
Understanding Tradeoffs among Different
Architectural Modeling Approaches

Roshanak Roshandel*, Bradley Schmerl†, Nenad Medvidovic*, David Garlan†, Dehua Zhang†

*Computer Science Department
University of Southern California

Los Angeles, CA 90089, USA

†School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{roshande,neno}@usc.edu {schmerl,garlan,zhangd}@cs.cmu.edu

Abstract

Over the past decade a number of architecture descrip-
tion languages (ADLs) have been proposed to facilitate
modeling and analysis of software architecture. While
each claims to have various benefits, to date there have
been few studies to assess the relative merits of these ap-
proaches. In this paper we describe our experience using
two ADLs to model a system initially described in UML,
and compare their effectiveness in identifying system de-
sign flaws. We also describe the techniques we used for
extracting architectural models from a UML system de-
scription.

1. Introduction

A critical component of an engineering basis for soft-
ware architecture is the availability of notations for formal
architectural representation and analysis. Indeed, over the
past decade there has been considerable research into this
issue, leading to a large number of proposals for architec-
tural description languages (ADLs). Each ADL typically
provides some unique capabilities for modeling, together
with tools to carry out analyses of properties. For exam-
ple, one ADL may be suitable for code generation, while
another may be better suited for formal analysis with re-
spect to topology, interfaces, or interaction protocols.

Unfortunately, in the pantheon of architectural model-
ing approaches, it is often unclear what aspects of archi-
tectural design the different approaches focus on, how
they relate, and what benefits they can provide in increas-
ing the quality of a software system. Thus, when making
decisions about how to model a system, it is often hard to
determine the best approach to take, and whether the ef-
fort required in producing multiple models would provide
significant benefits.

A case in point is the role of modeling in the design of
SCRover, a mobile robot based on the Mission Data Sys-
tem (MDS) architectural style [6][7] from NASA’s Jet
Propulsion Laboratory (JPL), and built using the MDS
implementation framework. MDS is an architectural ap-

proach created by JPL to streamline the development of
software for space missions. SCRover was designed and
developed in collaboration with the MDS team and is suf-
ficiently complex to be indicative of typical autonomous
robot software used in NASA’s space missions. Addition-
ally, it is being used as a testbed for research by various
institutions into increasing the dependability of NASA’s
space software, through NASA’s High Dependability
Computing Project [16].

The SCRover project represents a typical approach to
developing MDS-based systems. The modeling lessons
learned can thus be applied to other MDS systems. Fur-
thermore, errors detected in the design of SCRover may
be indicative of the types of errors encountered in other
MDS-based systems.

The broad applicability of SCRover means that it is
also an attractive testbed for applying modeling technolo-
gies. SCRover was designed in the context of the MBASE
software process [21], which extensively employs UML.
The architectural nature of MDS makes SCRover an ideal
candidate for architectural modeling. Architectural as-
pects of SCRover are difficult to extract from the UML
documentation, and automated analysis of the documenta-
tion is not practical. Instead, peer-reviews are used to ana-
lyze SCRover’s design documentation.

In this paper we document our experience in using two
representative ADLs, Acme [9] and Mae [18], to model
SCRover. Both models were derived from the initial
MBASE UML design, but were developed independently
of each other, and focus on different aspects of the archi-
tecture. We describe how each approach used the
SCRover documentation to develop the respective archi-
tectural models and discuss the differences that resulted
from focusing on different aspects of the original docu-
mentation. We show how these differences led to the
automatic detection of distinct, but complementary,
classes of errors, and how automatic analysis afforded by
either ADL yields better results than peer-review of the
SCRover documentation for architectural defects.

The rest of this paper is organized as follows: Section 2
provides some background to software architectures and

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

architectural modeling, and introduces MDS and
SCRover. Section 3 describes the two approaches that we
used to model SCRover, discusses details of each ap-
proach, and the process of developing each model. In Sec-
tion 4, we evaluate the results of each approach using a
detailed classification of architectural defects. Sections 5
and 6 discuss lessons learned and future work.

2. Background

2.1. Software Architecture

While there are numerous definitions of software archi-
tecture [1][17][19], the basis of all of them is the notion
that an architecture describes a system’s gross structure
using one or more views. These views shed light on con-
cerns such as the system’s composition, its main pathways
of interaction, and the key properties of its parts. Further-
more, an architectural description ideally includes suffi-
cient information to allow analysis and critical appraisal.

At its core an ADL[14] typically represents an archi-
tectural model as a graph of interacting components (e.g.,
[5][9][15]). Nodes in the graph (the components) repre-
sent the principal computational elements and data stores
of the system: clients, servers, databases, etc. Arcs are
termed connectors, and represent the pathways of interac-
tion between the components, which can be realized in a
system by a complex base of middleware and distributed
systems support. To account for various behavioral prop-
erties of a system, elements in the graph can typically be
annotated with property lists, although the mechanisms for
this differ across ADLs. For example, properties associ-
ated with a connector might define its protocol of interac-
tion, or performance attributes (e.g., delay, bandwidth).

