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Abstract 

Over the past decade a number of architecture descrip-
tion languages (ADLs) have been proposed to facilitate 
modeling and analysis of software architecture. While 
each claims to have various benefits, to date there have 
been few studies to assess the relative merits of these ap-
proaches. In this paper we describe our experience using 
two ADLs to model a system initially described in UML, 
and compare their effectiveness in identifying system de-
sign flaws. We also describe the techniques we used for 
extracting architectural models from a UML system de-
scription. 

1. Introduction 

A critical component of an engineering basis for soft-
ware architecture is the availability of notations for formal 
architectural representation and analysis. Indeed, over the 
past decade there has been considerable research into this 
issue, leading to a large number of proposals for architec-
tural description languages (ADLs). Each ADL typically 
provides some unique capabilities for modeling, together 
with tools to carry out analyses of properties. For exam-
ple, one ADL may be suitable for code generation, while 
another may be better suited for formal analysis with re-
spect to topology, interfaces, or interaction protocols.  

Unfortunately, in the pantheon of architectural model-
ing approaches, it is often unclear what aspects of archi-
tectural design the different approaches focus on, how 
they relate, and what benefits they can provide in increas-
ing the quality of a software system. Thus, when making 
decisions about how to model a system, it is often hard to 
determine the best approach to take, and whether the ef-
fort required in producing multiple models would provide 
significant benefits. 

A case in point is the role of modeling in the design of 
SCRover, a mobile robot based on the Mission Data Sys-
tem (MDS) architectural style [6][7] from NASA’s Jet 
Propulsion Laboratory (JPL), and built using the MDS 
implementation framework. MDS is an architectural ap-

proach created by JPL to streamline the development of 
software for space missions. SCRover was designed and 
developed in collaboration with the MDS team and is suf-
ficiently complex to be indicative of typical autonomous 
robot software used in NASA’s space missions. Addition-
ally, it is being used as a testbed for research by various 
institutions into increasing the dependability of NASA’s 
space software, through NASA’s High Dependability 
Computing Project [16]. 

The SCRover project represents a typical approach to 
developing MDS-based systems. The modeling lessons 
learned can thus be applied to other MDS systems. Fur-
thermore, errors detected in the design of SCRover may 
be indicative of the types of errors encountered in other 
MDS-based systems.  

The broad applicability of SCRover means that it is 
also an attractive testbed for applying modeling technolo-
gies. SCRover was designed in the context of the MBASE 
software process [21], which extensively employs UML. 
The architectural nature of MDS makes SCRover an ideal 
candidate for architectural modeling. Architectural as-
pects of SCRover are difficult to extract from the UML 
documentation, and automated analysis of the documenta-
tion is not practical. Instead, peer-reviews are used to ana-
lyze SCRover’s design documentation.  

In this paper we document our experience in using two 
representative ADLs, Acme [9] and Mae [18], to model 
SCRover. Both models were derived from the initial 
MBASE UML design, but were developed independently 
of each other, and focus on different aspects of the archi-
tecture. We describe how each approach used the 
SCRover documentation to develop the respective archi-
tectural models and discuss the differences that resulted 
from focusing on different aspects of the original docu-
mentation. We show how these differences led to the 
automatic detection of distinct, but complementary, 
classes of errors, and how automatic analysis afforded by 
either ADL yields better results than peer-review of the 
SCRover documentation for architectural defects. 

The rest of this paper is organized as follows: Section 2 
provides some background to software architectures and 
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architectural modeling, and introduces MDS and 
SCRover. Section 3 describes the two approaches that we 
used to model SCRover, discusses details of each ap-
proach, and the process of developing each model. In Sec-
tion 4, we evaluate the results of each approach using a 
detailed classification of architectural defects. Sections 5 
and 6 discuss lessons learned and future work. 

2. Background 

2.1. Software Architecture 

While there are numerous definitions of software archi-
tecture [1][17][19], the basis of all of them is the notion 
that an architecture describes a system’s gross structure 
using one or more views. These views shed light on con-
cerns such as the system’s composition, its main pathways 
of interaction, and the key properties of its parts. Further-
more, an architectural description ideally includes suffi-
cient information to allow analysis and critical appraisal. 

At its core an ADL[14] typically represents an archi-
tectural model as a graph of interacting components (e.g., 
[5][9][15]). Nodes in the graph (the components) repre-
sent the principal computational elements and data stores 
of the system: clients, servers, databases, etc. Arcs are 
termed connectors, and represent the pathways of interac-
tion between the components, which can be realized in a 
system by a complex base of middleware and distributed 
systems support. To account for various behavioral prop-
erties of a system, elements in the graph can typically be 
annotated with property lists, although the mechanisms for 
this differ across ADLs. For example, properties associ-
ated with a connector might define its protocol of interac-
tion, or performance attributes (e.g., delay, bandwidth).  

