
Diagnosing Unobserved Components in
Self-Adaptive Systems

Paulo Casanova
Carnegie Mellon University

Pittsburgh, PA, USA
paulo.casanova@cs.cmu.edu

David Garlan
Carnegie Mellon University

Pittsburgh, PA, USA
garlan@cs.cmu.edu

Bradley Schmerl
Carnegie Mellon University

Pittsburgh, PA, USA
schmerl@cs.cmu.edu

Rui Abreu
Universidade do Porto

Porto, Portugal
rui@computer.org

ABSTRACT
Availability is an increasingly important quality for today’s
software-based systems and it has been successfully addressed
by the use of closed-loop control systems in self-adaptive sys-
tems. Probes are inserted into a running system to obtain
information and the information is fed to a controller that,
through provided interfaces, acts on the system to alter its
behavior. When a failure is detected, pinpointing the source
of the failure is a critical step for a repair action. However,
information obtained from a running system is commonly
incomplete due to probing costs or unavailability of probes.
In this paper we address the problem of fault localization
in the presence of incomplete system monitoring. We may
not be able to directly observe a component but we may be
able to infer its health state. We provide formal criteria to
determine when health states of unobservable components
can be inferred and establish formal theoretical bounds for
accuracy when using any spectrum-based fault localization
algorithm.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Diagnostic aids,Monitors;
D.2.4 [Software]: Program Verification—Reliability,Correctness
proofs

General Terms
Algorithms, Reliability, Theory

Keywords
Self-adaptive systems; Diagnostics; Monitoring.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

An increasingly important quality for today’s software-
based systems is high availability. While high availability
used to be confined to certain technology outliers (the phone
system, the electrical grid, etc.) our increasing reliance on
software systems has made high availability a requirement
for many systems. This trend has led to an interest in im-
proving system resilience by endowing systems with the abil-
ity to automatically cope with faults, attacks, changes in
resource availability, and shifting system requirements.

One particularly successful approach to improving sys-
tem resilience is to adopt a closed loop control paradigm:
a system is monitored through a set of “probes” to deter-
mine whether the system is working within an appropri-
ate behavioral envelope. If not, adaptation mechanisms
are selected to improve that behavior, adapting the system
through a run-time interface that the system provides [20,
23, 31, 32]. Adding such a control loop turns a system into
a self-adaptive system.

Within such a control loop, a critical step is the ability to
detect problems and pinpoint their source – sometimes re-
ferred to as fault detection and localization. Fault detection
and localization is in general a hard problem for a variety
of reasons. First, there may be many logical explanations
for an observed problem. Second, faults may be intermit-
tent or occur only under certain specific circumstances (such
as when two particular components are communicating).
Third, algorithms for localizing faults must find the right
balance between speed of diagnosis and accuracy, qualities
that are often in conflict. Fourth, the information available
to the control layer through probing mechanisms may be
incomplete. Prior research by the authors and others has
shown how to address the first three problems [9, 7, 26, 27,
28]. However, the third remains an open area.

Incompleteness in monitoring information is particularly
problematic and, unfortunately, arises commonly. It is prob-
lematic because if we are observing a particular part of the
system it may be hard to determine directly whether ob-
served problems are caused by elements within that part
of the system. It is common because, in general, system
probes provide only partial coverage of system behavior.
Partial coverage arises for two reasons. First, there are typi-
cally costs associated with probing, such as degraded system
performance, increased system complexity, and deployment
cost. Second, parts of the system may be outside our con-
trol to monitor. This occurs, for instance, if those parts are

schmerl
Typewritten Text
Submitted for publication

managed by another organization, the available technology
does not exist to detect what is going on, or monitoring that
part of the system may adversely affect important quality
attributes.

In this paper we address the problem of fault localization
in the presence of incomplete system monitoring. The key
observation is that even though we may not be able to di-
rectly observe a component of the system, we may be able to
indirectly infer its health state through a collection of ob-
servations about its behavior in the context of other system
components that we can monitor. Specifically, given some
knowledge about the possible system behaviors, we may be
able to infer whether a unobservable component was used
or not and infer its health as if it had been observed. Given
this observation, we provide formal criteria for determining
whether such inference is possible. We exemplify the usage
of our criteria in the context of a well-known algorithm for
fault localization, called Barinel [4]. Such formal criteria
establish:

(1) theoretical maximum bounds for accuracy of diagnosis
using probabilistic reasoning methods,

(2) theoretical minimum bounds for the case of single-fault
systems, and

(3) an algorithm that computes the maximum possible ac-
curacy of fault localization on a system.