There are a number of benefits to constraining the de-
sign space for architectures by associating a style with the
architecture. An architectural style typically defines a set
of types for components, connectors, interfaces, and prop-
erties, and may include rules that govern how instances of
those types are composed. Requiring a system to conform
to a style has many benefits, including support for analy-
sis, reuse, code generation, and system evolution
[5][15][17][22]. Typically, analysis of an architectural
model cannot be defined rigorously without appeal to a
particular style, even if that style merely states that every
component must have certain properties.

2.2. Mission Data System (MDS)

The Mission Data System (MDS) [6][7] is a methodol-
ogy, an architectural style, and an implementation frame-
work designed and built by NASA’s JPL. It attempts to
capture decades of experience in developing space soft-
ware, and represents a product family approach to space
mission software. The goal of MDS is to bridge the con-
ceptual gap between scientists, system engineers, and

software developers. It also strives to provide a set of
tools and methodologies that enable development of reli-
able systems and that reduce development costs by pro-
moting reuse and preventing erroneous behaviors early in
the development life cycle.

The MDS design methodology offers a technique for
capturing data in terms of States, Commands, and Meas-
urements. Moreover, MDS component types include Con-
trollers, Estimators, Sensors, State-Variables, and Actua-
tors. Instances of these interact by manipulating or com-
municating data. A set of constraints that govern manipu-
lation and communication of the data among architectural
elements forms the MDS architectural style. The MDS
implementation framework offers implementation-level
abstractions that adhere to the MDS style. The framework
is a C++ library of approximately 250,000 lines of code
that provides over 35 reusable packages for common func-
tionality such as state-oriented control, event logging, time
services, data management, visualization, and units of
measurement.

2.3. SCRover

The SCRover project [2] is a collaborative effort by the
University of Southern California (USC) and JPL to de-
velop a campus public safety robot performing mission
scenarios representative of JPL’s planetary rover mis-
sions. It was designed and built using the MDS methodol-
ogy and implementation framework. In the version of
SCRover used in this report, its functionality includes
basic robot navigation and control capabilities such as
moving along a wall, turning as needed, and avoiding ob-
stacles. In addition, the robot reports images obtained by
its camera, range information, and sensor and battery
health data. The implementation includes over 3000 lines
of application-specific code in addition to the MDS
framework code.

The SCRover project is intended to serve as a testbed
for research and academic organizations to accelerate
software engineering technology maturity and transition in
the context of NASA’s High Dependability Computing
Project [16]. With this potential scrutiny in mind,
SCRover was designed carefully using the MBASE proc-
ess [3][21], with extensive documentation for require-
ments and design, and extensive use of design reviews.

3. Architectural Modeling for SCRover

The high-level architecture of SCRover is shown in
Figure 1. In accordance with the MDS architectural style,
each high level component shown in the figure will be
further refined into corresponding Controller, Estimator,
Adaptor, and State variable components, with connections
between them. These components and connectors interact
according to the stylistic constraints of MDS. The rest of

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

this section describes each of the three models of
SCRover and how the two architectural models were de-
rived from the UML models.

3.1. The MBASE-UML Modeling Approach

Initially, the architecture of the SCRover system was
designed by a research group at USC using a subset of
UML in the context of USC’s MBASE process [21].
MBASE offers a set of integrated models that capture
product, success, process, and property models of the
system under development. The MBASE process defines
an approach for negotiating requirements, capturing op-
erational concepts, building initial design models, assess-
ing project risks, and planning the life cycle. These as-
pects are captured in separate documents that are regularly
maintained to ensure their consistency.

MBASE’s Software and System Architecture Descrip-
tion (SSAD) is a 140-page document that uses a subset of
UML diagrams (use-case, class, and sequence diagrams)
to model the topology and interactions among different
SCRover‘s subsystems. The SSAD also models the proc-
ess for achieving the specified system goals. English
prose, tables, and other conventions are used to further
elaborate the functionality of the system. Specifically, the
SSAD focuses on the following aspects of system design:
• System Analysis elaborates the goals of the system, the

processes by which the goals may be achieved, and the
scenarios that describe these processes.

• Architectural Design describes the topology of the sys-
tem in terms of components and their interfaces (i.e.,
method signatures). It describes the components’ be-
haviors in English, and the system’s overall behaviors
using sequence diagrams. Use-cases model the manner
in which components are used in the system.

• Implementation Design further refines the components
in terms of class diagrams that specify the compo-

nents’ attributes and their provided interfaces. Opera-
tions are associated with interfaces, and are modeled in
terms of pre- and post-conditions captured in English.
The SSAD provides a starting point for understanding

a system’s structure and functionality. However, the lack
of formal semantics associated with UML manifests itself
in this process. Moreover, the use of English prose, al-
though descriptive, hampers effective modeling of the
system since automated support cannot be provided to
ensure the consistency and correctness of the specifica-
tion. Instead, peer-reviews of the documentation are per-
formed to ensure both its internal consistency, and its
compliance with the MDS architectural conventions.

In the context of our experience, the complexity of
SCRover and the underlying MDS architectural style, to-
gether with the informality of the SSAD, motivated us to
consider other modeling approaches that would enable
automatic analysis and help to reveal a broader class of
errors early in the development process.

