Using Parameters in Architectural Views to Support Heterogeneous Design and Verification

Akshay Rajhans†, Ajinkya Bhave†, Sarah Loos‡, Bruce H. Krogh†, André Platzer‡, David Garlan‡

†Department of Electrical and Computer Engineering {arajhans|jinx|krogh}@ece.cmu.edu
‡Department of Computer Science {sloos|aplatzer|garlan}@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA 15213-3890

Abstract—Current methods for designing cyber-physical systems lack a unifying framework due to the heterogeneous nature of the constituent models and their respective analysis and verification tools. There is a need for a formal representation of the relationships between the different models. Our approach is to define these relationships at the architectural level, associating with each model a particular view of the overall system base architecture. This architectural framework captures critical structural and semantic information without including all the details of the various modeling formalisms. This paper introduces the use of logical constraints over parameters in the architectural views to represent the conditions under which the specifications verified for each model are true and imply the system-level specification. Interdependencies and connections between the constraints in the architectural views are managed in the base architecture using first-order logic of real arithmetic to ensure consistency and correct reasoning. The approach is illustrated in the context of heterogeneous verification of a leader-follower vehicle scenario.

I. INTRODUCTION

Designing a complex cyber-physical system involves analyses of multiple models that capture different aspects of the system using heterogeneous formalisms and tools. To ensure correct system design, there is a need to guarantee that the models are consistent with the system and that system-level properties are correct from the verification of properties of the individual models. In practice, consistency between heterogeneous models and their relationship to system-level specifications is established informally at best. This paper presents a new approach to formal integration of heterogeneous design and verification activities based on parametric relations between architectural views.

Several efforts have focused on supporting multi-view, model-based system development. Some frameworks support simulation of heterogeneous models. Ptolemy II, for example, supports hierarchical integration of multiple “models of computation” into a single simulation model based on an actor-oriented formalism [4]. Reference [11] describes an ongoing effort to integrate Modelica with SysML to carry out physical domain modeling along with system requirements and design. SysML is promoted as an universal modeling framework specialized for systems engineering applications [1], but it lacks a formal mechanism for defining inter-model dependencies. One step in this direction in the Ptolemy II framework is the work on lattice-based ontologies in [14] to infer semantic relationships between elements of heterogeneous models. In a different context, an ontology-based approach is proposed for managing knowledge gained from heterogeneous verification activities in [12].

Several projects have focused on methods for transforming models between formalisms. Meta-modeling approaches such as Generic Modeling Environment (GME) [9], MILAN [13], the Metropolis toolchain [3], and DEVS [21] enable heterogeneous model analysis by creating meta-models for each modeling formalism. The Hybrid Systems Interchange Format (HSIF) [2] and Automatic Integration of Reusable Embedded Software (AIRES) [10] use standardized interface formats to exchange information between multiple models. Translation schemes [7] and toolchains [18] have been developed to translate various types of models into these formats.

Rather than attempting to integrate heterogeneous models into a single framework or tool, or introducing meta-models for translating between modeling formalisms, we have proposed the use of architectures as a lightweight representation of relationships and interdependencies between the models [19]. The objective is to represent critical features of the structural and semantic relationships between models to support some level of reasoning about model consistency and system-level specifications while not attempting to deal with all of the details that are best represented and analyzed in particular modeling frameworks. We aim to support the traditional separation of concerns with a more principled and formal way to deal with critical inter-model dependencies early in, and throughout, the development process. In this approach, models are represented as architectural views of a base architecture for the complete system, providing a unifying framework for defining and analyzing structural consistency between models [6]. This paper introduces the first steps toward the specification and analysis of inter-model consistency at the semantic level.

II. AN ARCHITECTURAL FRAMEWORK FOR HETEROGENEOUS DESIGN AND VERIFICATION

Architectures are annotated structural representations that describe systems at a high level of abstraction, allowing system designers to determine appropriate assignment of functionality to elements, evaluate the compatibility of the parts, and make trade-offs between different quality attributes such as performance, reliability, and maintainability [8]. We
have developed the CPS architectural style [5] as a system-level unified representation for multi-domain models based on heterogeneous formalisms. A system’s base architecture is an annotated graph of components and connectors in which the components represent the principal computational and physical elements of the complete system’s run-time structure, the connectors represent pathways of communication and physical couplings between components, and annotations represent properties of the elements.