Having the ability to determine formally when indirect
observation is adequate to localize faults is an important ca-
pability. First, it allows us to reason about the quality of
our monitoring infrastructure with respect to its abilities to
determine problems. Second, it extends the reach of fault
localization algorithms showing how we can use inference
to localize faults even in the absence of direct observation.
Third, when it is not possible to make such inferences, it
helps provide a basis for deciding whether (and where) to
dynamically adapt the probing infrastructure (through dy-
namic probe placement) to focus on “hidden” parts of the
system if we suspect that problems are occurring in that
region.

The rest of the paper is structured as follows: In Section 2
we present an example which we will use throughout the pa-
per to illustrate fault localization and how our results apply.
In Section 3 we present the general principles of spectrum-
based fault localization and in Section 4 we present our re-
sults. Section 5 shows our algorithm working together with a
specific fault localization algorithm and in Section 6 we show
how probe placement affects diagnosis, going through an ex-
ample with several possible probe placements and checking
the accuracy of each one. Finally, we present related work in
Section 7 and the conclusions and future work in Section 8.

2. MOTIVATION
In this section, we provide an example which we use through-

out the paper to illustrate the application of our techniques.
The system is a simulator of a semiconductor manufactur-
ing control system used by Samsung Electronics,1 built ac-
cording to the specifications provided by Samsung Electron-
ics. [8] In a semiconductor factory, semiconductors are man-
ufactured in lots that go through several hundreds of pro-
cessing stages before they can be shipped or integrated in
1http://www.samsung.com/

Event Bus

FT ADS TC.1 TC.2

MOS ADSDB

MOSDB

Figure 1: A partial view of an industrial semicon-
ductor manufactoring control system.

other products. The simulated system’s responsibility is to
track the semiconductor lots through the various processing
stages, deciding on which pieces of equipment to use and
when. It effectively runs the factory.

The architecture of the system in illustrated in Figure 1.
The system contains an event bus, which mediates the in-
teraction of several components that control the production
of semiconductors in Samsung’s fabrication factories.

There are 7 components in this system and one event
bus. The Manufacturing Operating System [MOS] controls
the manufacturing process, keeping information about the
lots produced, including the processing stage of each one.
The MOS is connected to the event bus through a Fault-
Tolerance mechanism [FT]. Several other instances of the
MOS are connected to the event bus and FT provides fail-
over capabilities. Because we will not be considering MOS
faults that can be transparently handled by the FT, the
other instances are not present in the diagram. The MOS
stores its information in a database, the MOSDB, which
must run at high throughput rates in order to keep up with
the volume of thousands of requests per second.

When a product lot needs to go through another stage of
processing, several pieces of equipment may be available to
perform the task. The Automatic Dispatch System [ADS]
keeps track of the equipment schedule and decides which
one is best suited to perform the task. The ADS keeps
its information in another high performance database, the
ADSDB. Tool Controllers (TC) connect to the physical fac-
tory equipment themselves. There are two such controllers
in this example.

The actual system at Samsung Electronics is, of course,
much larger with many more component instances, but, as
they do not fundamentally change the paradigm of fault-
related issues, it is sufficient to work with a simplified version
of the system. (For more details on this system and our
approach to fault localization, including scalability results,
see [8].)

The components in Figure 1 communicate with each other
by exchanging events through an event bus. There are two
important interactions that occur when a lot is processed
by a piece of equipment: a track-in [TKIN], generated when
the lot is about to be processed; and a track-out [TKOUT],
when a lot exits a piece equipment after processing. TKIN
and TKOUT are complex computations performed by the
factory systems. For simplicity, we consider here a small
but representative subset of the computations involved in a

Table 1: Computations performed by the system.
Name Components Description
C1: MOS request dispatch MOS, ADS, ADSDB The MOS requests equipment from the ADS to process

a lot.
C2: ADS process query ADS, ADSDB The ADS computes the best piece of equipment to pro-

cess a lot.
C3: MOS update dispatch FT, MOS, MOSDB The MOS receives information about the best equipment

and updates routing information.
C4: MOS TC update MOS, MOSDB, TC.1, TC.2 The MOS informs the factory equipment to prepare to

receive the lot.
C5: MOS reschedule MOS, MOSDB, ADS,

ADSDB
The MOS needs to reschedule a lot and queries the ADS
for confirmation.