3.2. The Acme Modeling Approach

To model systems written using the MDS framework,
the Acme team first encoded the MDS architectural con-
ventions as an Acme style. We based the style definition
on a set of documents from JPL that prescribed in English
prose the types of elements in an MDS design and the
constraints on how instances of those types could be com-
bined. The resulting style formally captures the high-level
vocabulary and rules governing the architectures of all
MDS systems.

The architectural style consists of six component types
(e.g., Sensor, Actuator, Controller), eight connector types
(e.g., Command Submit, Measurement Request, State Up-
date), seventeen port types and eighteen role types, in
addition to 39 formal rules that specify what it means to
have a correct MDS system topology. Figure 2 illustrates
a small segment of an architecture written in this style.
This segment depicts interaction between a Controller, an
Actuator, and an Estimator. In this interaction, the Con-
troller submits a command to an Actuator via its Com-
mand Submit connector. The Actuator then notifies the
Estimator that it received a command. Subsequently, the
Estimator queries the Actuator to find out what the com-
mand was. Examples of the MDS rules:
1. If an Estimator can be notified of a command by an

Actuator, then that Estimator must be able to query
the Actuator for the command.

2. An Actuator must have exactly one Controller con-
nected to it.

3. An Actuator must have the same number of Com-
mand Submit, Command Notification, and Command
Query ports (one for each type of command that it re-
ceives).

Figure 1. SCRover high-level architecture

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

The first MDS rule above can be captured in Acme
with the following predicate:1

invariant (forall e :! EstimatorT in self.components |
 (forall cnp :! CmdNotProvT in e.ports |
 (forall a :! ActuatorT in self.components |
 (forall cnr :! CmdNotReqrT in a.ports |
 (connected (cnp, cnr) ->
 (exists cqr :! CmdQryReqrT in e.ports |

exists cqp :! CmdQryProvT in a.ports|
connected (cqr, cqp)))))));

These rules are automatically checked by Acme tools.

3.2.1 The Acme Process

The Acme team primarily used the SSAD to develop
an architectural model of SCRover. The process consisted
of three phases that built up evidence for the types of
components and connectors in the architecture.

Phase 1: Identify components and possible connec-
tions. Primarily using the class diagrams, the components
are identified, and then the connectors are recorded based
on the associations between classes in the diagrams. Be-
cause a given UML association between components may
be one of several possible architectural connectors, some
of these are marked as possible connectors, pending fur-
ther evidence from the other phases.

Figure 3 gives an example of a diagram from the
SSAD, showing an interaction between a Position &
Heading Estimator and a Hardware Adaptor.2 From this
diagram, it is straightforward to derive the existence of an
Estimator component. However, there are several choices
for what the association in the diagram could mean:

1 In this rule, self refers to the system, italicized words refer to prede-
fined Acme functions, and the clause <name> :! <type> means that
<name> declares the type <type>.

2 In the Acme MDS architectural style, Actuators and Sensors are
distinguished as separate entities whereas in the SSAD they are bundled
together in Hardware Adaptors. The “mode of use” attribute of an
Adaptor dictated whether it was a Sensor or an Actuator in this process.

• The Hardware Adaptor is being used as a Sensor, and
either the Estimator is periodically requesting meas-
urements, or it is notified of measurements from the
Sensor. The direction of the arrow argues against the
former; if it is the latter, however, there is no corre-
sponding measurement requested by the Estimator, as
required by MDS rules.

• The Hardware Adaptor is being used as an Actuator,
and the Estimator is either notified of a command, or
is querying a command. For reasons similar to the
above, we cannot tell which connector it actually is.
To resolve the above ambiguity, we need the informa-

tion from Phase 2.
Phase 2: Refine connections based on sequence dia-

grams. Evidence from messages in sequence diagrams is
used to substantiate and disambiguate possible connectors
obtained from Phase 1. If a message cannot be mapped to
any possible connectors from Phase 1, a connector is
added to the architecture based on knowledge of the MDS
style. The lack of a connector is then noted as an omission
from the SSAD class and interaction diagrams.

Figure 4 shows the portion of a sequence diagram from
the SSAD that we used to disambiguate whether the
Hardware Adaptor is being used as a Sensor or Actuator
by the Position & Heading Estimator, and to determine
the type of connection between the two components. The
method call and parameter name suggest that the Estima-
tor polls the Adaptor for a measurement, leading to the
conclusion that the hardware adaptor is being used as a
sensor in this case, and that the connection is a measure-
ment request.3

Phase 3: Review and resolve inconsistencies. To com-
plete the MDS architecture, the final phase reviews the
results of the previous phases against all other available
documentation. Any inconsistencies that arise from deci-
sions made in Phase 1 or 2 are also reviewed. If an incon-
sistency is found, “reasonable” decisions based on knowl-
edge of the MDS architectural style are made. If neces-
sary, Phase 1 and/or 2 processes are repeated.

3
The actual direction of the interaction results in an error when the

model is later checked by the tools.

