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Abstract 
 
As new market opportunities, technologies, platforms, and 

frameworks become available, systems require large-scale 

and systematic architectural restructuring to accommodate 

them. Today’s architects have few tools and techniques to 

help them plan this architecture evolution. In particular, they 

have little assistance in planning alternative evolution paths, 

trading off various aspects of the different paths, or knowing 

best practices for particular domains. In this paper we de-

scribe an approach for assisting architects in developing and 

reasoning about architectural evolution paths. The key in-

sight of our approach is that, architecturally, many system 

evolutions follow certain common patterns – or evolution 

styles. We define what we mean by an evolution style, and 

show how it can be used to provide automated assistance for 

expressing architectural evolution, and for reasoning about 

both the correctness and quality of evolution paths. 

 

 

1. Introduction 
 

Architecture evolution is a central feature of virtual-

ly all software systems. As new market opportunities, 

technologies, platforms, and frameworks become 

available, systems must change their organizational 

structures to accommodate them, in many cases requir-

ing large-scale and systematic restructuring. In most 

cases such changes cannot be made overnight, and 

hence the architect must develop an evolution plan to 

change the architecture (and implementation) of a sys-

tem through a series of phased releases, eventually 

leading to a new target system.  

Unfortunately, architects have few tools to help them 

plan and execute such evolutionary paths. While con-

siderable research has gone into software maintenance 

and evolution, dating from the beginning of software 

engineering, there has been relatively little work focus-

ing specifically on foundations and tools to support 

architecture evolution. Architecture evolution is an 

essential complement to software evolution because it 

permits planning and system restructuring at a high 

level of abstraction where quality and business tra-

deoffs can be understood and analyzed.  

In particular, architects have almost no assistance in 

reasoning about questions such as: How should we 

stage the evolution to achieve business goals in the 

presence of limited development resources? How can 

we assure ourselves that intermediate releases do not 

break existing functionality? How can we reduce risk 

in incorporating new technologies and infrastructure 

required by the target architecture? How can we make 

principled tradeoffs between time and development 

effort? What kinds of changes can be made indepen-

dently, and which require coordinated system-wide 

modifications? How can we represent and communi-

cate an evolution plan within an organization?  

Such questions require new foundations that permit 

architects to reason about and plan large-scale system-

wide changes at an architectural level of abstraction. In 

this paper, we describe an approach that allows one to 

precisely express and reason about architecture evolu-

tion. We support the expression and checking of cor-

rectness conditions (e.g., to guarantee that a proposed 

path satisfies certain sequencing constraints), that in-

termediate states of a system evolution do not intro-

duce anomalous behavior, and that the proposed path 

will lead to a system with desired architectural proper-

ties. Moreover, our approach allows an architect not 

only to reason about “correct” evolution, but also to 

make tradeoffs to achieve business goals, such as mi-

nimizing the time to reach the target architecture and 

the costs involved in doing so. Finally, we describe a 

tool to automate these analyses. 

As we will see, the key insight behind our approach 

is that at an architectural level of abstraction many 

system evolutions follow certain common patterns, 

dictated by the style of architecture that their origin and 

target architectures conform to. By taking advantage of 

regularity in the space of common architectural evolu-

tions we can provide automated assistance for captur-

ing and reusing knowledge about architectural evolu-

tion. Specifically, we refer to collections of related 

paths as evolution styles. Evolution styles can be de-
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fined, reasoned about, analyzed, applied to the evolu-

tion of specific systems, and supported by tools. By 

capturing such styles we not only raise the level of 

abstraction for representing specific evolution paths, 

but also provide the opportunity for reuse, path analy-

sis, decision automation, tradeoff analysis, and formal 

guarantees of correctness. 

This paper is organized as follows: in Section 2, we 

discuss existing work in architecture evolution and 

related areas. Section 3 describes our general approach 

to architecture evolution, and Section 4 presents an 

example to illustrate these notions. In Section 5, we 

describe with more formality the foundations of our 

model of architecture evolution. Finally, we discuss the 

tool that we have developed to support evolution in 

Section 6, and in Section 7 we conclude with a short 

discussion.  