An architectural view is another component-connector graph that represents a particular abstraction and refinement of various elements of the base architecture. Each model used in the system development is associated with an architectural view, based on the particular design perspective of the model. For example, a Simulink model created for feedback control analysis will be associated with a view defined in the control design perspective, while a process algebra model created to analyze system deadlock behavior will be associated with a software design perspective. In this context, well-defined mappings between a view and the base architecture can be used as the basis for identifying and managing the structural and semantic dependencies among the various verification models, and to evaluate mutually constraining design choices.

Adherence to the component-connector structure of the base architecture assures that the structure of each architectural view (and hence each model) is consistent with the functional decomposition of the system as represented by the base architecture. We use the concept of graph morphisms to define a notion of structural view consistency [6] that supports the checking of the types of structural relationships that naturally arise in the construction of the verification models. Structural consistency allows us to check if each model adheres to the connectivity constraints between system elements, as defined in the base architecture.

Information about the consistency of behaviors between models is captured by the notion of semantic view consistency, which checks whether each model has correct and consistent assumptions about the behavior of the rest of the system.

As a first step towards addressing semantic consistency, we capture the semantic information shared between a model M_i and the other views of the system with a set of static parameters P_i that are associated with the corresponding architectural view. Parameters that are assigned to specific elements in the view can be checked for syntactic correctness, based on the structural mappings between the view and the base architecture. The semantic inter-dependencies between the views and the base architecture are represented by constraints on these parameters. As illustrated in Fig. 1, each view imports constraints on its parameters from the rest of the system, denoted by C_{ext}^v, the external constraints for model i. The base architecture is associated with the set of system-level parameters P_0, and the auxiliary constraints C_{aux} that represent the relation between P_0 and each P_i, as well as interdependencies between the various P_i’s.

The remainder of the paper develops the formulation of conditions for consistency and correctness of verification activities based on the relationships between the view-level and base architecture-level constraints on the parameters for each of the models and the system-level parameters.

III. Verification of Parameterized Models

We begin by introducing definitions and notation for describing the use of parameterized models for verifying system properties. A parameter p of a system is a real-valued static variable that affects the system behavior in some way. The valuation of a set of parameters P is a function $v : P \rightarrow \mathbb{R}$ that associates each parameter with a value. $V(P)$ denotes the set of all possible valuations of the parameters in P.

A constraint $C(P)$ over a set of parameters P is an expression written in a constraint formalism C. For a given $v \in V(P)$, $\llbracket C(P) \rrbracket_v \in \{T,F\}$ denotes the evaluation of the constraint $C(P)$ at v and $\llbracket C(P) \rrbracket_v$ denotes the set of all valuations v over P for which $\llbracket C(P) \rrbracket_v = T$. In this paper, we assume C is the language of first-order real arithmetic (FO\mathbb{R}). Thus, validity and satisfiability of parameter constraints is decidable by Tarski’s quantifier elimination [20].

Conjunction of constraints $C_1(P)$ and $C_2(P)$, written $C_1(P) \land C_2(P)$, is also a constraint whose corresponding parameter valuations are the intersection of the parameter valuations of the original constraints, i.e., $\llbracket C_1(P) \land C_2(P) \rrbracket = \llbracket C_1(P) \rrbracket \cap \llbracket C_2(P) \rrbracket$. Similarly, disjunction of constraints is a constraint whose corresponding parameter valuations are the union of the parameter valuations of the original constraints.

We write $C'(P) \Rightarrow C(P)$ when $\llbracket C'(P) \rrbracket \subseteq \llbracket C(P) \rrbracket$ and $C'(P) \equiv C(P)$ when $\llbracket C'(P) \rrbracket = \llbracket C(P) \rrbracket$.