There are a number of benefits to constraining the de-
sign space for architectures by associating a style with the 
architecture. An architectural style typically defines a set 
of types for components, connectors, interfaces, and prop-
erties, and may include rules that govern how instances of 
those types are composed. Requiring a system to conform 
to a style has many benefits, including support for analy-
sis, reuse, code generation, and system evolution 
[5][15][17][22]. Typically, analysis of an architectural 
model cannot be defined rigorously without appeal to a 
particular style, even if that style merely states that every 
component must have certain properties. 

2.2. Mission Data System (MDS)  

The Mission Data System (MDS) [6][7] is a methodol-
ogy, an architectural style, and an implementation frame-
work designed and built by NASA’s JPL. It attempts to 
capture decades of experience in developing space soft-
ware, and represents a product family approach to space 
mission software. The goal of MDS is to bridge the con-
ceptual gap between scientists, system engineers, and 

software developers. It also strives to provide a set of 
tools and methodologies that enable development of reli-
able systems and that reduce development costs by pro-
moting reuse and preventing erroneous behaviors early in 
the development life cycle.  

The MDS design methodology offers a technique for 
capturing data in terms of States, Commands, and Meas-
urements. Moreover, MDS component types include Con-
trollers, Estimators, Sensors, State-Variables, and Actua-
tors. Instances of these interact by manipulating or com-
municating data. A set of constraints that govern manipu-
lation and communication of the data among architectural 
elements forms the MDS architectural style. The MDS 
implementation framework offers implementation-level 
abstractions that adhere to the MDS style. The framework 
is a C++ library of approximately 250,000 lines of code 
that provides over 35 reusable packages for common func-
tionality such as state-oriented control, event logging, time 
services, data management, visualization, and units of 
measurement. 

2.3. SCRover 

The SCRover project [2] is a collaborative effort by the 
University of Southern California (USC) and JPL to de-
velop a campus public safety robot performing mission 
scenarios representative of JPL’s planetary rover mis-
sions. It was designed and built using the MDS methodol-
ogy and implementation framework. In the version of 
SCRover used in this report, its functionality includes 
basic robot navigation and control capabilities such as 
moving along a wall, turning as needed, and avoiding ob-
stacles. In addition, the robot reports images obtained by 
its camera, range information, and sensor and battery 
health data. The implementation includes over 3000 lines 
of application-specific code in addition to the MDS 
framework code. 

The SCRover project is intended to serve as a testbed 
for research and academic organizations to accelerate 
software engineering technology maturity and transition in 
the context of NASA’s High Dependability Computing 
Project [16]. With this potential scrutiny in mind, 
SCRover was designed carefully using the MBASE proc-
ess [3][21], with extensive documentation for require-
ments and design, and extensive use of design reviews. 

3. Architectural Modeling for SCRover 

The high-level architecture of SCRover is shown in 
Figure 1. In accordance with the MDS architectural style, 
each high level component shown in the figure will be 
further refined into corresponding Controller, Estimator,
Adaptor, and State variable components, with connections 
between them. These components and connectors interact 
according to the stylistic constraints of MDS. The rest of 
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this section describes each of the three models of 
SCRover and how the two architectural models were de-
rived from the UML models. 

3.1. The MBASE-UML Modeling Approach 

Initially, the architecture of the SCRover system was 
designed by a research group at USC using a subset of 
UML in the context of USC’s MBASE process [21]. 
MBASE offers a set of integrated models that capture 
product, success, process, and property models of the 
system under development.  The MBASE process defines 
an approach for negotiating requirements, capturing op-
erational concepts, building initial design models, assess-
ing project risks, and planning the life cycle. These as-
pects are captured in separate documents that are regularly 
maintained to ensure their consistency.  

MBASE’s Software and System Architecture Descrip-
tion (SSAD) is a 140-page document that uses a subset of 
UML diagrams (use-case, class, and sequence diagrams) 
to model the topology and interactions among different 
SCRover‘s subsystems. The SSAD also models the proc-
ess for achieving the specified system goals. English 
prose, tables, and other conventions are used to further 
elaborate the functionality of the system. Specifically, the 
SSAD focuses on the following aspects of system design: 
• System Analysis elaborates the goals of the system, the 

processes by which the goals may be achieved, and the 
scenarios that describe these processes. 