 

2. Related Work 
 

Today’s approaches to addressing problems of ar-

chitecture evolution fall into four categories. The first 

is support for software evolution. Since the early days 

of software engineering there has been concern for the 

maintainability of software, leading to concepts such as 

criteria for code modularization [28], indications of 

maintainability such as coupling and cohesion [2], 

[39], code refactoring [25], and many others [16]. 

These techniques, which focus on the code structures 

of a system, have led to numerous advances, such as 

language support for modularization and encapsula-

tion, analysis of module compatibility and substituta-

bility [6], and design patterns that support maintaina-

bility [12].  

While such advances have been critical to the 

progress of software engineering, they generally do not 

treat large-scale reorganization based on architectural 

abstractions. Working primarily in the domain of code 

units, they do not capture the essential, high-level, run-

time structures that are necessary to reason about the 

architecture of a complex software system. Also, the 

techniques are typically general-purpose, focusing on 

general properties of modularity such as coupling and 

cohesion. In contrast, our work focuses on the reuse of 

specifications and analyses for domain-specific evolu-

tion at an architectural level of abstraction.  

The second related area of research and develop-

ment is tool support for versioning and project plan-

ning. Version control systems such as CVS [4] allow 

different versions of artifacts to be compared and re-

viewed. In these tools, the primary managed artifact is 

source code rather than architectural models. Conse-

quently these tools do not support comparison or rea-

soning about different versions of the architecture. 

More recent software architecture research has investi-

gated architectural versioning [1], [18], but these tools 

and techniques do not provide any reasoning frame-

work other than comparison. In particular, they are 

silent with respect to what might constitute a correct or 

optimal evolution path. 

In the domain of project planning, traditional 

project management approaches and software devel-

opment planning approaches such as COCOMO [5] 

provide ways to plan and analyze software develop-

ment. Unfortunately, because they focus primarily on 

the end state of a maintenance or development effort, 

they do not provide ways to directly plan and reason 

about sequences of developments, nor do they have 

any way to state and enforce constraints on a system’s 

architectural structure. Advice on how to organize ar-

chitecture evolution steps into waves and plateaus is 

given in [11]. The advice is pragmatic in nature, sug-

gesting that introducing major infrastructure changes 

(waves) should be followed by periods of relative sta-

bility so that new infrastructure changes can be proper-

ly adjusted to (plateaus). 

The third related area is formal approaches to archi-

tecture transformation. A number of researchers have 

proposed formal models that can capture structural and 

behavioral transformation [17], [35], [40]. For exam-

ple, Wermelinger uses category theory to describe how 

transformations can occur in software architecture [40]. 

His approach separates computations of a system from 

its configuration, allowing the introduction of a “dy-

namic configuration step” that produces a derivation 

from one architecture to another. Architecture in this 

sense is defined by the space of all possible configura-

tions that can result from a certain starting configura-

tion, and then applying a sequence of transformations. 

Grunske [17] shows how to map architectural specifi-

cations to hypergraphs and uses these to define archi-

tectural refactorings that can be applied automatically. 

These refactorings are shown to preserve architectural 

behavior. Spitznagel [34] focuses on the transformation 

of architectural connectors as a way to augment the 

communication paths between components. 

There has been some research into abstracting code 

to an architectural level, transforming the architecture, 

and then regenerating code [10], [19]. These approach-

es focus on methods for retrieving architectures from 

legacy systems and reflecting (single-step) architectur-

al changes back into the system, and do not deal with 

how to specify and reason about entire architectural 

transformations or a sequence of architectural releases. 

In essence, they provide a complementary bridge be-

tween code-related software evolution and refactoring, 

and the area of architectural transformation. 

While such formal approaches lay a foundation for 

architecture evolution operators, they differ from our 
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approach in that they are not amenable to specializa-

tion for specific classes of transformations and syste-

matic reuse. Moreover, while they can provide some 

support for characterizing forms of evolution correct-

ness, they do not address issues of evolution quality, 

nor do they address planning evolutions in multiple 

large steps. 