Figure 3. Portion of SSAD’s component classifier diagram

Figure 2. A Controller/Actuator/Estimator pattern in MDS

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

After the model has been developed, Acme tools check
the model according to the constraints specified in the
style and any problems are reported.

3.2.2 Acme View of SCRover

At the end of this process we had an architectural view
of SCRover that shows the components involved in each
control loop, their connections, and the relationship be-
tween control loops. For example, from the model it is
evident that the Position and Heading Controller uses
information from both SCRover’s Position and Heading,
as well as the nature of known Obstacles. It is also imme-
diately apparent from the model that components query
Sensors and State Variables directly, and are not notified
of changes (which the MDS style allows).

3.3. The Mae Modeling Approach

Acme models were primarily used to check topological
constraints. In contrast, Mae [18][22] was used to model
the refinement of the SCRover components’ functionality
and enable analysis of architectural mismatch. Mae is an
extensible architectural evolution environment. It enables
modeling, analysis, and management of different versions
of architectural artifacts, and supports domain-specific
extensions to capture additional system properties.

 At its core Mae leverages xADL 2.0 [5], an XML-
based ADL. xADL 2.0 is a collection of modularly organ-
ized XML schemas that represent components, connec-
tors, and interfaces. Extensions to xADL may be built to
represent additional architectural properties via new XML
schemas. The extensions used for modeling SCRover are
depicted in Figure 5(b).

Mae employs the Static Behavior extension to xADL’s
core to capture static behavioral properties of the system.
Figure 5(a) depicts how a component type is specified in
the context of this schema: pre- and post-conditions and
invariants are used to statically describe the state of the
component using a set of variables (StateDecl); invariants
may constrain the values for these variables; signatures
are instances of an interface type (not shown in the fig-
ure), and in addition to a pointer to their parent type, have

a name, a direction (provided or required) and a set of
interface elements; an interface element in turn is speci-
fied in terms of a method signature, and is mapped to one
or more operations where associated pre- and post-
conditions are captured; finally, the subtype field is used
to capture relationships among components.

The MDS Types extension shown in Figure 5(b) was
built by extending the static behavioral model to capture
namespaces and complex inheritance information for
components. Finally, the MDS Implementation schema
links architectural artifacts to their implementation-level
counterparts. This extension is primarily used for code
generation from the architectural model.4

3.3.1 The Mae Process

These extensions in concert define a specific ADL that
can capture all the functional requirements of architectural
elements in the context of MDS. To build a Mae architec-
tural model of SCRover, we needed to refine the models
in the MBASE-SSAD document. This process was cen-
tered on the following two activities:

Phase 1: Identify Components and Connectors. Simi-
larly to the experience of the Acme team, the Mae team
extensively used the existing class diagrams to identify
components and connectors in the system. Sometimes
components were formed by merging two or more classes
that together would correspond to an MDS component
type (Controller, Estimator, etc.). Once the components
were identified, their interconnections were established by
leveraging associations in the diagrams. Additional con-
nectors were also identified in the next phase, when the
components’ interfaces were modeled.

Phase 2: Refine component services in terms of inter-
faces and their associated operations. Once the compo-
nents were identified, we needed to specify the services
they provide to the system, as well as those they require
from the system. The former were directly obtained from
the UML class diagrams, while the latter were derived
using a combination of class diagrams and the detailed
information provided in the Implementation Design sec-
tion of the SSAD, along with extensive help from a
SCRover system architect.

Using this information, we were able to partially model
the system in Mae. Additional work was required in con-
verting the pre- and post-conditions (as specified in the
Implementation Design section of the SSAD) into first-
order logic expressions required by Mae. The extra effort
was due to two obstacles: (1) These conditions were
specified in English prose and often lacked proper con-
nection to a component’s state. Consequently a great por-

4
 The details of MDS Types and MDS Implementation schemas may

not be described in this paper as they may be subject to the U.S. Interna-
tional Traffic in Arms Regulation (ITAR).

Figure 4. Portion of SSAD’s sequence diagram
showing interaction between Adaptor and Estimator

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

tion of the Mae team’s effort focused on determining and
formalizing these conditions, such that they could be ana-
lyzed by Mae; (2) The Operations specified in the SSAD
failed to identify the signatures (interface types) to which
a given interface element belongs. Identifying these signa-
tures required intimate knowledge of the MDS stylistic
rules that dictate specific interactions among components
and connectors. This also was performed in close collabo-
ration with a SCRover system architect.

