
Using Parameters in Architectural Views to Support
Heterogeneous Design and Verification

Akshay Rajhans†, Ajinkya Bhave†, Sarah Loos‡, Bruce H. Krogh†, André Platzer‡, David Garlan‡

†Department of Electrical and Computer Engineering {arajhans|jinx|krogh}@ece.cmu.edu
‡Department of Computer Science {sloos|aplatzer|garlan}@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA 15213-3890

Abstract— Current methods for designing cyber-physical sys-
tems lack a unifying framework due to the heterogeneous nature
of the constituent models and their respective analysis and veri-
fication tools. There is a need for a formal representation of the
relationships between the different models. Our approach is to
define these relationships at the architectural level, associating
with each model a particular view of the overall system base
architecture. This architectural framework captures critical
structural and semantic information without including all
the details of the various modeling formalisms. This paper
introduces the use of logical constraints over parameters in the
architectural views to represent the conditions under which the
specifications verified for each model are true and imply the
system-level specification. Interdependencies and connections
between the constraints in the architectural views are managed
in the base architecture using first-order logic of real arithmetic
to ensure consistency and correct reasoning. The approach is
illustrated in the context of heterogeneous verification of a
leader-follower vehicle scenario.

I. INTRODUCTION

Designing a complex cyber-physical system involves anal-
yses of multiple models that capture different aspects of
the system using heterogeneous formalisms and tools. To
ensure correct system design, there is a need to guarantee
that the models are consistent with the system and that
system-level properties are correct from the verification of
properties of the individual models. In practice, consistency
between heterogeneous models and their relationship to
system-level specifications is established informally at best.
This paper presents a new approach to formal integration
of heterogeneous design and verification activities based on
parametric relations between architectural views.

Several efforts have focused on supporting multi-view,
model-based system development. Some frameworks support
simulation of heterogeneous models. Ptolemy II, for exam-
ple, supports hierarchical integration of multiple “models of
computation” into a single simulation model based on an
actor-oriented formalism [4]. Reference [11] describes an
ongoing effort to integrate Modelica with SysML to carry out
physical domain modeling along with system requirements
and design. SysML is promoted as an universal modeling
framework specialized for systems engineering applications
[1], but it lacks a formal mechanism for defining inter-model
dependencies. One step in this direction in the Ptolemy
II framework is the work on lattice-based ontologies in
[14] to infer semantic relationships between elements of

heterogeneous models. In a different context, an ontology-
based approach is proposed for managing knowledge gained
from heterogeneous verification activities in [12].

Several projects have focused on methods for transform-
ing models between formalisms. Meta-modeling approaches
such as Generic Modeling Environment (GME) [9], MILAN
[13], the Metropolis toolchain [3], and DEVS [21] enable
heterogeneous model analysis by creating meta-models for
each modeling formalism. The Hybrid Systems Interchange
Format (HSIF) [2] and Automatic Integration of Reusable
Embedded Software (AIRES) [10] use standardized interface
formats to exchange information between multiple models.
Translation schemes [7] and toolchains [18] have been devel-
oped to translate various types of models into these formats.

Rather than attempting to integrate heterogeneous models
into a single framework or tool, or introducing meta-models
for translating between modeling formalisms, we have pro-
posed the use of architectures as a lightweight representation
of relationships and interdependencies between the models
[19]. The objective is to represent critical features of the
structural and semantic relationships between models to
support some level of reasoning about model consistency
and system-level specifications while not attempting to deal
with all of the details that are best represented and analyzed
in particular modeling frameworks. We aim to support the
traditional separation of concerns with a more principled and
formal way to deal with critical inter-model dependencies
early in, and throughout, the development process. In this
approach, models are represented as architectural views of
a base architecture for the complete system, providing a
unifying framework for defining and analyzing structural
consistency between models [6]. This paper introduces the
first steps toward the specification and analysis of inter-model
consistency at the semantic level.

II. AN ARCHITECTURAL FRAMEWORK FOR
HETEROGENEOUS DESIGN AND VERIFICATION

Architectures are annotated structural representations that
describe systems at a high level of abstraction, allowing
system designers to determine appropriate assignment of
functionality to elements, evaluate the compatibility of the
parts, and make trade-offs between different quality attributes
such as performance, reliability, and maintainability [8]. We

have developed the CPS architectural style [5] as a system-
level unified representation for multi-domain models based
on heterogeneous formalisms. A system’s base architecture
is an annotated graph of components and connectors in which
the components represent the principal computational and
physical elements of the complete system’s run-time struc-
ture, the connectors represent pathways of communication
and physical couplings between components, and annotations
represent properties of the elements.