Given two sets of parameters P and P', the projection of a constraint $C(P)$ onto P', written as $C(P) \downarrow_{P'}$, is the constraint over P' defined by existential quantification of the parameters in $P \setminus P'$. Its valuations $\llbracket C(P) \downarrow_{P'} \rrbracket$ are

$$\{v' \in V(P') \mid \exists v \in \llbracket C(P) \rrbracket : v'(p') = v(p') \ \forall p' \in P' \cap P\}.$$

The constraint resulting from this existential quantification can be computed effectively for FO\mathbb{R}. Given a collection of constraints $C_1(P), \ldots, C_n(P)$, it is straightforward to show that

$$\left(\bigwedge_{i=1}^n C_i(P)\right) \downarrow_{P'} \Rightarrow \bigwedge_{i=1}^n (C_i(P) \downarrow_{P'}). \quad (1)$$

Let M be a parameterized model with a set of parameters P that is constructed in a particular modeling formalism M. Let B denote a behavioral domain, that is, B is the set of all possible behaviors selected for defining the behavioral semantics of models in M. Depending on the context, the behavioral domain could be, for example, event traces, pairs of continuous input-output signals, or hybrid trajectories. We define the semantics of a particular model by a mapping $\rho_M : C \times M \rightarrow 2^B$. Given a constraint $C(P)$ and model M, $\rho_M(C(P),M)$ denotes the set of all possible behaviors in B associated with the model M for all parameter valuations in $\llbracket C(P) \rrbracket$.

We are interested in analyzing how constraints impact the sets of behaviors for models. Towards this end, we
will assume models are parameterized so that the set of possible behaviors grows or shrinks consistently with increasing or decreasing sets of valuations for constraints. This specification on the model parametrization is captured in the following definition.

Definition 1 A model M parameterized by a set of parameters P in a formalism \mathcal{M} is said to be monotonic with respect to constraints if, for every constraint pair $\{C(P), C'(P)\}$, $C'(P) \Rightarrow C(P)$ then $\rho_\mathcal{M}(C'(P), M) \subseteq \rho_\mathcal{M}(C(P), M)$.

A specification S is a condition written in a specification formalism \mathcal{S}. S can be, for example, various temporal logics, finite automata, Kripke structures, or a set of states to be avoided. The semantics for specifications is given by a mapping $\rho_\mathcal{S} : S \rightarrow 2^\mathcal{B}$ that associates a specification S with a subset of the behaviors in \mathcal{B} for which the specification S is satisfied. In this paper we consider only safety specifications. More specifically, we assume the specifications satisfy the following property.

Definition 2 A specification formalism \mathcal{S} is said to be conjunctive with respect to a given semantic mapping $\rho_\mathcal{S}$ if

$$\forall S', S'' \in \mathcal{S}, \rho_\mathcal{S}(S' \land S'') = \rho_\mathcal{S}(S') \land \rho_\mathcal{S}(S'').$$

In general, safety specifications are conjunctive and liveness specifications are not conjunctive. Given two specifications S and S' from a conjunctive formalism, we write $S' \Rightarrow S$ when $\rho_\mathcal{S}(S') \subseteq \rho_\mathcal{S}(S)$.

We consider design and verification procedures that aim to demonstrate that the behaviors of a model satisfy a given specification over a range of parameter valuations. We denote satisfaction of a given specification by entailment, namely, $C(P), M \models S$ when $\rho_\mathcal{M}(C(P), M) \subseteq \rho_\mathcal{S}(S)$. Entailment specifies the relation between the model and a parameter constraint and the specification. For a given set of parameters P and a specification S, building a model M and constructing $C(P)$ such that $C(P), M \models S$ is a design task. On the other hand, checking whether $C(P), M \models S$ holds for given $C(P)$ and M using a suitable analysis procedure is a verification task. The next section develops the concept of design and verification using heterogeneous models.