3.3.2 Mae View of SCRover

Following the above process, we constructed a com-
plete Mae model of SCRover. For illustration, a partial
specification of SCRover’s PositionHeadingStateVar
component type obtained using the above process and
built based on the Mae’s xADL schemas is shown below.5

ComponentType:
MDS.SCRover.PositionHeadingStateVar
StateDecl PHSV: PositionHeadingSVType
Invariant
Subtype MDS.StateVar
Signature (Prov) StateUpdate

InterfaceElement setPHStateVar
InputParam Var: PositionHeadingSVType
OutputParam

Operation
PreCond Var <> NULL
PostCond ~PHSV <> Var

Signature (Prov) StateQuery
InterfaceElement getPHStateVar

InputParam Time: TimeTag
OutputParam PositionHeadingSVType

Operation
PreCond (Time > 0) AND #PHSV > 0
PostCond result = PHSV

5 In this notation, ~ denotes a new value for a variable, while # de-
notes the cardinality of a set.

3.4. Summary of Approaches

Both Acme and Mae used the MBASE UML documen-
tation as the basis for developing the two architectural
models. The first phase of each approach was essentially
the same, using class diagrams and associations to obtain
a first cut of the SCRover architecture’s topology. How-
ever, the subsequent phases differed. While the Acme
team primarily used sequence diagrams to clarify the con-
nections between components, the Mae team used the
SSAD’s Implementation Design to determine component
services and behaviors.

The differences in these phases highlight a key differ-
ence in the two modeling approaches. The Acme team was
mostly interested in checking whether the topology of the
SCRover architecture conformed to the MDS rules. On
the other hand, the Mae team assumed that the topology of
the architecture conformed to the MDS style and was in-
terested in checking whether component services were
used correctly.

The differences in approach produced complementary
models that were able to detect different kinds of errors.
These errors are discussed in the next section.

4. Comparison

While UML provided a broad view of the SCRover’s
design and functionality, Acme and Mae specifically fo-
cused on architectural aspects of the system. Conse-
quently, the classes of defects discovered by each ap-
proach differed. In analyzing these defect classes, we real-
ized that there is a pattern to the kinds of defects each
approach helps to reveal, resulting in a taxonomy depicted
in Figure 6. The taxonomy focuses on classes of defects
that are architectural in nature. It helps to clarify the re-
spective strengths and weaknesses of each approach, and
could serve as a basis of identifying other approaches that
may help detect other types of defects.

At its top level, the taxonomy classifies architectural
defects as Topological errors or Behavioral inconsisten-
cies. Topological errors tend to be global to the architec-
ture and concern aspects related to the configuration of
components and connectors in the system. They are often
a result of the violation of constraints imposed by archi-
tectural styles. Some topological errors are directional in
nature: the specific direction of communication required
by the style is violated. An example of this error is when
in a Client-Server architecture the server requests a ser-
vice from a client. Other topological errors are structural
in nature and are further divided into usage violations and
incompleteness of the specification. An example of a us-
age violation is when a communication link between two
components is missing, or alternatively, when a communi-
cation link between components exists where it should not
be present. Incompleteness manifests itself when there is

Figure 5. Sample schema structure (a) and
Layers of schematic extensions (b)

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

insufficient information for specifying the properties of
the architecture’s components and connectors.

Behavioral inconsistencies relate to architectural in-
formation local to a component, or a connector servicing a
set of interacting components. They concern mismatches
between interfaces, static behaviors, or protocol of inter-
acting components. An interface defect occurs when the
signatures of the corresponding provided and required
services of two components are mismatched. The static
behavioral inconsistency reveals mismatches between the
pre- and post-conditions of corresponding provided and
required services in two components. The foundation for
identifying these mismatches may be found in [13]. Fi-
nally, a protocol inconsistency reveals mismatched inter-
action protocols among components.

In the rest of this section, we use the above taxonomy
to discuss the defects identified as a result of a peer-
review of SCRover’s MBASE-SSAD document, as well
as the results of the automated analyses in Acme and Mae.

4.1. MBASE-UML Defect Detection

UML diagrams produced in the context of the MBASE
process were effective in providing a high-level graphical
view of the SCRover application that is reasonably easy to
understand, although not always easy to unambiguously
interpret. In addition to understanding the properties of
the system under development, another goal of software
modeling is ensuring correctness of the models, as well as
consistency among them. The latter would help to detect
errors early in the development process, thus reducing the
development costs.

Unfortunately, the UML diagrams, along with the ta-
bles and English language prose that detailed the architec-
ture and design of the system, cannot be automatically
analyzed. Instead, a peer-review process of the artifacts
proved helpful by identifying 38 defects in the documen-
tation. The peer-review was carefully conducted by the
system architects, and had to be repeated after each major
change to the design. The nature of the 38 discovered de-
fects varied from English language problems and typo-
graphical errors, to sophisticated errors that could poten-
tially cause harmful behaviors; some of them were archi-
tectural in nature, while others were conceptual. These
errors were further classified and documented [2][20].6

Even though peer-reviews are an effective way to identify
defects, our initial hypothesis was that automated support
can help to make this process even more effective. In the
next two sections, we describe how Acme and Mae de-
tected architectural defects beyond those identified by the
peer-review process.

6
Out of the 38 original UML defects, only 24 were architectural in

nature and thus relevant to the remainder of our discussion.

4.2. Acme Defect Detection

The developers of SCRover used the MDS implemen-
tation framework, in which type checking can be used to
check for conformance to some of the MDS rules. They
operated with incomplete knowledge of the informal Eng-
lish rules that were given to the Acme team by JPL to de-
fine the Acme MDS style. Instead, they had to rely on JPL
personnel with knowledge of the MDS style rules to un-
cover architectural errors in design reviews. On the other
hand, once the Acme team codified the rules, the Acme
toolset was able to automatically check architectures for
violations of these rules.