An architectural view is another component-connector
graph that represents a particular abstraction and refinement
of various elements of the base architecture. Each model used
in the system development is associated with an architectural
view, based on the particular design perspective of the model.
For example, a Simulink model created for feedback control
analysis will be associated with a view defined in the control
design perspective, while a process algebra model created
to analyze system deadlock behavior will be associated
with a software design perspective. In this context, well-
defined mappings between a view and the base architecture
can be used as the basis for identifying and managing the
structural and semantic dependencies among the various
verification models, and to evaluate mutually constraining
design choices.

Adherence to the component-connector structure of the
base architecture assures that the structure of each archi-
tectural view (and hence each model) is consistent with
the functional decomposition of the system as represented
by the base architecture. We use the concept of graph
morphisms to define a notion of structural view consistency
[6] that supports the checking of the types of structural
relationships that naturally arise in the construction of the
verification models. Structural consistency allows us to check
if each model adheres to the connectivity constraints between
system elements, as defined in the base architecture. Infor-
mation about the consistency of behaviors between models
is captured by the notion of semantic view consistency,
which checks whether each model has correct and consistent
assumptions about the behavior of the rest of the system.

As a first step towards addressing semantic consistency, we
capture the semantic information shared between a model
Mi and the other views of the system with a set of static
parameters Pi that are associated with the corresponding
architectural view. Parameters that are assigned to specific
elements in the view can be checked for syntactic correct-
ness, based on the structural mappings between the view
and the base architecture. The semantic inter-dependencies
between the views and the base architecture are represented
by constraints on these parameters. As illustrated in Fig. 1,
each view imports constraints on its parameters from the
rest of the system, denoted by Cext

i , the external constraints
for model i. The base architecture is associated with the set
of system-level parameters P0, and the auxiliary constraints
Caux that represent the relation between P0 and each Pi, as
well as interdependencies between the various Pi’s.

The remainder of the paper develops the formulation of
conditions for consistency and correctness of verification

activities based on the relationships between the view-level
and base architecture-level constraints on the parameters for
each of the models and the system-level parameters.

III. VERIFICATION OF PARAMETERIZED MODELS

We begin by introducing definitions and notation for
describing the use of parameterized models for verifying
system properties. A parameter p of a system is a real-
valued static variable that affects the system behavior in some
way. The valuation of a set of parameters P is a function
v : P → ℝ that associates each parameter with a value. V (P)
denotes the set of all possible valuations of the parameters
in P .

A constraint C(P) over a set of parameters P is an
expression written in a constraint formalism C. For a given
v ∈ V (P), JC(P)Kv ∈ {T, F} denotes the evaluation of
the constraint C(P) at v and JC(P)K denotes the set of all
valuations v over P for which JC(P)Kv = T. In this paper,
we assume C is the language of first-order real arithmetic
(FOLℝ). Thus, validity and satisfiability of parameter con-
straints is decidable by Tarski’s quantifier elimination [20].

Conjunction of constraints C1(P) and C2(P), written
C1(P)∧C2(P), is also a constraint whose corresponding pa-
rameter valuations are the intersection of the parameter val-
uations of the original constraints, i.e., JC1(P) ∧C2(P)K =
JC1(P)K ∩ JC2(P)K. Similarly, disjunction of constraints is a
constraint whose corresponding parameter valuations are the
union of the parameter valuations of the original constraints.
We write C ′(P)⇒ C(P) when JC ′(P)K ⊆ JC(P)K and
C ′(P) ≡ C(P) when JC ′(P)K = JC(P)K.

Given two sets of parameters P and P ′, the projection
of a constraint C(P) onto P ′, written as C(P) ↓P ′ , is the
constraint over P ′ defined by existential quantification of the
parameters in P ∖ P ′. Its valuations JC(P) ↓P ′K are

{v′ ∈ V (P ′) ∣ ∃v ∈ JC(P)K : v′(p′) = v(p′) ∀p′ ∈ P ′∩P}.