• Architectural Design describes the topology of the sys-
tem in terms of components and their interfaces (i.e., 
method signatures). It describes the components’ be-
haviors in English, and the system’s overall behaviors 
using sequence diagrams. Use-cases model the manner 
in which components are used in the system. 

• Implementation Design further refines the components 
in terms of class diagrams that specify the compo-

nents’ attributes and their provided interfaces. Opera-
tions are associated with interfaces, and are modeled in 
terms of pre- and post-conditions captured in English.
The SSAD provides a starting point for understanding 

a system’s structure and functionality. However, the lack 
of formal semantics associated with UML manifests itself 
in this process. Moreover, the use of English prose, al-
though descriptive, hampers effective modeling of the 
system since automated support cannot be provided to 
ensure the consistency and correctness of the specifica-
tion. Instead, peer-reviews of the documentation are per-
formed to ensure both its internal consistency, and its 
compliance with the MDS architectural conventions. 

In the context of our experience, the complexity of 
SCRover and the underlying MDS architectural style, to-
gether with the informality of the SSAD, motivated us to 
consider other modeling approaches that would enable 
automatic analysis and help to reveal a broader class of 
errors early in the development process.  

3.2. The Acme Modeling Approach 

To model systems written using the MDS framework, 
the Acme team first encoded the MDS architectural con-
ventions as an Acme style. We based the style definition 
on a set of documents from JPL that prescribed in English  
prose the types of elements in an MDS design and the 
constraints on how instances of those types could be com-
bined. The resulting style formally captures the high-level 
vocabulary and rules governing the architectures of all 
MDS systems.  

The architectural style consists of six component types 
(e.g., Sensor, Actuator, Controller), eight connector types 
(e.g., Command Submit, Measurement Request, State Up-
date), seventeen port types and eighteen role types, in 
addition to 39 formal rules that specify what it means to 
have a correct MDS system topology. Figure 2 illustrates 
a small segment of an architecture written in this style. 
This segment depicts interaction between a Controller, an 
Actuator, and an Estimator. In this interaction, the Con-
troller submits a command to an Actuator via its Com-
mand Submit connector. The Actuator then notifies the 
Estimator that it received a command. Subsequently, the 
Estimator queries the Actuator to find out what the com-
mand was. Examples of the MDS rules: 
1. If an Estimator can be notified of a command by an 

Actuator, then that Estimator must be able to query 
the Actuator for the command.  

2. An Actuator must have exactly one Controller con-
nected to it. 

3. An Actuator must have the same number of Com-
mand Submit, Command Notification, and Command 
Query ports (one for each type of command that it re-
ceives). 

Figure 1. SCRover high-level architecture
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The first MDS rule above can be captured in Acme 
with the following predicate:1

invariant (forall e :! EstimatorT in self.components | 
  (forall cnp :! CmdNotProvT in e.ports | 
    (forall a :! ActuatorT in self.components | 
      (forall cnr :! CmdNotReqrT in a.ports | 
        (connected (cnp, cnr) ->  
         (exists cqr :! CmdQryReqrT in e.ports | 

exists cqp :! CmdQryProvT in a.ports|
connected (cqr, cqp))))))); 

These rules are automatically checked by Acme tools. 

3.2.1 The Acme Process 

The Acme team primarily used the SSAD to develop 
an architectural model of SCRover. The process consisted 
of three phases that built up evidence for the types of 
components and connectors in the architecture.  

Phase 1: Identify components and possible connec-
tions. Primarily using the class diagrams, the components 
are identified, and then the connectors are recorded based 
on the associations between classes in the diagrams. Be-
cause a given UML association between components may 
be one of several possible architectural connectors, some 
of these are marked as possible connectors, pending fur-
ther evidence from the other phases.  

Figure 3 gives an example of a diagram from the 
SSAD, showing an interaction between a Position & 
Heading Estimator and a Hardware Adaptor.2  From this 
diagram, it is straightforward to derive the existence of an 
Estimator component. However, there are several choices 
for what the association in the diagram could mean: 

1 In this rule, self refers to the system, italicized words refer to prede-
fined Acme functions, and the clause <name> :! <type> means that 
<name> declares the type <type>.

2 In the Acme MDS architectural style, Actuators and Sensors are 
distinguished as separate entities whereas in the SSAD they are bundled 
together in Hardware Adaptors. The “mode of use” attribute of an 
Adaptor dictated whether it was a Sensor or an Actuator in this process. 

• The Hardware Adaptor is being used as a Sensor, and 
either the Estimator is periodically requesting meas-
urements, or it is notified of measurements from the 
Sensor. The direction of the arrow argues against the 
former; if it is the latter, however, there is no corre-
sponding measurement requested by the Estimator, as 
required by MDS rules. 