Following the process outlined in Section 4.2, the
Acme team developed a full Acme architectural model of
SCRover. This architectural model was created using
AcmeStudio, an architecture development environment
that allows an architect to draw an architectural model,
and utilizes architectural styles to provide the architect
“templates” for element types. Additionally, AcmeStudio
provides incremental checking of the adherence of an ar-
chitectural model to style rules via a constraint analysis
engine. AcmeStudio also type checks the design to ensure
that the system correctly uses the component and connec-
tor types in the MDS style. Moreover, AcmeStudio pre-
vents certain errors occurring by construction. For exam-
ple, if it is specified that component type A can only have
ports of types B and C, then AcmeStudio will not allow
the architect to add ports of other types to components of
type A.

Using AcmeStudio we discovered 11 defects in the
SCRover model derived from the SSAD documentation,
of which 6 were new defects not previously detected by
the UML peer-review. An example defect detected by
AcmeStudio is the PositionHeadingSensor component
querying the PositionHeadingEstimator component for a
measurement (see interaction in Figure 4); the communi-
cation direction as specified in the SSAD violated MDS
stylistic rules.

It is worth mentioning that the total effort expended on
adapting Acme to MDS and extracting the SCRover
model was relatively small: roughly 120 person-hours, 80
hours of which was used to develop the architectural style,
30 hours to transform the SCRover UML documentation
to an architectural model in that style, and 10 hours to
tailor the environment, model the system, and conduct the
analysis.

4.3. Mae Defect Detection

The specialized MDS schemas discussed in Section 3.3
were used to create a complete model of SCRover. To do
that, xADL 2.0’s accompanying toolset [5] was used to
automatically reconfigure the API needed to manipulate
architectures adhering to these schemas. In turn, this re-

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

sulted in the automatic adaptation of Mae’s design subsys-
tem. Furthermore, Mae’s analysis subsystem was manu-
ally adapted to correspond to the updated schemas. Con-
sequently, Mae supports analysis of static behavioral
properties of a system in the MDS style.

To verify the consistency of an architectural configura-
tion, Mae checks whether the interfaces of the correspond-
ing provided and required services of communicating
components match, and then it does so for the compo-
nent’s static behaviors (specified in first-order logic)
[12][22]. Finally, Mae verifies whether the subtyping rela-
tions specified between the components within the archi-
tectural configuration hold.

Using the Mae environment, we were able to identify
21 inconsistencies in the SCRover architecture, of which 6
were new defects not previously detected by the UML
peer-review. The inconsistencies were the result of mis-
matched signatures and pre- and post-conditions of com-
ponents’ services. An example mismatch is an error in the
specifications of the PositionHeadingController and Posi-
tionHeadingStateVar component types. The Position-
HeadingController requires the getPHStateVar service
that is provided by PositionHeadingStateVar. The pro-
vided service’s pre-condition was more restricted than the
pre-condition of the required service, and thus the re-
quired service may not have been satisfied under certain
circumstances.

As in the case of Acme, the effort spent on adapting
Mae to MDS was light. The total effort was roughly 160
person-hours, of which about 50 hours was spent on
adapting the tool to model MDS architectures, 80 hours
on extracting the Mae models out of the UML specifica-
tion, and the remaining 30 hours was spent on building the
model, using the tool, and performing the analyses.

4.4. Summary

We used the taxonomy depicted in Figure 6 to classify
the defects detected by each of the three approaches. The
results reinforced the hypothesis of the benefits of multi-
view modeling. Figure 7 depicts the number and type of
defects in each category. We also note the following:
• Peer-reviews of the UML design diagrams revealed

both structural and behavioral inconsistencies. In par-
ticular, they revealed directional errors as well as mis-
matches in interfaces and pre- and post-conditions
(shadowed boxes in Figure 6).

• AcmeStudio primarily detected structural errors in all
three categories of directional, usage, and incomplete
specification (light shading in Figure 6).

• Mae detected behavioral inconsistencies at the level of
interfaces and static behaviors (dark shading in Figure
6).7

• Of particular interest is the observation that both Acme
and Mae revealed errors previously undetected using
UML modeling and peer-reviews. Additionally, Acme
and Mae detected different classes of errors, emphasiz-
ing the complementary nature of the approaches and
associated analyses.
The three approaches, which were applied independ-

ently by three different research groups, not only con-
firmed each other’s analysis results, but also demonstrated
the value of viewing SCRover (and MDS) from different
perspectives. Mae and Acme in tandem detected all archi-
tectural defects identified by the peer-review of UML
models, and additionally identified previously undiscov-
ered defects. UML peer-reviews, on the other hand, iden-
tified additional classes of defects that were not architec-
tural in nature [2]. Finally, taking the effort data into con-
sideration, once the initial style characterization and MDS
adaptation of Mae and Acme were complete, the effort
and expertise required to detect errors using the automated
tools became significantly lower than what is needed for a
peer-review of design documents. This benefit would par-
ticularly manifest itself in modeling future MDS-based
systems.