Recently Tamzalit and others have begun to inves-

tigate recurring patterns of architecture evolution, pri-

marily with respect to component-based architectures 

[26], [36], [37]. They use the term evolution style to 

denote a pattern for updating a component-based archi-

tecture. They provide a formal approach based on a 

three-tiered conceptual framework. Like us, they at-

tempt to capture recurring and reusable patterns of ar-

chitecture evolution. However, they do not explicitly 

characterize or reason about the space of architecture 

paths, or apply utility-oriented evaluation to selecting 

appropriate paths. 

The fourth related area is tradeoff analysis for archi-

tectural evolution. The work of Kazman et al. [22] ap-

plies architectural analysis and tradeoff techniques to 

incrementally improve architectures through the appli-

cation of tactics. Their approach, however, has not 

been used for planning architecture evolution, which 

looks at large-scale, system-wide evolution over a long 

period of time. The work in [27] proposes to use tech-

niques from options theory to determine investments in 

introducing flexibility into a system. This work is simi-

lar to ours in that it provides some basis for analyzing 

architectural quality, but differs in that it does not con-

sider correct architectural transformations or reuse 

through evolution styles. 

One important subset of this work, which does fo-

cus on architectural evolution for specific classes of 

systems, addresses architecture evolution in the context 

of a specific style, such Darwin [23] and C2 [38]. Like 

the work proposed here, these approaches can take 

advantage of domain-specific classes of systems, and 

thereby achieve analytic leverage, as well as tool sup-

port for evolution. However, these approaches are li-

mited to a particular architectural style. 

 

3. Approach 
 

The basis for our approach to architecture evolution 

centers on the concept of evolution paths: 

 Evolution paths can be represented and analyzed 

as first-class entities;  

 Classes of domain-specific evolution paths can be 

formally specified, thereby supporting reuse, cor-

rectness checking, and quality analysis;  

 Tradeoff analyses can be performed over alterna-

tive evolution paths to optimize expected value 

under uncertainty; and 

 Tools can support the description, analysis, track-

ing, and modification of architecture evolution for 

a particular system through a widely used inte-

grated development environment framework. 

The principal idea behind our approach is the con-

cept of an evolution style. An evolution style defines a 

family of domain-specific architecture evolution paths 

that share common properties and satisfy a common set 

of constraints. The key insight is that by capturing evo-

lution paths for specialized families we can define con-

straints that each path in that family must obey, thereby 

providing guidance (based on past experience) and 

correctness criteria (based on formal constraints) for an 

architect developing a particular evolution plan in that 

family. Moreover, we can support reasoning about the 

extent to which a specific path satisfies the quality/cost 

objectives in a particular business context.  

To illustrate what we mean by an evolution style, 

consider the following typical scenarios of evolving an 

architecture from an ad hoc peer-to-peer assemblage of 

legacy subsystems to a hub-and-spoke architecture that 

leverages commercial middleware for coordinating the 

subsystems; from a traditional thin-client/mainframe 

system to a four-tiered web services architecture; from 

a web services architecture based on J2EE to a service-

oriented architecture based on BEA’s WebLogic prod-

uct family; from a control system based on CAN-bus 

integration to one that supports a more reliable proto-

col (e.g., FlexRay [31]). 

Each of these examples has the property that they re-

fer to a class of evolutions addressing a recurring, do-

main-specific architectural evolution problem. (Indeed, 

such evolutions are the core concern of an important 

business segment represented by well-paid consultants 

who specialize in assisting companies with their specif-

ic evolution problems.) Each of them has identifiable 

starting and ending conditions (namely, that the initial 

and final system contain certain architectural struc-

tures). Each embodies certain constraints – for exam-

ple, that no essential service should become unavaila-

ble during the evolution. Finally, although they share 

many commonalities, the specific details of how those 

evolutions should be carried out may well be influ-

enced by concerns such as the time it takes to do the 

transformation, the available resources to carry it out, 

etc. We can take advantage of these characteristics of 

system evolution. 

Summarized briefly, we can model an evolution 

style formally as a set of finite evolution paths, where 

each path defines a sequence of architectures in which 
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the first element in the path is the architecture of the 

current system, and the final element is a desired target 

architecture. Links between successive nodes in a path 

are associated with transitions that are composed using 

a set of evolution operators for that style. In this re-

spect an evolution style is like a state machine for 

which an execution trace defines an evolution path. 