IV. HETEROGENEOUS DESIGN AND VERIFICATION

We return to the multi-model setting described in Sec. II using the formal framework for modeling and verification introduced in the previous section. Suppose one wants to design a system with parameters P_0 that satisfies the specification S_0 for the range of parameter valuations represented by a constraint $C_0(P_0)$. If there existed a universal modeling formalism \mathcal{M}_0 that could model everything needed for the system design, a model M_0 of the whole system could be constructed and an appropriate verification procedure could be applied to demonstrate $C_0(P_0), M_0 \models S_0$. In reality, there is no such modeling formalism that can capture all the aspects of a complex cyber-physical system, including the physical dynamics, software, hardware, control, scheduling, communication protocols, etc. Even if there were a such a modeling formalism, building a detailed universal model M_0 would be impractical and doing any kind of verification with the complexity of this grand universal model would be even more hopeless impractical, if not impossible.

Alternatively, rather than designing a complete system at once, a separation of concerns approach is used to design and analyze different aspects of the system using a variety
of models, each suited to a particular type of problem. To describe this approach formally, let \(M_i, i = 1, \ldots, n \) denote the various modeling formalisms used for the heterogeneous design, and let \(P_i \in M_i \) be the specific models that are constructed. In the process of decomposing the system design task into several smaller ones pertaining to the particular design tasks, model-level constraints \(C_i(P_i) \) are introduced using sets of parameters \(P_i \). To simplify the notation, we will use \(C_i \) to denote \(C_i(P_i) \) in the following. These model-specific parameters, such as controller gains in the control perspective, are not necessarily in the set of original system-level parameters \(P_0 \), but there are relationships between the various sets of parameters and the original system constraints impose constraints on the parameters in the various models. We let \(C_{aux}(P) \) denote the auxiliary constraints that capture these dependencies over the parameters \(P = \bigcup_{j=0}^{n} P_j \), which is the set of all parameters being used, including the original parameters \(P_0 \). Without loss of generality we assume the sets \(P_j \), \(j = 0, 1, \ldots, n \) are disjoint. We also assume the auxiliary constraints do not impose a restriction on the original constraints, that is,

\[
(C_0 \land C_{aux}) \downarrow_{P_0} = C_0.
\]

Specifications \(S_i \) are also introduced for each of the models. Given the individual models \(M_i \) and the model-level constraints \(C_i \) and specifications \(S_i \) for \(i = 1, \ldots, n \), we then invoke analysis procedures to determine whether \(C_i, M_i \models S_i \). Figure 1 illustrates the overall decomposition of the design and verification problem.

The hope is that the demonstration of entailment for each of the individual models will somehow guarantee that \(C_0, M_0 \models S_0 \). In the following, we develop conditions under which this will be true.

Definition 3 A set of specifications \(S_1, \ldots, S_n \) is said to satisfy specification coverage with respect to the original system (safety) specification \(S_0 \) if

\[
\left(\bigwedge_{i=1}^{n} S_i \right) \Rightarrow S_0.
\]

This definition of coverage for the specifications is similar to the notion of requirements traceability: it is necessary to show that the requirements that are actually verified \((S_i, i = 1, \ldots, n) \) are in fact sufficient to imply the original requirements. It is also necessary to demonstrate that the design has been verified for \(C_0 \), which specifies the full range of parameters \(P_0 \) for which the specification \(S_0 \) must hold. This is captured in the following definition that relates the parameter constraints in the models to the constraints on the original parameters.

Definition 4 A set of constraints \(C_1, \ldots, C_n \) is said to satisfy constraint coverage with respect to the original system constraints \(C_0 \) if

\[
C_0 \Rightarrow \left(C_{aux} \land \bigwedge_{i=1}^{n} C_i \right) \downarrow_{P_0}.
\]

The notion of constraint coverage defined above requires that the set of constraints for the models over-approximates the original constraints when they are projected into the original parameter set through the auxiliary constraints. Finally, it is necessary to assure that the behaviors modeled by the individual models indeed cover the behaviors of interest in the original model. This requirement needs to be satisfied by the way in which the models are constructed. In particular, for the purposes of verification, it is necessary that the models overapproximate the behaviors of the actual system characterized by the system model \(M_0 \) in the universal modeling framework \(M_0 \). This is the concept of abstraction for heterogeneous models.