5. Lessons Learned

The work described in this paper was valuable in that it
enabled us to apply our respective technologies to a “real
world” problem. There are, however, some general les-

7 We are currently working on expanding Mae’s analysis capabilities
to detect inconsistencies at the level of interaction protocols.

Figure 6. Classification of architectural defects

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

sons that make this experience more broadly applicable,
beyond our two research groups. These lessons can be
classified into two categories.

5.1. Multi-View Design

It has been accepted that it is both beneficial and nec-
essary to design a software system from multiple perspec-
tives. For example, this belief is reflected in the central
role multiple views play in UML and the recent IEEE
standard for architectural description (IEEE Std 1471-
2000). Despite this, there is still a lack of specific details,
or experience, regarding the choice and value of particular
types of view, and their inter-relationships. Our experi-
ence provides two general lessons in this regard.

The first lesson deals with the complementary nature of
UML and ADLs. While previous work, including our
own, has looked at this issue from a more analytical per-
spective [10][12] we have now demonstrated in an actual
project that it is possible, and indeed useful, to map from
UML to architectures in a principled way. A related ob-
servation is that, while our previous work strived for
automatable refinement solutions from UML to ADLs,
UML’s semi-formal nature (and often informal use) re-
quired a much more human-intensive refinement process
in the SCRover project. UML’s lack of formality and its
typical use, which involves only a subset of the available
diagrams (e.g., extensive use of class and sequence dia-
grams in SCRover), also make it harder to uncover archi-
tectural errors directly as compared to Acme and Mae. On
the other hand, UML models system aspects that are
closer to the implementation than is the case with the two
ADL models. UML is, therefore, more beneficial to sys-
tem implementors than are ADLs.

The second lesson deals with the complementary na-
ture of different ADLs. Again, our previous work [14] has
argued that different ADLs provide complementary capa-
bilities, but this project has given us practical evidence to
support this claim. Different ADLs can detect different
kinds of architectural errors depending on the system as-
pects and properties they model. While one could choose
an arbitrarily large number of ADLs to maximize system
analysis, the pragmatics of a software project are likely to
mandate that this be limited to a small number of nota-
tions that cover the largest cross-section of pertinent is-
sues. Our experience with SCRover indicates that two
natural candidate analyses enabled by ADLs include con-
formance to style rules and consistency of component
interactions.

5.2. Architectural Design

The benefits of formal architectural design have been
widely touted in research literature. At the same time,
practitioners have often opted for less formal modeling
solutions such as UML. Our experience provides evidence

that a degree of formality is a “necessary evil,” at least
with respect to two types of architectural analysis: high-
level behaviors and style invariants.

In both cases, formality of models enables automated
analysis, which is essential for scalable error detection.
For example, SCRover is a medium-sized project, consist-
ing of around 30 components. But even for this size, basic
architectural errors such as interface mismatches and im-
proper connector usage were undetected in SCRover’s
UML models. Furthermore, the complexity and interplay
of the set of architectural style rules (39 in the case of
MDS) make manual checking infeasible.

On the other hand, an ADL’s explicit focus on compo-
nent signatures and interface semantics is a direct enabler
of problem detection in cases where components do not
agree (perhaps in subtle ways) on assumptions of interac-
tion. Similarly, architectural style invariants permit one to
check for satisfaction of structural (topological) con-
straints, missing or extra elements (such as missing con-
nectors), and missing or inadequately specified system
property values. In both cases, the formal models are
much more amenable than informal models to early detec-
tion of errors and to tracing the sources of those errors.

6. Conclusion and Future Work

In this paper we have presented our experience in ap-
plying two architectural modeling techniques to software
in the space domain. The experience showed that Acme
and Mae identify different classes of errors than those
found in a typical UML-based approach with frequent
design reviews. Moreover, the experience confirmed that
different ADLs find different classes of defects, and func-
tion in a complementary fashion. We also observed that
the process of translating existing UML documentation
into architectural models, while human-intensive, is simi-
lar in both cases. Although our experience is limited to a
single software system, we believe that the approach taken

Figure 7. Defects detected by UML, Acme and Mae
approach (by type and number)

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

and the lessons learned should apply to other software
systems that use UML for documenting their design, and
that have a rich architectural style.

This experience also indicates avenues for future work.
First, and most obvious, is verification and generalization
of the lessons learned. We plan to do this by conducting
similar analyses of other JPL space software, and then
later other domains in which the architectural style is also
rich (for example, automotive software). We anticipate
that the result of different case studies will be a more for-
mal defect classification scheme, and a more rigorous
mapping process between UML and architectural models.

The second area of future work is to develop a better
understanding of the relationship between architectural
modeling approaches, particularly between Mae and
Acme. Not every feature of each approach was used in
this experience, and so there may be more areas of overlap
between these tools that need to be understood and re-
ported. To facilitate this, we plan to explore integration
opportunities between the two toolsets. This integration
will also provide the opportunity to address consistency
maintenance issues between the models.