• The Hardware Adaptor is being used as an Actuator,
and the Estimator is either notified of a command, or 
is querying a command. For reasons similar to the 
above, we cannot tell which connector it actually is. 
To resolve the above ambiguity, we need the informa-

tion from Phase 2. 
Phase 2: Refine connections based on sequence dia-

grams. Evidence from messages in sequence diagrams is 
used to substantiate and disambiguate possible connectors 
obtained from Phase 1. If a message cannot be mapped to 
any possible connectors from Phase 1, a connector is 
added to the architecture based on knowledge of the MDS 
style. The lack of a connector is then noted as an omission 
from the SSAD class and interaction diagrams. 

Figure 4 shows the portion of a sequence diagram from 
the SSAD that we used to disambiguate whether the 
Hardware Adaptor is being used as a Sensor or Actuator 
by the Position & Heading Estimator, and to determine 
the type of connection between the two components. The 
method call and parameter name suggest that the Estima-
tor polls the Adaptor for a measurement, leading to the 
conclusion that the hardware adaptor is being used as a 
sensor in this case, and that the connection is a measure-
ment request.3

Phase 3: Review and resolve inconsistencies. To com-
plete the MDS architecture, the final phase reviews the 
results of the previous phases against all other available 
documentation. Any inconsistencies that arise from deci-
sions made in Phase 1 or 2 are also reviewed. If an incon-
sistency is found, “reasonable” decisions based on knowl-
edge of the MDS architectural style are made. If neces-
sary, Phase 1 and/or 2 processes are repeated.  

3
The actual direction of the interaction results in an error when the 

model is later checked by the tools. 

Figure 3. Portion of SSAD’s component classifier diagram

Figure 2. A Controller/Actuator/Estimator pattern in MDS
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After the model has been developed, Acme tools check 
the model according to the constraints specified in the 
style and any problems are reported. 

3.2.2 Acme View of SCRover 

At the end of this process we had an architectural view 
of SCRover that shows the components involved in each 
control loop, their connections, and the relationship be-
tween control loops. For example, from the model it is 
evident that the Position and Heading Controller uses 
information from both SCRover’s Position and Heading,
as well as the nature of known Obstacles. It is also imme-
diately apparent from the model that components query 
Sensors and State Variables directly, and are not notified 
of changes (which the MDS style allows). 

3.3. The Mae Modeling Approach 

Acme models were primarily used to check topological 
constraints. In contrast, Mae [18][22] was used to model 
the refinement of the SCRover components’ functionality 
and enable analysis of architectural mismatch. Mae is an 
extensible architectural evolution environment. It enables 
modeling, analysis, and management of different versions 
of architectural artifacts, and supports domain-specific 
extensions to capture additional system properties.  

 At its core Mae leverages xADL 2.0 [5], an XML-
based ADL. xADL 2.0 is a collection of modularly organ-
ized XML schemas that represent components, connec-
tors, and interfaces. Extensions to xADL may be built to 
represent additional architectural properties via new XML 
schemas. The extensions used for modeling SCRover are 
depicted in Figure 5(b).  

Mae employs the Static Behavior extension to xADL’s 
core to capture static behavioral properties of the system. 
Figure 5(a) depicts how a component type is specified in 
the context of this schema: pre- and post-conditions and 
invariants are used to statically describe the state of the 
component using a set of variables (StateDecl); invariants
may constrain the values for these variables; signatures 
are instances of an interface type (not shown in the fig-
ure), and in addition to a pointer to their parent type, have 

a name, a direction (provided or required) and a set of 
interface elements; an interface element in turn is speci-
fied in terms of a method signature, and is mapped to one 
or more operations where associated pre- and post-
conditions are captured; finally, the subtype field is used 
to capture relationships among components.  

The MDS Types extension shown in Figure 5(b) was 
built by extending the static behavioral model to capture 
namespaces and complex inheritance information for 
components. Finally, the MDS Implementation schema 
links architectural artifacts to their implementation-level 
counterparts. This extension is primarily used for code 
generation from the architectural model.4

3.3.1 The Mae Process 

These extensions in concert define a specific ADL that 
can capture all the functional requirements of architectural 
elements in the context of MDS. To build a Mae architec-
tural model of SCRover, we needed to refine the models 
in the MBASE-SSAD document. This process was cen-
tered on the following two activities:  

Phase 1: Identify Components and Connectors. Simi-
larly to the experience of the Acme team, the Mae team 
extensively used the existing class diagrams to identify 
components and connectors in the system. Sometimes 
components were formed by merging two or more classes 
that together would correspond to an MDS component 
type (Controller, Estimator, etc.). Once the components 
were identified, their interconnections were established by 
leveraging associations in the diagrams. Additional con-
nectors were also identified in the next phase, when the 
components’ interfaces were modeled. 

Phase 2: Refine component services in terms of inter-
faces and their associated operations. Once the compo-
nents were identified, we needed to specify the services 
they provide to the system, as well as those they require 
from the system. The former were directly obtained from 
the UML class diagrams, while the latter were derived 
using a combination of class diagrams and the detailed 
information provided in the Implementation Design sec-
tion of the SSAD, along with extensive help from a 
SCRover system architect.  

Using this information, we were able to partially model 
the system in Mae. Additional work was required in con-
verting the pre- and post-conditions (as specified in the 
Implementation Design section of the SSAD) into first-
order logic expressions required by Mae. The extra effort 
was due to two obstacles: (1) These conditions were 
specified in English prose and often lacked proper con-
nection to a component’s state. Consequently a great por-

4
 The details of MDS Types and MDS Implementation schemas may 

not be described in this paper as they may be subject to the U.S. Interna-
tional Traffic in Arms Regulation (ITAR). 

Figure 4. Portion of SSAD’s sequence diagram  
showing interaction between Adaptor and Estimator
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tion of the Mae team’s effort focused on determining and 
formalizing these conditions, such that they could be ana-
lyzed by Mae; (2) The Operations specified in the SSAD 
failed to identify the signatures (interface types) to which 
a given interface element belongs. Identifying these signa-
tures required intimate knowledge of the MDS stylistic 
rules that dictate specific interactions among components 
and connectors. This also was performed in close collabo-
ration with a SCRover system architect. 

3.3.2 Mae View of SCRover 

Following the above process, we constructed a com-
plete Mae model of SCRover. For illustration, a partial 
specification of SCRover’s PositionHeadingStateVar
component type obtained using the above process and 
built based on the Mae’s xADL schemas is shown below.5

ComponentType:
MDS.SCRover.PositionHeadingStateVar
StateDecl PHSV: PositionHeadingSVType
Invariant
Subtype MDS.StateVar
Signature (Prov) StateUpdate 

InterfaceElement setPHStateVar
InputParam Var: PositionHeadingSVType 
OutputParam

Operation
PreCond Var <> NULL
PostCond ~PHSV <> Var 

Signature (Prov) StateQuery 
InterfaceElement getPHStateVar

InputParam Time: TimeTag 
OutputParam PositionHeadingSVType

Operation
PreCond (Time > 0) AND #PHSV > 0 
PostCond result = PHSV

5 In this notation, ~ denotes a new value for a variable, while # de-
notes the cardinality of a set. 

3.4. Summary of Approaches 

Both Acme and Mae used the MBASE UML documen-
tation as the basis for developing the two architectural 
models. The first phase of each approach was essentially 
the same, using class diagrams and associations to obtain 
a first cut of the SCRover architecture’s topology. How-
ever, the subsequent phases differed. While the Acme 
team primarily used sequence diagrams to clarify the con-
nections between components, the Mae team used the 
SSAD’s Implementation Design to determine component 
services and behaviors. 

The differences in these phases highlight a key differ-
ence in the two modeling approaches. The Acme team was 
mostly interested in checking whether the topology of the 
SCRover architecture conformed to the MDS rules. On 
the other hand, the Mae team assumed that the topology of 
the architecture conformed to the MDS style and was in-
terested in checking whether component services were 
used correctly.  

The differences in approach produced complementary 
models that were able to detect different kinds of errors. 
These errors are discussed in the next section. 

4. Comparison 

While UML provided a broad view of the SCRover’s 
design and functionality, Acme and Mae specifically fo-
cused on architectural aspects of the system. Conse-
quently, the classes of defects discovered by each ap-
proach differed. In analyzing these defect classes, we real-
ized that there is a pattern to the kinds of defects each 
approach helps to reveal, resulting in a taxonomy depicted 
in Figure 6. The taxonomy focuses on classes of defects 
that are architectural in nature. It helps to clarify the re-
spective strengths and weaknesses of each approach, and 
could serve as a basis of identifying other approaches that 
may help detect other types of defects. 

At its top level, the taxonomy classifies architectural 
defects as Topological errors or Behavioral inconsisten-
cies. Topological errors tend to be global to the architec-
ture and concern aspects related to the configuration of 
components and connectors in the system. They are often 
a result of the violation of constraints imposed by archi-
tectural styles. Some topological errors are directional in 
nature: the specific direction of communication required 
by the style is violated. An example of this error is when 
in a Client-Server architecture the server requests a ser-
vice from a client. Other topological errors are structural 
in nature and are further divided into usage violations and 
incompleteness of the specification. An example of a us-
age violation is when a communication link between two 
components is missing, or alternatively, when a communi-
cation link between components exists where it should not 
be present. Incompleteness manifests itself when there is 

Figure 5. Sample schema structure (a) and 
Layers of schematic extensions (b)
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insufficient information for specifying the properties of 
the architecture’s components and connectors.  

Behavioral inconsistencies relate to architectural in-
formation local to a component, or a connector servicing a 
set of interacting components. They concern mismatches 
between interfaces, static behaviors, or protocol of inter-
acting components. An interface defect occurs when the 
signatures of the corresponding provided and required 
services of two components are mismatched. The static 
behavioral inconsistency reveals mismatches between the 
pre- and post-conditions of corresponding provided and 
required services in two components. The foundation for 
identifying these mismatches may be found in [13]. Fi-
nally, a protocol inconsistency reveals mismatched inter-
action protocols among components.  

In the rest of this section, we use the above taxonomy 
to discuss the defects identified as a result of a peer-
review of SCRover’s MBASE-SSAD document, as well 
as the results of the automated analyses in Acme and Mae. 

4.1. MBASE-UML Defect Detection 

UML diagrams produced in the context of the MBASE 
process were effective in providing a high-level graphical 
view of the SCRover application that is reasonably easy to 
understand, although not always easy to unambiguously
interpret. In addition to understanding the properties of 
the system under development, another goal of software 
modeling is ensuring correctness of the models, as well as 
consistency among them. The latter would help to detect 
errors early in the development process, thus reducing the 
development costs. 

Unfortunately, the UML diagrams, along with the ta-
bles and English language prose that detailed the architec-
ture and design of the system, cannot be automatically 
analyzed. Instead, a peer-review process of the artifacts 
proved helpful by identifying 38 defects in the documen-
tation. The peer-review was carefully conducted by the 
system architects, and had to be repeated after each major 
change to the design. The nature of the 38 discovered de-
fects varied from English language problems and typo-
graphical errors, to sophisticated errors that could poten-
tially cause harmful behaviors; some of them were archi-
tectural in nature, while others were conceptual. These 
errors were further classified and documented [2][20].6

Even though peer-reviews are an effective way to identify 
defects, our initial hypothesis was that automated support 
can help to make this process even more effective. In the 
next two sections, we describe how Acme and Mae de-
tected architectural defects beyond those identified by the 
peer-review process.  

6
Out of the 38 original UML defects, only 24 were architectural in 

nature and thus relevant to the remainder of our discussion. 

4.2. Acme Defect Detection 

The developers of SCRover used the MDS implemen-
tation framework, in which type checking can be used to 
check for conformance to some of the MDS rules. They 
operated with incomplete knowledge of the informal Eng-
lish rules that were given to the Acme team by JPL to de-
fine the Acme MDS style. Instead, they had to rely on JPL 
personnel with knowledge of the MDS style rules to un-
cover architectural errors in design reviews. On the other 
hand, once the Acme team codified the rules, the Acme 
toolset was able to automatically check architectures for 
violations of these rules. 

Following the process outlined in Section 4.2, the 
Acme team developed a full Acme architectural model of 
SCRover. This architectural model was created using 
AcmeStudio, an architecture development environment 
that allows an architect to draw an architectural model, 
and utilizes architectural styles to provide the architect 
“templates” for element types. Additionally, AcmeStudio 
provides incremental checking of the adherence of an ar-
chitectural model to style rules via a constraint analysis 
engine. AcmeStudio also type checks the design to ensure 
that the system correctly uses the component and connec-
tor types in the MDS style. Moreover, AcmeStudio pre-
vents certain errors occurring by construction. For exam-
ple, if it is specified that component type A can only have 
ports of types B and C, then AcmeStudio will not allow 
the architect to add ports of other types to components of 
type A.  

Using AcmeStudio we discovered 11 defects in the 
SCRover model derived from the SSAD documentation, 
of which 6 were new defects not previously detected by 
the UML peer-review. An example defect detected by 
AcmeStudio is the PositionHeadingSensor component 
querying the PositionHeadingEstimator component for a 
measurement (see interaction in Figure 4); the communi-
cation direction as specified in the SSAD violated MDS 
stylistic rules. 

It is worth mentioning that the total effort expended on 
adapting Acme to MDS and extracting the SCRover 
model was relatively small: roughly 120 person-hours, 80 
hours of which was used to develop the architectural style, 
30 hours to transform the SCRover UML documentation 
to an architectural model in that style, and 10 hours to 
tailor the environment, model the system, and conduct the 
analysis. 