The evolution style may further constrain the space 

of paths in its family by specifying path constraints. 

Path constraints embody things like ordering con-

straints or invariants that must hold for all nodes or all 

releases. We can then talk about whether a given path 

is correct with respect to an evolution style – meaning 

that the path is an element of the family circumscribed 

by that evolution style. To complete the picture, we 

will introduce the notion of an evaluation function that 

allows us to compare different paths with respect to 

quality metrics. Intuitively, an evaluation function de-

termines the expected utility (in a probabilistic sense) 

of a given path with respect to business and manage-

ment priorities, relative to a space of properties of in-

terest (e.g., time, resources, risk, downtime, etc.) and in 

the presence of uncertainty. 

 

4. Example 
 

To illustrate the concepts and benefits of our ap-

proach, consider the following simple, but representa-

tive, scenario: Company C delivers a set of services 

using software and data that is spread out over a loose 

collection of relatively independent legacy IT subsys-

tems that have accrued over time. Because of historical 

independent development and acquisition, different 

subsystems are based on different platforms. For ex-

ample, one subsystem might be used to manage per-

sonnel, based on a PeopleSoft platform; another sub-

system manages inventory using SAP; yet another 

manages accounts using Oracle Applications. In cases 

where delivered services need to access multiple sub-

systems, the IT division of C has created ad hoc, hand-

coded bridging elements. For example, there may be 

connections between the personnel management and 

the accounts system to print paychecks, and between 

inventory and accounts to pay suppliers and bill ven-

dors.   

This form of system is common in today’s IT world, 

 
(a) Source architecture 

 
(b) Target architecture 

Legend*: Ad hoc custom components 

Subsystem 
*Shading indicates application group 

 
 Adapter 

 Custom workflow 

Figure 1. Examples of architectural instances. 
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and represents an example of an ad hoc peer-to-peer 

architecture. Each of the software systems has its own 

language (e.g., SAP has BAPI, Oracle Applications has 

its own SQL-like language, etc.), and these applica-

tions and the workflow between them are commonly 

cobbled together to suit the IT business as needed. 

Such a system is difficult to maintain and evolve, both 

because the integration code was not developed with 

future evolution in mind, and because new technologi-

cal domains such as online services were not antic-

ipated when the code was developed.   

As the company evolves to meet business needs, it 

can no longer easily change the integrated functionality 

or add new integrated functionalities in a timely fa-

shion. The company’s IT department decides to evolve 

the system to more centralized and uniform control 

using an off-the-shelf integration/coordination technol-

ogy – specifically, IBM’s Message Queue Series 

Workflow. By using a unified language to specify inte-

grated workflow, and adapters that map the workflow 

onto existing subsystems’ languages and schema, the 

number of ad hoc connections between the subsystems 

is reduced, improving maintainability and extensibility.  

Figure 1 illustrates a drastically simplified version of 

the initial and target architectures. The components 

Accounts, Personnel, and Inventory represent large 

subsystems that have been acquired over time. In the 

source architecture, these subsystems have been inte-

grated as needed, in an ad hoc fashion, using custom 

components to implement the logic for each pairwise 

integration. These components are ad hoc in the sense 

that they are written using the specific interfaces of 

each of the subsystems with which they integrate. In 

the target architecture, these components have been 

replaced by business logic in a standard, common 

business language, and adapters have been introduced 

to map the specific interfaces of the subsystems to 

standard interfaces that can be used for the business 

logic. The advantages of the target architecture are 

obvious: the integrating business logic is easier to 

maintain and evolve because the language used is 

common regardless of the subsystems that are used, 

and the system is now more flexible to changes in the 

subsystem. For example, if the Accounts subsystem 

were replaced, only the adapter would need to change; 

in the source architecture, such a situation would in-

volve rewriting the integrating business logic compo-

nents that interacted with it. 

Because of the system’s complexity and importance 

to C’s business operations, the chief architect at C 

needs to plan an evolution path to do this in a set of 

staged releases. Let us see how this might be accom-

plished using the concept of evolution styles.   