Finally, our experience was restricted to two types of
architectural modeling approaches, and two types of
analyses. We would like to understand where other model-
ing approaches and analyses fit into this context (for ex-
ample, some of those described in [14]).

Acknowledgements

This work was supported by NASA-HDCP contracts to
CMU, JPL, and USC. It also benefited from significant
support by JPL’s Dan Dvorak, Kenny Meyer, Kirk Rein-
holtz, Nicolas Rouquette; and by USC's SCRover devel-
opment team, headed by Barry Boehm. We also wish to
acknowledge the cooperation and continuous help with
xADL tools provided by the developers of xADL: Eric
Dashofy, Andre van der Hoek, and Richard Taylor. This
material is also based upon work supported by the Na-
tional Science Foundation under Grant Number CCR-
9985441.

References
[1] Bass, L., Clements, P., and Kazman, R. Software Architec-
ture in Practice. Addison-Wesley, 1999.
[2] Boehm B., et. al., Using Testbeds to Accelerate Technology
Maturity and Transition: The SCRover Experience, USC Tech-
nical Report Number USC-CSE-2003-507, 2003.
[3] Boehm B., and Port D., "Balancing Discipline and Flexi-
bility with The Spiral Model and MBASE", Crosstalk, Decem-
ber 2001, pp. 23-28 (http://www.stsc.hill.at.mil/crosstalk).
[4] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Nord, R., and Stafford, J. Document Software Archi-
tectures: Views and Beyond. Addison-Wesley, 2002.

[5] Dashofy, E., van der Hoek, A., and Taylor, R.N., An Infra-
structure for the Rapid Development of XML-based Architec-
ture Description Languages, In Proceedings of the 24th Interna-
tional Conference on Software Engineering (ICSE2002), Or-
lando, Florida.
[6] Dvorak, D. Challenging Encapsulation in the Design of
High-Risk Control Systems. In Proc. 2002 Conference on Ob-
ject Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’92), Seattle, WA, November 2002.
[7] Dvorak D, Rasmussen R., Reeves G., Sacks A., Software
Architecture Themes in JPL's Mission Data System, AIAA Space
Technology Conference and Expo, Albuquerque, NM, 1999.
[8] Garlan, D., Allen, R.J., and Ockerbloom, J. Exploiting
Style in Architectural Design. Proc. Symposium on the Founda-
tions of Software Engineering, New Orleans, LA, 1994.
[9] Garlan, D., Monroe, R.T., and Wile, D. Acme: Architec-
tural Description of Component-Based Systems. Foundations of
Component-Based Systems. Leavens, G.T., and Sitaraman, M.
(eds). Cambridge University Press, 2000 pp. 47-68.
[10] Garlan, D., Kompanek, A., and Cheng, S.-W., Reconciling
the Needs of Architectural Description with Object-Modeling
Notations. Science of Computer Programming Volume 44, El-
sevier Press, pp. 23-49, 2002.
[11] Kruchten, P.B. The 4+1 View Model of Architecture. IEEE
Software, 2(6):42-50, 1995.
[12] Medvidovic N., Rosenblum D.S., Robbins J.E., and Red-
miles D.F., Modeling Software Architectures in the Unified
Modeling Language, ACM Transactions on Software Engineer-
ing and Methodology, January 2002.
[13] Medvidovic N., Rosenblum D.S., and Taylor R.N., A Lan-
guage and Environment for Architecture-Based Software Devel-
opment and Evolution, In Proceedings of the 21st International
Conference on Software Engineering (ICSE’99), Los Angeles,
CA, May 1999
[14] Medvidovic N., and Taylor R.N., A Classification and
Comparison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering 26(1),
pp. 70–93, 2000.
[15] Moriconi, M. and Reimenschneider, R.A. Introduction to
SADL 1.0: A Language for Specifying Software Architecture
Hierarchies. Technical Report SRI-CSL-97-01, SRI Interna-
tional, 1997.
[16] NASA High Dependability Computing Project (HDCP)
http://www.hdcp.org/.
[17] Perry, D.E., and Wolf, A.L. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40-52, 1992.
[18] Roshandel R., van der Hoek A., Mikic-Rakic M., Medvi-
dovic N., Mae - A System Model and Environment for Manag-
ing Architectural Evolution, Submitted to ACM Transactions on
Software Engineering and Methodology (In review), 2002.
[19] Shaw, M., and Garlan, D. Software Architectures: Perspec-
tives on an Emerging Discipline. Prentice Hall, 1996.
[20] USC Center for Software Engineering, SCRover Incre-
ment-I documentation package, http://matador.usc.edu:8888/
export_package/wall-following_scenario, 2003.
[21] USC Center for Software Engineering, Guidelines for
Model-Based (System) Architecting and Software Engineering,
http://sunset.usc.edu/research/MBASE, 2003.
[22] van de Hoek A., Rakic M., Roshandel R. , Medvidovic N.,
Taming Architecture Evolution, in Proceedings of the 6th Euro-
pean Software Engineering Conference (ESEC) and the 9th

ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-9), Vienna, Austria, 2001.

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04)
0-7695-2172-X/04 $ 20.00 © 2004 IEEE

	footer1:

