four client nodes, creating
four ports on a logic node, creating four connectors to attach the client nodes to
the logic node.

Don’t forget to use the Properties View to check whether rules are satisfied. Recall
that if an invariant fails, the icon is placed next to the rule; if a heuristic fails,
the icon appears.5

Other advanced features to play with
There are many more features of AcmeStudio not covered in this lab that you may wish
to experiment with. Try different things out. Some of the more complex features are
listed below:

• Adding descriptions to the types
• Defining Port policy and alignment for Component type
• Defining Role policy and alignment for Connector type
• Exporting the diagram to an image or PDF

5 … indicates that the rule is being evaluated, indicates that the rule has type errors in it, indicates
that constraint evaluation has been turned off, indicates that the rule could not evaluated.

	Acme Lab 2: Defining Styles in AcmeStudio
	Introduction
	Example: A Three-Tiered Family
	Importing a Project from Zip archive
	Modifying an existing Family
	Browse types
	Change visualization
	Defining Connection Patterns
	Add a new element type
	Add a new property type

	Editing types with the Properties View
	Add a property
	Add a rule

	Acme Source editing
	Visual variants
	Testing the redefined Family
	Other advanced features to play with