The evolution style for this problem is one that is 

specialized to the problem of transitioning systems 

from an ad hoc peer-to-peer architecture to a hub-and-

spoke architecture, in which the core functionality of-

fered by subsystems remains unchanged, but the coor-

dination of the parts is changed. Capitalizing on past 

experience in this area, the evolution style, which we 

will call PP2HS, would identify the essential characte-

ristics of the initial and target architecture styles. It 

would also characterize the style of architectures for 

intermediate releases: in this case, a mixture of the 

initial and target structures, allowing both peer-to-peer 

connections as well as hub-and-spoke. Additionally, 

PP2HS would identify a set of structure- and behavior-

changing operations. Examples include the introduc-

tion of the central hub infrastructure as a new kind of 

component (in the mixed intermediate style), addition 

of adapters to allow legacy subsystems to talk to the 

hub, and migration of bridging component functionali-

ty into the hub. Finally, PP2HS would specify a set of 

path constraints. These would capture the correctness 

conditions for a valid evolution path. Specifically they 

would express things like: in every release all existing 

functionality must continue to be available, before 

adapters are introduced the hub components must be 

incorporated into the system, when a coordinated ser-

vice is transitioned to the hub, all subsystems that are 

used by that service must have adapters. 

How would this be used by the chief architect at C? 

Using his tools for architecture evolution the architect 

would first select the appropriate evolution style (here, 

PP2HS). He would then start to define an evolution 

path. Likely the starting point for this would be the 

characterization of the initial and target architectures. 

Existing tools make it relatively easy to specify these 

using standard architecture modeling and visualization 

techniques. At this point the evolution tools would 

check that these two architectures satisfy the pre- and 

post-conditions required by PP2HS, perhaps noting 

situations in which the target architecture is missing 

certain required structures, or is otherwise malformed 

with respect to the target style. 

The architect now starts filling in intermediate stag-

es. Again using the tools, he applies a series of opera-

tors of PP2HS to the architecture to produce a first 

release – for example, by adding the hub and the adap-

ter for one subsystem as an initial release. The tools 

would check that the release is well formed, and that 

the path satisfies the constraints of PP2HS, warning the 

architect when it identifies divergences. This process 

repeats until the architect has fully specified a set of 

releases and transitions to arrive at the target architec-

ture. 

Along the way, however, the architect also needs to 

make decisions about various tradeoffs, for example, 

reconciling available resources (e.g., programmers) 

with the effort and time needed to create each release. 



In Proceedings of the Joint Working IEEE/IFIP Conference on Software Architecture 2009 & European Conference on  

Software Architecture 2009, Sept. 14-17, 2009, Cambridge, UK. 

 

To do this the architect uses one of several paramete-

rized evaluation functions for this evolution style. The 

evaluation functions require the architect to select di-

mensions of concern, provide weighted utilities, and 

estimates of costs and durations (including uncertain-

ties).With these annotations in hand the tools calculate 

for the architect costs and utility, allowing him to ex-

plore alternative scenarios. Over time, as the evolution 

proceeds, the architect will update the values, and per-

form recalculations, perhaps leading to revisions of the 

remaining releases on the path. 

 

5. Evolution Styles 
 

In the previous sections we outlined informally what 

we mean by evolution style and provided an example 

illustrating how particular aspects of the evolution style 

are useful in planning evolution in a particular domain. 

In this section, we describe the technical basis of our 

approach to evolution styles – specifically, how we 

represent architectures and evolution path constraints. 

(a) Specifying Architectures 

We specify architectures using the Acme architec-

ture description language (ADL) [13]. As in most 

modern ADLs, including UML 2.0, an architecture is 

represented as a graph in which the nodes represent 

components and the edges represent connectors [9], 

[24], [29], [33]. Components correspond to the major 

run-time computational elements and data stores of a 

system, while connectors define the pathways of inte-

raction between them. Interfaces of components are 

termed ports. Architectures may be defined hierarchi-

cally: elements may be elaborated as sub-architectures. 