The constraint resulting from this existential quantification
can be computed effectively for FOLℝ. Given a collection of
constraints C1(P), . . . , Cn(P), it is straightforward to show
that (

n⋀
i=1

Ci(P)

)
↓P ′ ⇒

n⋀
i=1

(Ci(P) ↓P ′) . (1)

Let M be a parameterized model with a set of parameters
P that is constructed in a particular modeling formalismℳ.
Let ℬ denote a behavioral domain, that is, ℬ is the set of
all possible behaviors selected for defining the behavioral
semantics of models in ℳ. Depending on the context, the
behavioral domain could be, for example, event traces, pairs
of continuous input-output signals, or hybrid trajectories. We
define the semantics of a particular model by a mapping
�ℳ : C ×ℳ→ 2ℬ. Given a constraint C(P) and model M ,
�ℳ(C(P),M) denotes the set of all possible behaviors in
ℬ associated with the model M for all parameter valuations
in JC(P)K.

We are interested in analyzing how constraints impact
the sets of behaviors for models. Towards this end, we

Arch.
Views

Base
Arch.

System
Models

Universal
Model

…

…

Fig. 1. Parameterized architectural views for heterogeneous system models.

will assume models are parameterized so that the set of
possible behaviors grows or shrinks consistently with in-
creasing or decreasing sets of valuations for constraints. This
specification on the model parametrization is captured in the
following definition.

Definition 1 A model M parameterized by a set of parame-
ters P in a formalismℳ is said to be monotonic with respect
to constraints if, for every constraint pair {C(P), C ′(P)},

C ′(P)⇒ C(P) then �ℳ(C ′(P),M) ⊆ �ℳ(C(P),M).

A specification S is a condition written in a specification
formalism S. S can be, for example, various temporal logics,
finite automata, Kripke structures, or a set of states to be
avoided. The semantics for specifications is given by a
mapping �S : S → 2ℬ that associates a specification S with
a subset of the behaviors in ℬ for which the specification S is
satisfied. In this paper we consider only safety specifications.
More specifically, we assume the specifications satisfy the
following property.

Definition 2 A specification formalism S is said to be con-
junctive with respect to a given semantic mapping �S if

∀ S′, S′′ ∈ S, �S(S′ ∧ S′′) = �S(S′) ∩ �S(S′′).

In general, safety specifications are conjunctive and liveness
specifications are not conjunctive. Given two specifications
S and S′ from a conjunctive formalism, we write S′ ⇒ S
when �S(S′) ⊆ �S(S).

We consider design and verification procedures that aim
to demonstrate that the behaviors of a model satisfy a given
specification over a range of parameter valuations. We denote
satisfaction of a given specification by entailment, namely,

C(P),M ∣= S when �ℳ(C(P),M) ⊆ �S(S). Entailment
specifies the relation between the model and a parameter con-
straint and the specification. For a given set of parameters P
and a specification S, building a model M and constructing
C(P) such that C(P),M ∣= S is a design task. On the other
hand, checking whether C(P),M ∣= S holds for given C(P)
and M using a suitable analysis procedure is a verification
task. The next section develops the concept of design and
verification using heterogeneous models.

IV. HETEROGENEOUS DESIGN AND VERIFICATION

We return to the multi-model setting described in Sec. II
using the formal framework for modeling and verification
introduced in the previous section. Suppose one wants to
design a system with parameters P0 that satisfies the speci-
fication S0 for the range of parameter valuations represented
by a constraint C0(P0). If there existed a universal modeling
formalism ℳ0 that could model everything needed for the
system design, a model M0 of the whole system could be
constructed and an appropriate verification procedure could
be applied to demonstrate C0(P0),M0 ∣= S0. In reality, there
is no such modeling formalism that can capture all the
aspects of a complex cyber-physical system, including the
physical dynamics, software, hardware, control, scheduling,
communication protocols, etc. Even if there were a such a
modeling formalism, building a detailed universal model M0

would be impractical and doing any kind of verification with
the complexity of this grand universal model would be even
more hopelessly impractical, if not impossible.

Alternatively, rather than designing a complete system at
once, a separation of concerns approach is used to design
and analyze different aspects of the system using a variety

of models, each suited to a particular type of problem. To
describe this approach formally, letℳi, i = 1, . . . , n denote
the various modeling formalisms used for the heterogeneous
design, and let Mi ∈ ℳi be the specific models that are
constructed. In the process of decomposing the system design
task into several smaller ones pertaining to the particular
design tasks, model-level constraints Ci(Pi) are introduced
using sets of parameters Pi. To simplify the notation, we
will use Ci to denote Ci(Pi) in the following. These model-
specific parameters, such as controller gains in the control
perspective, are not necessarily in the set of original system-
level parameters P0, but there are relationships between the
various sets of parameters and the original system constraints
impose constraints on the parameters in the various models.
We let Caux(P) denote the auxiliary constraints that capture
these dependencies over the parameters P =

∪n
j=0 Pj , which

is the set of all parameters being used, including the original
parameters P0. Without loss of generality we assume the
sets Pj , j = 0, 1, . . . , n are disjoint. We also assume the
auxiliary constraints do not impose a restriction on the
original constraints, that is,

(C0 ∧ Caux) ↓P0
= C0. (2)

Specifications Si are also introduced for each of the
models. Given the individual models Mi and the model-
level constraints Ci and specifications Si for i = 1, . . . , n,
we then invoke analysis procedures to determine whether
Ci,Mi ∣= Si. Figure 1 illustrates the overall decomposition
of the design and verification problem.

The hope is that the demonstration of entailment for
each of the individual models will somehow guarantee that
C0,M0 ∣= S0. In the following, we develop conditions under
which this will be true.

Definition 3 A set of specifications S1, . . . , Sn is said to
satisfy specification coverage with respect to the original
system (safety) specification S0 if(

n⋀
i=1

Si

)
⇒ S0.

This definition of coverage for the specifications is similar
to the notion of requirements traceability: it is necessary to
show that the requirements that are actually verified (Si,
i = 1, . . . , n) are in fact sufficient to imply the original
requirements. It is also necessary to demonstrate that the
design has been verified for C0, which specifies the full range
of parameters P0 for which the specification S0 must hold.
This is captured in the following definition that relates the
parameter constraints in the models to the constraints on the
original parameters.

Definition 4 A set of constraints C1, . . . , Cn is said to
satisfy constraint coverage with respect to the original system
constraints C0 if

C0 ⇒

(
Caux ∧

n⋀
i=1

Ci

)
↓P0

.

The notion of constraint coverage defined above requires
that the set of constraints for the models over-approximates
the original constraints when they are projected into the orig-
inal parameter set through the auxiliary constraints. Finally,
it is necessary to assure that the behaviors modeled by the
individual models indeed cover the behaviors of interest in
the original model. This requirement needs to be satisfied by
the way in which the models are constructed. In particular,
for the purposes of verification, it is necessary that the
models overapproximate the behaviors of the actual system
characterized by the system model M0 in the universal
modeling framework ℳ0. This is the concept of abstraction
for heterogeneous models.

Definition 5 A model Mi in a modeling formalism ℳi is
said to be an abstraction of a model M0 in the modeling
framework ℳ0 if for any constraints Ci

�ℳ0([Caux ∧ Ci] ↓P0 ,M0) ⊆ �ℳi(Ci,Mi).

Note that the definition of abstraction maps the constraints
over Pi into the constraints over P0 using the auxiliary
constraints. In practice, the modeling framework ℳ0 and
model M0 are not actually specified. Nevertheless, this
describes the intuition behind the current informal practice of
heterogeneous design and verification. The definitions above
provide conditions under which verification of the specifica-
tions for the individual models will imply satisfaction of the
original specifications.

Proposition 1 Given a model M0 in a modeling formalism
ℳ0 with constraints C0 over parameters P0 and (safety)
specification S0, and a set of models Mi constructed using
modeling formalisms ℳi with constraints Ci over parame-
ters Pi and (safety) specifications Si for i = 1, . . . , n. If

i. constraints Ci(i = 1, . . . , n) cover C0,
ii. model Mi is an abstraction of M0 for each i = 1, . . . , n

iii. specifications Si (i = 1, . . . , n) cover S0, and
iv. Ci,Mi ∣= Si for each i = 1, . . . , n

then C0,M0 ∣= S0.

Proof: In the following all conjunctions and intersec-
tions are over i = 1, . . . , n. We first note that constraint
coverage implies

Co ⇒ (
⋀
i

Ci ∧ Caux) ↓P0 ⇒
⋀
i

(Caux ∧ Ci) ↓P0 .

Therefore, monotonicity implies

�ℳ(C0,M0) ⊆ �ℳ(
⋀
i

(Caux ∧ Ci) ↓P0
,M0)

(monotonicity) ⊆
∩
i

�ℳ((Caux ∧ Ci) ↓P0
,M0)

(abstraction) ⊆
∩
i

�ℳi
(Ci,Mi)

(since Ci,Mi ∣= Si) ⊆
∩
i

�S(Si)
Def. 2
= �S(

⋀
i

Si)

(specification coverage) ⊆ �S(S0).