Definition 5 A model \(M_i \) in a modeling formalism \(M_i \) is said to be an abstraction of a model \(M_0 \) in the modeling framework \(M_0 \) if for any constraints \(C_i \),

\[
\rho_{M_0}(C_{aux} \land C_i) \downarrow_{P_0}, M_0) \subseteq \rho_{M_i}(C_i, M_i).
\]

Note that the definition of abstraction maps the constraints over \(P_i \) into the constraints over \(P_0 \) using the auxiliary constraints. In practice, the modeling framework \(M_0 \) and model \(M_0 \) are not actually specified. Nevertheless, this describes the intuition behind the current informal practice of heterogeneous design and verification. The definitions above provide conditions under which verification of the specifications for the individual models will imply satisfaction of the original specifications.

Proposition 1 Given a model \(M_0 \) in a modeling formalism \(M_0 \) with constraints \(C_0 \) over parameters \(P_0 \) and (safety) specification \(S_0 \), and a set of models \(M_i \) constructed using modeling formalisms \(M_i \) with constraints \(C_i \) over parameters \(P_i \) and (safety) specifications \(S_i \) for \(i = 1, \ldots, n \). If

i. constraints \(C_i(i = 1, \ldots, n) \) cover \(C_0 \),
ii. model \(M_i \) is an abstraction of \(M_0 \) for each \(i = 1, \ldots, n \)
iii. specifications \(S_i \) for each \(i = 1, \ldots, n \)
then \(C_0, M_0 \models S_0 \).

Proof: In the following all conjunctions and intersections are over \(i = 1, \ldots, n \). We first note that constraint coverage implies

\[
C_0 \Rightarrow \left(\bigwedge_{i} C_i \land C_{aux} \right) \downarrow_{P_0} = \bigwedge_{i} (C_{aux} \land C_i) \downarrow_{P_0}.
\]

Therefore, monotonicity implies

\[
\rho_{M_0}(C_0, M_0) \subseteq \rho_{M_0}(\bigwedge_{i} (C_{aux} \land C_i) \downarrow_{P_0}, M_0)
\]

\[
\text{(monotonicity)} \subseteq \bigcap_{i} \rho_{M_i}(C_i, M_i)
\]

\[
\text{(abstraction)} \subseteq \bigcap_{i} \rho_{M_i}(C_i, M_i)
\]

\[
\text{(specification coverage)} \subseteq \rho_{S}(S_i).
\]

Therefore, \(C_0, M_0 \models S_0 \). \(\blacksquare \)
The conditions introduced in Proposition 1 pertain to how the heterogeneous models and specifications relate to the original constraints in the original parameter space P_0. To perform analysis and design in the individual modeling frameworks, conditions are needed in the parameter spaces for each of the models. The constraint C_i for model i should be chosen so that it is not more restrictive than the original system constraints projected into the parameters P_i. This condition is stated in the following definition.

Definition 6 Constraint C_i for model i is said to be original-constraint consistent if

$$C^\text{ext}_i := (C_0 \land C_{\text{aux}}) \downarrow P_i \Rightarrow C_i.$$

Lemma 1 If C_i is original-constraint consistent, then

$$(C_0 \land C_{\text{aux}}) \downarrow P_i \Rightarrow (C_i \land C_{\text{aux}}) \downarrow P_i.$$

Proof: Consider any $v'_i \in \llbracket (C_0 \land C_{\text{aux}}) \downarrow P_i \rrbracket$. Then $v'_i \in \llbracket C_i \downarrow P_i \rrbracket$ (note: C_0 constrains only parameters P_0, which are disjoint from P_i). From the definition of original-constraint consistent, $v'_i \in \llbracket (C_0 \land C_{\text{aux}}) \downarrow P_i \rrbracket$ also implies $v'_i \in \llbracket C_i \downarrow P_i \rrbracket$, which in turn implies $v'_i \in \llbracket (C_i \land C_{\text{aux}}) \downarrow P_i \rrbracket$.

The following proposition states the conditions for the constraints in the parameter spaces for each modeling frameworks that will guarantee that the original specifications are satisfied.

Proposition 2 Under the assumptions of Prop. 1 except that condition $i.$ on the constraint coverage is replaced with i. C_i is original-constraint consistent, we can still conclude $C_0, M_0 \models S_0$.

Proof: By Prop. 1, it is sufficient to show that constraints C_i cover C_0. That is, we want to show

$$C_0 \Rightarrow \left(\bigwedge_i C_i \land C_{\text{aux}} \right) \downarrow P_0.$$

(3)

Suppose (3) is not true, i.e., suppose there exists some $v'_0 \in V(P_0)$ such that $\llbracket C_0 \rrbracket v'_0 = \text{T}$ but $\llbracket \left(\bigwedge_i C_i \land C_{\text{aux}} \right) \downarrow P_0 \rrbracket v'_0 = \text{F}$. This implies

$$\llbracket \left(\bigwedge_i C_i \land C_{\text{aux}} \right) \rrbracket v'_0, v = \text{F} \ \forall \ v \in \prod_i V(P_i).$$

(4)

From Lemma 1 and (4),

$$\llbracket C_0 \land C_{\text{aux}} \rrbracket v'_0, v = \text{F} \ \forall \ v \in \prod_i V(P_i),$$

which in turn implies

$$\llbracket (C_0 \land C_{\text{aux}}) \downarrow P_0 \rrbracket v'_0 = \text{F}.$$

This implies from (2) that $\llbracket C_0 \rrbracket v'_0 = \text{F}$, which contradicts the initial assumption.

V. Example

We consider a platoon with two cars driving in a single lane, and communicating over an 802.11p inter-vehicular wireless network. The leader car l sends its position and velocity to the follower car f over the network. The position, velocity, and acceleration of l are x_l, v_l, and a_l respectively (and similarly for follower f). The follower has a controller that is required to maintain a specified distance of d_{set} from the leader. The communication delay of the network, T_c, is a function of the inter-vehicle distance d. If d goes beyond d_{max}, the network connectivity is lost, and the two-car platoon can no longer be maintained.

Let \underline{x} and \bar{x} denote the lower and upper bounds, respectively, on a parameter x. The system-level parameters and constraints are

$P_0 : a_l, a_l, a_f, a_f, v_l, v_l, v_f, v_f$

$C_0 :$ Specific values for all parameters in P_0

The system-level specification S_0 for a safe platoon formation is given as

$$S_0 := (x_l - x_f > 0) \land (x_l - x_f \leq d_{max}),$$

which asserts the two cars never collide and are never more than d_{max} meters apart.

We consider three heterogeneous views for the two-car platoon. View 1 is a formal verification view associated with model M_1 created in the KeYmaera tool [17]. M_1 is a very general model that identifies an envelope of behaviors for any sampled-data control algorithm for car f that will ensure that S_0 is valid. This model assumes the acceleration and braking of both cars are bounded by A and B, respectively. There is also an assumption that the minimum velocity of each car is non-negative, and that the total delay ε in the system (communication+sampling+reaction delay) is bounded.

The representation of the controller in M_1 is simple. If the controller determines that it is safe for the car to accelerate, any acceleration or braking within the bounded limits is allowed; however, if it determines that the system state is on the boundary of the set of safe states, the car must brake with its full braking force. The controller uses the following constraint to determine whether the car can accelerate safely up to time ε, the maximum delay until the next sample occurs:

$$x_l > x_f - \frac{v_f^2}{2B} - \frac{v_f^2}{2B} + \left(\frac{A}{B} + 1 \right) \left(\frac{A}{2} \varepsilon^2 + v_f \varepsilon \right)$$

If this constraint holds for current sensor readings of position and velocity, then car l will still be safely in front of f until the controller receives sensor data and can react again (i.e., after they drive for up to ε time), no matter how long l and f accelerate or brake. For a more detailed description of this model and its verification, see [15].

Verifying the correctness of this generic model makes it possible to verify a wide range of controllers by simply ensuring that specific controllers have an input-output map that is assured to apply maximum braking on the boundary of the region of safe states. In this example, this condition is
used in View 1 to verify the correctness of a sampled-data PID controller design in View 2. The procedure described above can also be used to verify that the distance between the cars does not exceed \(d_{\text{max}} \).

View 2 is a control design view that is associated with model \(M_2 \) created in Simulink. \(M_2 \) is a sampled-data PID controller for the follower car designed to keep \(f \) around \(d_{\text{set}} \) meters of the leader. The control design takes the network communication delay \(T_c \) into account. The controller has a sampling period \(T_s \) and the set \(K \) of PID gains is given by \(\{ K_p, K_i, K_d \} \). Additionally, we assume bounds on the velocity and acceleration of the two cars in \(M_2 \). The constraints on \(v_i \) and \(v_f \) indicate the operating regime over which we want to verify the correctness of our controller.

The idea is that the real car controller would switch into the PID mode only when the platoon is moving at some nominal speed, and there are other things that are done outside of this regime. Our interest is verifying that if the system remains in this regime where the PID controller operates indefinitely, there will be no collisions. Since the Simulink view can only be used to run simulations, the parameters from the control design are passed to View 1 through \(C_{\text{aux}} \) for formal verification. This includes the distance set point, \(d_{\text{set}} \), which is a design parameter selected in the control design view.

View 3 is a communication perspective. The associated model \(M_3 \) is created in the ns-2 network simulator \([16]\) to calculate \(T_c \) for the specified \(d_{\text{max}} \). The \(T_c \) derived from the communication view is a design constraint that must be adhered to in \(V_2 \), and is also used in View 1 via \(C_{\text{aux}} \) as one of the elements in the composition of \(\varepsilon \).

To summarize, the parameters for the three views are given by

\[
\begin{align*}
P_1 & := P_0 \cup \{ \varepsilon, K, d_{\text{set}} \} \\
P_2 & := P_0 \cup \{ T_c, T_s, K, d_{\text{set}} \} \\
P_3 & := \{ T_c \}
\end{align*}
\]

The auxiliary constraint \(C_{\text{aux}} \) contains the set of equality constraints between the same parameters in the three views, as well as the constraint \(\varepsilon = T_s + T_c \) that bounds the total system delay \(\varepsilon \). The specifications for the three views are given by \(S_1 = S_{01} \), and \(S_2 = S_3 = S \). In other words, the verification of the system specifications is performed in View 1 using values from determined by the designs in Views 2 and 3.

We have verified \(C_1, M_1 \models S_1 \) in KeYmaera. If the designer views the heterogeneous models \(M_2 \) and \(M_3 \) to be abstractions of sampled-data PID controllers, and all models, constraints, and specifications meet the requirements in Proposition 2, it can be concluded that \(C_0, M_0 \models S_0 \). Note that this last statement is a decision that needs to be made in the context of the actual application. As noted in Sec. IV, the model underlying the base architecture is not actually constructed. Rather, engineering judgement is used to determine whether or not the set of models is acceptable as a collection of abstractions for the real system. This simple example illustrates the application of this approach for only a small part of the specifications that would be addressed for a real system. The value of the approach lies in the discipline of identifying the relationships between the models, parameters and constraints formally.

VI. DISCUSSION

This paper presents a new approach to using heterogeneous models for design and verification of complex cyber-physical systems based on the concept of architectural views where syntactical and semantical consistency relationships between the models are identified explicitly. Heterogeneous design and verification activities are standard engineering practice, because different questions typically need different models, modeling formalisms, and tools. In current practice, the relationship among the heterogeneous models remains informal at best. We have introduced parameter specification and constraint consistency as a first step in developing lightweight tools for assuring some degree of correctness in the application of multiple modeling formalisms. We have shown how heterogeneous models may be used together to reason about the safety of cyber-physical systems.

We are currently implementing support for analyzing structural consistency between architectural views in the AcmeStudio architectural design environment \([6]\). Next steps will be to add support for the specification and evaluation of parameter consistency, and to extend the approach developed in this paper to allow dynamic assumptions, e.g., by allowing automata, LHA, temporal logic formulas, etc., to capture the behavioral assumptions and inter-model dependencies in models used in multi-domain model-based design and verification.

REFERENCES