Augmenting architectural structure, we allow archi-

tecture elements (components, connectors, ports)
1
 to be 

annotated with properties that provide more-detailed 

semantics. While the list of properties will vary from 

architecture to architecture, typically they are used to 

represent things like reliability (for components), pro-

tocols of interaction (for connectors), or signatures of 

required and provided services (for ports).  

(b) Specifying Sets of Architectures 

To represent sets of architectures we use the estab-

lished notion of architectural styles as embodied in 

ADLs such as Acme. Specifically, an architectural 

style is defined by specifying a vocabulary of architec-

tural structures as a set of component, connector, and 

port types, together with a set of constraints that de-

termine how instances of those types can be composed 

                                                           
1
 We use the term “architecture element” to refer gen-

erally to components, connectors, and ports. 

into systems.
2
 Constraints may also refer to properties 

of the elements. In Acme, constraints are specified in a 

first-order predicate logic, similar to UML’s OCL, but 

augmented with architecture functions, such as retriev-

ing the components connected to another one, return-

ing the set of ports of a component, etc. (For constraint 

language details see [13].) 

Referring back to the example of Section 4, there 

would likely be three relevant styles: the peer-to-peer 

style of the initial system, the hub-and-spoke style of 

the target system, and the combination style for inter-

mediate releases. Component types in the hub-and-

spoke style include things like the controller and vari-

ous adapters. Connector types include the standard 

adapter-hub communication protocol, as well as the 

specialized connectors that link adapters to subsystems. 

Constraints specify that all service-delivering subsys-

tems must be connected to the hub (possibly via an 

adapter).  

(c) Specifying Evolution Path Properties 

We allow nodes and transitions in an evolution path 

to be annotated with an extensible list of properties. 

These properties provide information so that con-

straints and analyses can be performed. An evolution 

style specifies the list of properties that may be set on 

the nodes and transitions. For example, an evolution 

style may stipulate that each node must specify wheth-

er it is intended to be a public release, or what the ex-

pected impact of the node on the market is; transitions 

might provide information about the expected amount 

of time the transition will take, how many developers 

are required, whether training will be needed, etc. Each 

path may require different values for the same proper-

ties on a node. For example, the expected time to take 

one step of an evolution may be different in a path 

where a previous step involved programmer training 

than in a path that hasn’t yet involved training. 

(d) Specifying and Using Path Constraints 

Path constraints are used to identify the set of evolu-

tion paths allowed by the evolution style. In particular, 

they can be used to restrict releases to being in a par-

ticular architectural style, make sure that certain de-

pendencies in evolution are reflected (e.g., requiring 

certain architectural structures to be in place before 

other operations are performed), or require preserva-

tion of invariants across all releases. For example, in 

the above scenario, path constraints might require that 

no externally accessible services are removed in any 

release. 

                                                           
2
 This is similar to defining a profile in UML. 
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We use an augmented version of linear temporal log-

ic (LTL) to specify these path constraints. Temporal 

logic is a natural choice, since our underlying model of 

evolution styles is an augmented state machine. In par-

ticular, evolution spaces give rise to standard Kripke 

structures [3] in a direct way, where the node labels 

represent architectural properties expressed as predi-

cates that hold for a given architecture in an evolution 

path. Therefore, temporal formulas over evolution 

spaces can be interpreted in a straightforward manner. 

We begin with the usual LTL operators, including: 

  – always, to represent invariant properties 

of paths; 

  – eventually, to represent the existence in a 

path of an architecture with certain properties; 

 U – until, to represent properties that must 

remain true of a path until some other proper-

ty becomes true; and 

 ○ – next, to represent properties that must be 

true in the next node of the path. 

Ordinary LTL is sufficient to express many interest-

ing properties. For example, suppose we want to speci-

fy (in the example in Section 4) that the billing compo-

nent will not be removed until a controller is intro-

duced. We might represent this constraint as follows: 

billingComponentPresent(system) U 

controllerPresent(system) 

Here, billingComponentPresent and controllerPre-

sent are predicates over systems, defined by the evolu-

tion style; system is a keyword that refers to the system 

architecture associated with the current state. Note that 

each of the predicates is expressible with respect to a 

single state. We represent these predicates using the 

first-order predicate logic constraint language in Ar-

mani.  

Now consider a richer path constraint. Suppose we 

want to specify that all the functionality that is present 

at a release point remains present throughout the evolu-

tion (where “functionality” is formalized in some sens-

ible way – e.g., by looking at all components of type 

FunctionalModule). If we try to express the constraint 

in LTL, we quickly encounter a problem. 

 (release → hasAllFunc(system, ?)) (1) 

The problem is that, to express this constraint, we 

need to refer back to a previous state, namely the pre-

vious release. That is, we want to replace the question 

mark in equation (1) with a reference to the previous 

release state. We thus introduce the rigid-variable op-

erator, which allows us to refer directly to states that 

we have already “seen.” In our notation, equation (1) 

would be correctly rendered as 

({s} release → hasAllFunc(system, s.system)) 

The braces are our rigid-variable operator. When we 

encounter them, they “save” the current state to the 

rigid variable s so that we can refer back to it as such in 

a subsequent step. Our approach to rigid variables is 

similar to that of [30], which uses them in the context 

of object-oriented data models. 

In the interest of space, we will not give a full formal 

syntax or semantics for our constraint language here, 

but it is worth briefly noting that the rigid-variable 

operator is a simple addition to the conventional 

Kripke-style semantics of ordinary LTL (e.g., defini-

tion 3.13 in [20]). We simply add another conjunct to 

the satisfaction relation: 

π ⊨ {s}ϕ  iff π ⊨ ϕ[s ← π
1
], 

where ϕ[s ← π
1
] denotes π

1
 substituted for s in ϕ . 

Because of the finite nature of paths, it becomes 

possible to check whether a given evolution path satis-

fies a given set of evolution constraints. Thus tools can 

check the correctness of path constraints.  

(e) Specifying Evolution Operators 

An evolution style comes with a set of operators that 

are specific to that style. For example, the evolution 

style for the example in Section 5 included operators to 

add an adapter to a system and connect it to a subsys-

tem, to add a new hub to the system, and to migrate 

service functionality into the hub.  

Currently we define architectural operators in an im-

perative manner using the Stitch language, developed 

as part of the Rainbow project [7], [8]. Specifically, an 

operator is defined using a set of primitive architecture 

operators and standard programming control constructs 

(conditionals, loops, etc.). Primitive operators include 

adding, removing, or replacing architectural elements, 

attaching connectors to component ports, encapsulating 

a part of an architecture as a higher-level component, 

and changing the value of a property.  

(f) Specifying and Using Evaluation Functions 

Given the facets of evolution styles just described, it 

is possible for an architect to define paths that are 

technically “correct,” in the sense that they are created 

by using valid operators, and satisfy all path con-

straints of the style. However, an important additional 

benefit of defining paths for architecture evolution is to 

be able to compare them and decide which path is the 

best to adopt.  

To enable this, we introduce the concept of evalua-

tion functions into evolution styles. The purpose of an 

evaluation function is to help the architect determine 

whether a path satisfies business and management 

goals. In general, evaluation functions will depend on 
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attributes specific to a particular business context: (a) 

the qualities of concern (cost, functionality, time, etc.) 

and their relative priorities, and (b) constraints on re-

sources (number of personnel, time to deliver a release, 

etc.). 

 Currently we support the specification of the follow-

ing kinds of auxiliary information that can be asso-

ciated with nodes and transitions on paths: 

(a) A vector of quality attributes that can be asso-

ciated with releases, together with a utility func-

tion that determines the value of a certain re-

lease based on its associated quality attributes.  

(b) A vector of cost attributes that can be associated 

with operations, together with a cost function 

that calculates the aggregate cost of a sequence 

of operations. 

(c) A set of constraints on costs and qualities that 

determine the business context. 

As illustrated earlier, the primary use of such analy-

sis is to provide feedback to an architect about the 

costs and quality of a given evolution path, allowing 

the architect to explore the consequences of different 

decisions about the path. For example, the architect 

may decide to use a few releases with major changes, 

requiring the investment of substantial resources to 

achieve this, but reducing the time to reach the target 

architecture. Alternatively, if time is not a constraint, 

and cost is a constrained resource, the architect may 

decide to stretch the evolution out over a larger number 

of releases. The use of an evaluation function, based on 

the attributes listed above, permits such tradeoff ana-

lyses. 

