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ABSTRACT
AsCyber-Physical Systems (CPSs) becomemore autonomous,
it becomes harder for humans who interact with the CPSs to
understand the behavior of the systems. Particularly for CPSs
that must perform tasks while optimizing for multiple qual-
ity objectives and acting under uncertainty, it can be difficult
for humans to understand the system behavior generated by
an automated planner. This work-in-progress presents an
approach at clarifying system behavior through interactive
explanation by allowing end-users to ask Why and Why-
Not questions about specific behaviors of the system, and
providing answers in the form of contrastive explanation.
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1 INTRODUCTION
As the use of artificial intelligence in CPSs increases and
systems become more autonomous, it becomes harder for
humans who interact with the systems to understand the ra-
tionale behind system behavior. Inmany application domains
of CPSs, the systemsmust perform tasks while optimizing for
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multiple quality objectives and operating under uncertainty.
Such a problem can be formulated as a Markov decision
process (MDP) and solved using an automated planner. Our
work concerns making the behaviors of these systems more
transparent using interactive explanation.
The explanation is directed towards end-users of these

autonomous systems who do not know the technicalities of
the systems or planning. Through explanation, end-users
should gain awareness of how the systems make decisions
in terms of the domain-specific qualities of concern and gain
confidence that the system is making the best decisions in
terms of those concerns.
Users can ask Why and Why-Not questions about the

system’s behavior and provide answers using a contrastive
explanation approach in whichwe point out the consequence
of the counterfactuals in the question [4]. Explanations de-
scribe why the system makes certain choices, in terms of
the consequences or properties of those choices, and explain
how the choices affect the goals and objectives of the system.

2 APPROACH
Our method of interactive explanation applies to MDPs with
multi-objective cost functions, characterized by ⟨S,A, Pr ,C, s0⟩
and an optimal policy, π ∗ [1] [5]. Using linear scalarization,
the multiple cost functions are combined into one, result-
ing in C(s,a, s ′) = k1 · C1(s,a, s

′) + ... + kn · Cn(s,a, s
′) [2].

We demonstrate a tool in the domain of robot navigation
planning, in which a self-adaptive robot plans a route from a
start state to a goal, while optimizing for various objectives
such as travel time, level of intrusiveness and number of
collisions.

Explanation generation
When a user expects a system to behave differently than
it does in π ∗, they will have questions. A user might ask
"Why does the system do X?", which means that X occurs
in π ∗, but the user does not expect X to happen. In this case,
we will show the user that not doing X is less preferred to
doingX , because of the consequences on the objective values
(e.g. travel time, energy consumed, intrusiveness). Similarly,
when a user asks, "Why does the system not do Y?", it is
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expected that Y occurs in π ∗, but it does not. We will show
the user that doingY is less preferred to not doingY in terms
of consequences on objective values.
To generate contrastive explanations, we demonstrate

what happens if the system behaves as the user expects.
User questions are translated into constraints on the plan-
ning problem, resulting in a new MDP formulation that we
pass into the planner to get an alternate policy, π . Using
probabilistic model checking of π ∗ and π [3], we obtain the
objective values for both policies and use these to show the
trade-off among competing optimization objectives [7]. We
justify the behavior of π ∗ by explaining that the trade-offs
made in π are less preferable and the trade-offs in π ∗ are
better than the user initially thought.

User Interface
Users ask questions using Why and Why-Not question tem-
plates that capture their expectations for system behavior. A
Why question is formulated as "why does the system do X?"
and translates to the expectation that the system should not
do X . Similarly, a Why-Not question, "why does the system
not do Y?", reflects the expectation that the system should
do Y . In the templates, the user fills in X and Y by specifying
an action and optionally, the conditions for that action.

The template takes the form of "why does the robot (not)
do a when P?", where a is an action and P is a predicate
on the state variables. As such, X and Y target an action in
any context or a conditional action. For example, a user can
ask "why does the robot recharge at location 5 when energy
> 50?" to describe a conditional action or can simply ask
"why does the robot recharge?". For the former question,
a = recharдe and P = (location ∈ {5}) ∧ (enerдy > 50).

"Why"Questions
The process for translating questions into constraints de-
pends on the type of question that is asked. Consider trans-
lating "why does the robot do X?", where X is specified by
(a, P ). To translate this into a constraint, we need to disal-
low a from occurring when P is satisfied. If the predicate
is empty, we can remove a from the action set, resulting in
a new action set, A1. If the predicate is not empty, we add
¬P to the existing preconditions for a. Solving the modified
MDP, with either A1 or the modified preconditions, yields
an alternate policy, π , in which X does not occur. π ∗ and π
are then contrasted in terms of their objective values.
For example, if the user asks, "why does the robot use

full speed at location 13?", an explanation might be: "The
robot plans to use full speed at location 13 because although
using half speed would consume less energy (by 100 mWh),
it would take more travel time (by 0.5 minutes) to get to the
goal. The decrease in energy consumption is not worth the
increase in travel time".

"Why-Not"Questions
When handling the question "why does the robot not do Y ?",
where Y = (a∗, P), we need to force a∗ to occur under P . One
approach is to create an additional cost function, C∗(s,a, s ′)
that assigns 1 when a = a∗ and P(s) = true , and create the
constraint that the expected total cost of the policy is greater
than some value; that is, E[C∗] ≥ k . As such,k is the expected
number of occurrences of a under P in the policy. In some
cases, the value of k unknown because we cannot anticipate
what number of steps in the robot’s policy will be affected by
the question. When k is unknown, we need to use different
constraints - one option is to use temporal logic to formulate
the behavioral constraints of the robot [6]. Handling a subset
ofWhy-Not questions is still a work-in-progress.
Handling questions about unconditional actions ("why

does the robot not recharge?") is possible using the constraint
that E[C∗] ≥ 1. Planning withC∗ yields π , which we contrast
with π ∗ to highlight the differences between the trade-offs
in terms of objective values.
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