Therefore, C0,M0 ∣= S0.

The conditions introduced in Proposition 1 pertain to
how the heterogeneous models and specifications relate to
the original constraints in the original parameter space P0.
To perform analysis and design in the individual modeling
frameworks, conditions are needed in the parameter spaces
for each of the models. The constraint Ci for model i should
be chosen so that it is not more restrictive than the original
system constraints projected into the parameters Pi. This
condition is stated in the following definition.

Definition 6 Constraint Ci for model i is said to be original-
constraint consistent if

Cext
i := (C0 ∧ Caux) ↓Pi

⇒ Ci.

Lemma 1 If Ci is original-constraint consistent, then

(C0 ∧ Caux) ↓Pi
⇒ (Ci ∧ Caux) ↓Pi

.

Proof: Consider any v′i ∈ J(C0 ∧ Caux) ↓Pi
K. Then

v′i ∈ JCaux ↓Pi
K (note: C0 constrains only parameters P0,

which are disjoint from Pi). From the definition of original-
constraint consistent, v′i ∈ J(C0 ∧ Caux) ↓PiK also implies
v′i ∈ JCiK, which in turn implies v′i ∈ J(Ci ∧ Caux) ↓PiK.

The following proposition states the conditions for the
constraints in the parameter spaces for each modeling frame-
works that will guarantee that the original specifications are
satisfied.

Proposition 2 Under the assumptions of Prop. 1 except that
condition i. on the constraint coverage is replaced with

i. Ci is original-constraint consistent,

we can still conclude C0,M0 ∣= S0.

Proof: By Prop. 1, it is sufficient to show that con-
straints Ci cover C0. That is, we want to show

C0 ⇒ (
⋀
i

Ci ∧ Caux) ↓P0
. (3)

Suppose (3) is not true, i.e., suppose there exists
some v′0 ∈ V (P0) such that JC0Kv′

0
= T but

J(
⋀

i Ci ∧ Caux) ↓P0
Kv′

0
= F. This implies

J
⋀
i

Ci ∧ CauxKv′
0,v⃗

= F ∀ v⃗ ∈
∏
i

V (Pi). (4)

From Lemma 1 and (4),

JC0 ∧ CauxKv′
0,v⃗

= F ∀ v⃗ ∈
∏
i

V (Pi),

which in turn implies

J(C0 ∧ Caux) ↓P0
Kv′

0
= F.

This implies from (2) that JC0Kv′
0

= F, which contradicts the
initial assumption.

V. EXAMPLE

We consider a platoon with two cars driving in a single
lane, and communicating over an 802.11p inter-vehicular
wireless network. The leader car l sends its position and
velocity to the follower car f over the network. The position,
velocity, and acceleration of l are xl, vl, and al respectively
(and similarly for follower f). The follower has a controller
that is required to maintain a specified distance of dset
from the leader. The communication delay of the network,
Tc, is a function of the inter-vehicle distance d. If d goes
beyond dmax, the network connectivity is lost, and the two-
car platoon can no longer be maintained.

Let x and x̄ denote the lower and upper bounds, respec-
tively, on a parameter x. The system-level parameters and
constraints are
P0 : āl, al, āf , af , v̄l, vl, v̄f , vf
C0 : Specific values for all parameters in P0

The system-level specification S0 for a safe platoon forma-
tion is given as

S0 := (xl − xf > 0) ∧ (xl − xf ≤ dmax),

which asserts the two cars never collide and are never more
than dmax meters apart.

We consider three heterogeneous views for the two-car
platoon. View 1 is a formal verification view associated with
model M1 created in the KeYmaera tool [17]. M1 is a very
general model that identifies an envelope of behaviors for any
sampled-data control algorithm for car f that will ensure that
S0 is valid. This model assumes the acceleration and braking
of both cars are bounded by A and B, respectively. There
is also an assumption that the minimum velocity of each
car is non-negative, and that the total delay " in the system
(communication+sampling+reaction delay) is bounded.

The representation of the controller in M1 is simple. If the
controller determines that it is safe for the car to accelerate,
any acceleration or braking within the bounded limits is
allowed; however, if it determines that the system state is
on the boundary of the set of safe states, the car must brake
with its full braking force. The controller uses the following
constraint to determine whether the car can accelerate safely
up to time ", the maximum delay until the next sample
occurs:

xl > xf +
v2f
2B
− v2l

2B
+

(
A

B
+ 1

)(
A

2
"2 + vf"

)
If this constraint holds for current sensor readings of position
and velocity, then car l will still be safely in front of f until
the controller receives sensor data and can react again (i.e.,
after they drive for up to " time), no matter how l and f
accelerate or brake. For a more detailed description of this
model and its verification, see [15].

Verifying the correctness of this generic model makes it
possible to verify a wide range of controllers by simply
assuring that specific controllers have an input-output map
that is assured to apply maximum braking on the boundary
of the region of safe states. In this example, this condition is

used in View 1 to verify the correctness of a sampled-data
PID controller design in View 2. The procedure described
above can also be used to verify that the distance between
the cars does not exceed dmax.

View 2 is a control design view that is associated with
model M2 created in Simulink. M2 is a sampled-data PID
controller for the follower car designed to keep f around dset
meters of the leader. The control design takes the network
communication delay Tc into account. The controller has
a sampling period Ts and the set K of PID gains is
given by {Kp,Ki,Kd}. Additionally, we assume bounds on
the velocity and acceleration of the two cars in M2. The
constraints on vl and vf indicate the operating regime over
which we want to verify the correctness of our controller.
The idea is that the real car controller would switch into the
PID mode only when the platoon is moving at some nominal
speed, and there are other things that are done outside of this
regime. Our interest is verifying that if the system remains
in this regime where the PID controller operates indefinitely,
there will be no collisions. Since the Simulink view can
only be used to run simulations, the parameters from the
control design are passed to View 1 through Caux for formal
verification. This includes the distance set point, dset, which
is a design parameter selected in the control design view.

View 3 is a communication perspective. The associated
model M3 is created in the ns-2 network simulator [16] to
calculate Tc for the specified dmax. The Tc derived from
the communication view is a design constraint that must be
adhered to in V2, and is also used in View 1 via Caux as
one of the elements in the composition of ".

To summarize, the parameters for the three views are given
by

P1 := P0 ∪ {",K, dset}
P2 := P0 ∪ {Tc, Ts,K, dset}
P3 := {Tc}

The auxiliary constraint Caux contains the set of equality
constraints between the same parameters in the three views,
as well as the constraint " = Ts + Tc that bounds the total
system delay ". The specifications for the three views are
given by S1 ≡ S0, and S2 = S3 = T. In other words, the
verification of the system specifications is performed in View
1 using values from determined by the designs in Views 2
and 3.

We have verified C1,M1 ∣= S1 in KeYmaera. If the
designer views the heterogeneous models M2 and M3 to
be abstractions of sampled-data PID controllers, and all
models, constraints, and specifications meet the requirements
in Proposition 2, it can be concluded that C0,M0 ∣= S0.
Note that this last statement is a decision that needs to be
made in the context of the actual application. As noted in
Sec. IV, the model underlying the base architecture is not
actually constructed. Rather, engineering judgement is used
to determine whether or not the set of models is acceptable
as a collection of abstractions for the real system. This
simple example illustrates the application of this approach

for only a small part of the specifications that would be
addressed for a real system. The value of the approach lies
in the discipline of identifying the relationships between the
models, parameters and constraints formally.

VI. DISCUSSION

This paper presents a new approach to using heteroge-
neous models for design and verification of complex cyber-
physical systems based on the concept of architectural views
where syntactical and semantical consistency relationships
between the models are identified explicitly. Heterogenous
design and verification activities are standard engineering
practice, because different questions typically need different
models, modeling formalisms, and tools. In current practice,
the relationship among the heterogeneous models remains
informal at best. We have introduced parameter specification
and constraint consistency as a first step in developing
lightweight tools for assuring some degree of correctness in
the application of multiple modeling formalisms. We have
shown how heterogeneous models may be used together to
reason about the safety of cyber-physical systems.

We are currently implementing support for analyzing
structural consistency between architectural views in the
AcmeStudio architectural design environment [6]. Next steps
will be to add support for the specification and evaluation of
parameter consistency, and to extend the approach developed
in this paper to allow dynamic assumptions, e.g., by allowing
automata, LHA, temporal logic formulas, etc., to capture
the behavioral assumptions and inter-model dependencies
in models used in multi-domain model-based design and
verification.

REFERENCES

[1] SysML. http://www.sysml.org/.
[2] R. Passerone A. Pinto, L. P. Carloni and A. Sangiovanni-Vincentelli.

Interchange semantics for hybrid system models. In Proc. of 5th
MATHMOD, 2006.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: an integrated electronic sys-
tem design environment. Computer, 36(4):45–52, april 2003.

[4] S. S. Bhattacharyya, E. Cheong, and I. Davis. Ptolemy II hetero-
geneous concurrent modeling and design in java. Technical report,
University of California, Berkeley, 2003.

[5] A. Bhave, D. Garlan, B.H. Krogh, A. Rajhans, and B.Schmerl.
Augmenting software architectures with physical components. In Proc.
of the Embedded Real Time Software and Systems Conf. (ERTS2 2010),
19-21 May 2010.

[6] A. Bhave, B. H. Krogh, D. Garlan, and B. Schmerl. View consistency
in architectures for cyber-physical systems. In Proc. of Second
International Conference on Cyber-Physical Systems, ICCPS, 2011.

[7] K. Chen, J. Sztipanovits, and S. Abdelwahed. Toward a semantic
anchoring infrastructure for domain-specific modeling languages. In
5th ACM InternationalConference on Embedded Software, volume
September, 2005.

[8] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting Software Architectures: Views
and Beyond. Addison-Wesley, 2002.

[9] James Davis. GME: The Generic Modeling Environment. In Compan-
ion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’03,
New York, NY, USA, 2003. ACM.

[10] Zonghua Gu, S. Kodase, Shige Wang, and K.G. Shin. A model-
based approach to system-level dependency and real-time analysis of
embedded software. In Proceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2003., pages 78
– 85, May 2003.

[11] T.A. Johnson, C. J. J. Paredis, and R. M. Burkhart. Integrating
models and simulations of continuous dynamics into sysml. In
6th International Modelica Conference, pages 135–145. Modelica
Association, 2008.

[12] Rajesh Kumar, Bruce H. Krogh, and Peter Feiler. An ontology-
based approach to heterogeneous verification of embedded control
systems. In Manfred Morari and Lothar Thiele, editors, Hybrid
Systems: Computation and Control, volume 3414 of Lecture Notes
in Computer Science, pages 370–385. Springer Berlin / Heidelberg,
2005.

[13] Akos Ledeczi, James Davis, Sandeep Neema, and Aditya Agrawal.
Modeling methodology for integrated simulation of embedded sys-
tems. ACM Trans. Model. Comput. Simul., 13:82–103, January 2003.

[14] J.M. Leung, T. Mandl, E.A. Lee, E. Latronico, C. Shelton, S. Tripakis,
and B. Lickly. Scalable semantic annotation using lattice-based ontolo-
gies. In 12th International Conference on Model Driven Engineering
Languages and Systems, pages 393–407. ACM/IEEE, October 2009.

[15] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise
control: Hybrid, distributed, and now formally verified. In Michael
Butler and Wolfram Schulte, editors, FM, LNCS. Springer, 2011.

[16] T Murray, M. Cojocari, and Huirong Fu. Measuring the performance
of ieee 802.11p using ns-2 simulator for vehicular networks. In IEEE
Conf. on Electro
Information Technology, pages 498–503, 2008.

[17] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems
for Complex Dynamics. Springer, Heidelberg, 2010.

[18] J. Porter, P. Volgyesi, N.Kottenstette, H.Nine, G.Karsai, and J. Szti-
panovits. An experimental model-based rapid prototyping environment
for high-confidence embedded software. In RSP ’09: Proceedings of
the 2009 IEEE/IFIP International Symposium on Rapid System Pro-
totyping, pages 3–10, Washington, DC, USA, 2009. IEEE Computer
Society.

[19] A. Rajhans, S-W Cheng, B. Schmerl, D. Garlan, B. H. Krogh, C. Agbi,
and A. Bhave. An architectural approach to the design and analysis
of cyber-physical systems. In Third International Workshop on Multi-
Paradigm Modeling, Denver, Oct 2009.

[20] Alfred Tarski. A Decision Method for Elementary Algebra and
Geometry. University of California Press, Berkeley, 2nd edition, 1951.

[21] Hans L. M. Vangheluwe. DEVS as a common denominator for multi-
formalism hybrid systems modeling. In Proceedings of the 2000 IEEE
International Symposium on Computer-Aided Control System Design,
Anchorage, Alaska, USA, 2007.