To enable analysis, we allow the properties and con-

straints required by the analysis to be specified as 

properties and path constraints of the evolution style. 

Using the annotated evolution graph as a model we 

provide tool support to plug different analysis imple-

mentations into the tool to conduct the analysis. We 

also provide plug-in support for reporting and compar-

ing analyses of different paths.  

Analyses can vary considerably in their level of de-

tail, and the specific algorithms used. For example, as 

illustrated below, a very simple analysis might simply 

add up costs and benefits. More sophisticated analyses 

can used multiple cost and benefit dimensions, uncer-

tainties, and complex evaluation functions, based, for 

example on options theory [27]. 

 

6. Tool Support 
 

We have developed a tool that functions as a plat-

form for exploring the approach to architecture evolu-

tion described above. The tool, called Ævol [14], is a 

plug-in framework that supports different forms of 

analysis and planning to be implemented and tested 

within the environment. Architects define an evolution 

graph in Ævol and link nodes to architectures of sys-

tems that are represented in AcmeStudio [32], an editor 

for Acme [13]. 

 
Figure 2. The Ævol workbench. 
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Figure 2 shows Ævol displaying an evolution graph. 

Nodes are linked to architectural instances, which can 

be opened in AcmeStudio. Associated with each node 

and transition in the graph is a set of properties. The 

selected element’s properties are shown in the Proper-

ties view at the bottom of the figure. This view dis-

plays the instances that the node is linked to, in addi-

tion to properties required for analysis (in the example 

in the figure, simply cost and benefit). Paths are 

represented as semi-transparent, thick lines in the dia-

gram. (Only one such path is highlighted in the figure.) 

The callouts show thumbnail sketches of the architec-

tures that are attached to the intermediate steps on the 

path. Once the properties on each path are filled in, it is 

possible to run an analysis to compute overall utility of 

a path and then to compare utilities of different paths.  

Ævol is written in Java as a plug-in to the Eclipse 

framework using Eclipse’s Graphical Modeling 

Framework. It is also a plug-in to AcmeStudio archi-

tecture development environment (itself an Eclipse 

plug-in) to link evolution path nodes with architectural 

instances for each step in the evolution. Analyses are 

written as Java plug-ins using APIs provided by Ævol. 

 

7. Conclusion and On-going Work 
 

In this paper we outlined what we feel to be founda-

tions for specifying and reasoning about and support-

ing architectural evolution. The key idea is to focus on 

evolution paths, with the goal of choosing an optimal 

path to achieve business objectives of an organization. 

Optimality is achieved by adopting a utility-theoretic 

approach, allowing us to tailor the analysis to the con-

text. Additionally, we characterize recurring patterns as 

a set of related paths, which we term evolution styles. 

Such styles can be formally characterized, and sup-

ported by tools.  

Our ongoing work in this area is devoted to elaborat-

ing the definition of evolution styles by enhancing the 

concepts of evolution operators and evolution analyses. 

We plan to explore other, more declarative, ways of 

specifying evolution operators, perhaps in the style of 

graph grammars used in [40] or rewrite rules as in [21]. 

Furthermore, we would like to develop and explore 

better ways to analyze evolution paths, perhaps consi-

dering approaches from various economic theories. We 

believe that we have developed a sound foundation for 

a wide range of path analysis techniques. 

We are also actively enhancing support for evolution 

styles – specifically through an evolution style editor, 

new ways to visualize evolution paths and analyses, 

better support for constraint specification and check-

ing, and a catalog of common evolution styles con-

straints, or the use of operators. This is an area of ac-

tive development. 

One other area that we plan to explore is the use of 

planning to automatically generate possible paths. Giv-

en our use of temporal logic expressions to define cor-

rect paths, and the use of operators that may be used to 

construct paths, it may be possible to use a planning 

approach similar to those discussed in [15] to automat-

ically generate alternative paths. 
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