4.3. Mae Defect Detection 

The specialized MDS schemas discussed in Section 3.3 
were used to create a complete model of SCRover. To do 
that, xADL 2.0’s accompanying toolset [5] was used to 
automatically reconfigure the API needed to manipulate 
architectures adhering to these schemas. In turn, this re-
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sulted in the automatic adaptation of Mae’s design subsys-
tem. Furthermore, Mae’s analysis subsystem was manu-
ally adapted to correspond to the updated schemas. Con-
sequently, Mae supports analysis of static behavioral 
properties of a system in the MDS style.  

To verify the consistency of an architectural configura-
tion, Mae checks whether the interfaces of the correspond-
ing provided and required services of communicating 
components match, and then it does so for the compo-
nent’s static behaviors (specified in first-order logic) 
[12][22]. Finally, Mae verifies whether the subtyping rela-
tions specified between the components within the archi-
tectural configuration hold. 

Using the Mae environment, we were able to identify 
21 inconsistencies in the SCRover architecture, of which 6 
were new defects not previously detected by the UML 
peer-review. The inconsistencies were the result of mis-
matched signatures and pre- and post-conditions of com-
ponents’ services. An example mismatch is an error in the 
specifications of the PositionHeadingController and Posi-
tionHeadingStateVar component types. The Position-
HeadingController requires the getPHStateVar service 
that is provided by PositionHeadingStateVar. The pro-
vided service’s pre-condition was more restricted than the 
pre-condition of the required service, and thus the re-
quired service may not have been satisfied under certain 
circumstances.  

As in the case of Acme, the effort spent on adapting 
Mae to MDS was light. The total effort was roughly 160
person-hours, of which about 50 hours was spent on 
adapting the tool to model MDS architectures, 80 hours 
on extracting the Mae models out of the UML specifica-
tion, and the remaining 30 hours was spent on building the 
model, using the tool, and performing the analyses. 

4.4. Summary 

We used the taxonomy depicted in Figure 6 to classify 
the defects detected by each of the three approaches. The 
results reinforced the hypothesis of the benefits of multi-
view modeling. Figure 7 depicts the number and type of 
defects in each category. We also note the following: 
• Peer-reviews of the UML design diagrams revealed 

both structural and behavioral inconsistencies. In par-
ticular, they revealed directional errors as well as mis-
matches in interfaces and pre- and post-conditions 
(shadowed boxes in Figure 6). 

• AcmeStudio primarily detected structural errors in all 
three categories of directional, usage, and incomplete 
specification (light shading in Figure 6). 

• Mae detected behavioral inconsistencies at the level of 
interfaces and static behaviors (dark shading in Figure 
6).7

• Of particular interest is the observation that both Acme 
and Mae revealed errors previously undetected using 
UML modeling and peer-reviews. Additionally, Acme 
and Mae detected different classes of errors, emphasiz-
ing the complementary nature of the approaches and 
associated analyses.  
The three approaches, which were applied independ-

ently by three different research groups, not only con-
firmed each other’s analysis results, but also demonstrated 
the value of viewing SCRover (and MDS) from different 
perspectives. Mae and Acme in tandem detected all archi-
tectural defects identified by the peer-review of UML 
models, and additionally identified previously undiscov-
ered defects. UML peer-reviews, on the other hand, iden-
tified additional classes of defects that were not architec-
tural in nature [2]. Finally, taking the effort data into con-
sideration, once the initial style characterization and MDS 
adaptation of Mae and Acme were complete, the effort 
and expertise required to detect errors using the automated 
tools became significantly lower than what is needed for a 
peer-review of design documents. This benefit would par-
ticularly manifest itself in modeling future MDS-based 
systems. 

5. Lessons Learned 

The work described in this paper was valuable in that it 
enabled us to apply our respective technologies to a “real 
world” problem. There are, however, some general les-

7 We are currently working on expanding Mae’s analysis capabilities 
to detect inconsistencies at the level of interaction protocols. 

Figure 6. Classification of architectural defects

Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04) 
0-7695-2172-X/04 $ 20.00 © 2004 IEEE 



sons that make this experience more broadly applicable, 
beyond our two research groups. These lessons can be 
classified into two categories. 

5.1. Multi-View Design 

It has been accepted that it is both beneficial and nec-
essary to design a software system from multiple perspec-
tives. For example, this belief is reflected in the central 
role multiple views play in UML and the recent IEEE 
standard for architectural description (IEEE Std 1471-
2000). Despite this, there is still a lack of specific details, 
or experience, regarding the choice and value of particular 
types of view, and their inter-relationships. Our experi-
ence provides two general lessons in this regard. 

The first lesson deals with the complementary nature of 
UML and ADLs. While previous work, including our 
own, has looked at this issue from a more analytical per-
spective [10][12] we have now demonstrated in an actual 
project that it is possible, and indeed useful, to map from 
UML to architectures in a principled way. A related ob-
servation is that, while our previous work strived for 
automatable refinement solutions from UML to ADLs, 
UML’s semi-formal nature (and often informal use) re-
quired a much more human-intensive refinement process 
in the SCRover project. UML’s lack of formality and its 
typical use, which involves only a subset of the available 
diagrams (e.g., extensive use of class and sequence dia-
grams in SCRover), also make it harder to uncover archi-
tectural errors directly as compared to Acme and Mae. On 
the other hand, UML models system aspects that are 
closer to the implementation than is the case with the two 
ADL models. UML is, therefore, more beneficial to sys-
tem implementors than are ADLs. 

The second lesson deals with the complementary na-
ture of different ADLs. Again, our previous work [14] has 
argued that different ADLs provide complementary capa-
bilities, but this project has given us practical evidence to 
support this claim. Different ADLs can detect different 
kinds of architectural errors depending on the system as-
pects and properties they model. While one could choose 
an arbitrarily large number of ADLs to maximize system 
analysis, the pragmatics of a software project are likely to 
mandate that this be limited to a small number of nota-
tions that cover the largest cross-section of pertinent is-
sues. Our experience with SCRover indicates that two 
natural candidate analyses enabled by ADLs include con-
formance to style rules and consistency of component 
interactions. 

5.2. Architectural Design 

The benefits of formal architectural design have been 
widely touted in research literature. At the same time, 
practitioners have often opted for less formal modeling 
solutions such as UML. Our experience provides evidence 

that a degree of formality is a “necessary evil,” at least 
with respect to two types of architectural analysis: high-
level behaviors and style invariants. 

In both cases, formality of models enables automated 
analysis, which is essential for scalable error detection. 
For example, SCRover is a medium-sized project, consist-
ing of around 30 components. But even for this size, basic 
architectural errors such as interface mismatches and im-
proper connector usage were undetected in SCRover’s 
UML models. Furthermore, the complexity and interplay 
of the set of architectural style rules (39 in the case of 
MDS) make manual checking infeasible. 

On the other hand, an ADL’s explicit focus on compo-
nent signatures and interface semantics is a direct enabler 
of problem detection in cases where components do not 
agree (perhaps in subtle ways) on assumptions of interac-
tion. Similarly, architectural style invariants permit one to 
check for satisfaction of structural (topological) con-
straints, missing or extra elements (such as missing con-
nectors), and missing or inadequately specified system 
property values. In both cases, the formal models are 
much more amenable than informal models to early detec-
tion of errors and to tracing the sources of those errors. 

6. Conclusion and Future Work 

In this paper we have presented our experience in ap-
plying two architectural modeling techniques to software 
in the space domain. The experience showed that Acme 
and Mae identify different classes of errors than those 
found in a typical UML-based approach with frequent 
design reviews. Moreover, the experience confirmed that 
different ADLs find different classes of defects, and func-
tion in a complementary fashion. We also observed that 
the process of translating existing UML documentation 
into architectural models, while human-intensive, is simi-
lar in both cases. Although our experience is limited to a 
single software system, we believe that the approach taken 

Figure 7. Defects detected by UML, Acme and Mae 
approach (by type and number)
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and the lessons learned should apply to other software 
systems that use UML for documenting their design, and 
that have a rich architectural style.  

This experience also indicates avenues for future work. 
First, and most obvious, is verification and generalization 
of the lessons learned. We plan to do this by conducting 
similar analyses of other JPL space software, and then 
later other domains in which the architectural style is also 
rich (for example, automotive software). We anticipate 
that the result of different case studies will be a more for-
mal defect classification scheme, and a more rigorous 
mapping process between UML and architectural models. 

The second area of future work is to develop a better 
understanding of the relationship between architectural 
modeling approaches, particularly between Mae and 
Acme. Not every feature of each approach was used in 
this experience, and so there may be more areas of overlap 
between these tools that need to be understood and re-
ported. To facilitate this, we plan to explore integration 
opportunities between the two toolsets. This integration 
will also provide the opportunity to address consistency 
maintenance issues between the models. 

Finally, our experience was restricted to two types of 
architectural modeling approaches, and two types of 
analyses. We would like to understand where other model-
ing approaches and analyses fit into this context (for ex-
ample, some of those described in [14]). 
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