TKIN. Table 1 contains a description of the computations.
In this system, we are allowed to probe all components

except the databases. Due to the high volume of data pro-
cessed, the databases are often the bottleneck and Samsung
is wary of the potential overhead that probing them might
incur. So, both MOSDB and ADSDB are not observable.

With the system in Figure 1 and the list of computations
in Table 1 we can see that some failure patterns can uniquely
identify faulty components and some cannot. For example, if
only C3 fails, the faulty component has to be FT (because if
MOS or MOSDB were faulty, C4 would also fail). However,
if only C4 fails, we cannot tell whether it was TC.1 or TC.2.
Interestingly, if we rule out multiple failures, if both C3 and
C4 fail then the fault has to be located in MOSDB, an un-
observable component. In the next section we will discuss a
formal model that allows us to determine which components
can and cannot be diagnosed as faulty upon observation.

3. FAULT LOCALIZATION
In this paper we address the problem of fault localization

when we have incomplete system monitoring. Previous work
on fault localization assumes that information is complete.
We build upon work in spectrum-based fault localization
(SFL), which adopts a reasoning-based approach to fault lo-
calization founded on probability theory. The main princi-
ples underlying the technique rely on model-based diagnosis
(MBD) [15, 17, 18, 25, 34, 21], which uses logical reasoning
to find faults and rank them using statistical techniques.

The key insight of spectrum-based fault localization is
that we can infer which components of a system are faulty
by examining the components that participated in compu-
tations together with a judgement of whether the compu-
tations succeeded or failed. The list of components that
participated in a computation is termed a spectrum.

In traditional SFL, a component is a program element
(e.g., functions, classes, statements) and the computations
are test cases. A suite of test cases is run with the code
instrumented to keep track of which components were ex-
ercised by each test case. The resulting spectra, together
with the success/failure output of the test case, is fed into
an algorithm that computes and ranks fault candidates. A
fault candidate is a set of components that, if all are faulty,
could explain the observed failures. Several algorithms have
been proposed, which differ in how they compute the fault
candidates and how they rank them. Two examples are
Tarantula [22] or Barinel [4].

Though SFL has mostly been used with test cases and
program elements, more recently we have successfully used

Table 2: Spectra in the example system (unobserv-
able components are placed in parenthesis).

Computation F
T

M
O
S

(M
O
S
D
B
)

A
D
S

(A
D
S
D
B
)

T
C
.1

T
C
.2

C1 - X (-) X (X) - -
C2 - - (-) X (X) - -
C3 X X (X) - (-) - -
C4 - X (X) - (-) X X
C5 - X (X) X (X) - -

these algorithms at run time [9]. Here, the components are
architectural elements of the system and the computations
are the observed behaviors in a system that are classified by
an oracle producing spectra and a success evaluations just
like in the traditional case.

A Formal Model for SFL
Formally discussing diagnosis and accuracy requires having
a formal model of the system and what is meant by faulty
behavior. In this section we introduce a formal probabilistic
model of a system used by spectrum-based fault localization
algorithms, which we build on in subsequent sections.

Let σ be a system comprising several components that,
interacting with each other, perform computations. In our
example, σ is the system described in Figure 1. Let compsσ
be the non-empty set of all components in system σ. In our
example, our components are the 7 components: FT, MOS,
MOSDB, ADS, ADSDB, TC.1 and TC.2.

Each computation that the system can perform, c, is drawn
from (2compsσ \ {∅}) × {>,⊥}: the first element in the pair
is the non-empty set of components that contributed to the
computation and the second element is either true (>) or
false (⊥) depending on whether the computation succeeded
or failed, respectively. We refer to the first element as the
spectrum of the computation (spec(c)) and to the second ele-
ment as the failure evaluation of the computation (feval(c)).

A system σ can only produce spectra from a predefined
set, allσ ⊆ (2compsσ \{∅}). This arises from the structure and
function of the system. For example, in Figure 1, ADSDB
cannot communicate directly with MOSDB, and so a spec-
trum containing only these components is not possible. Ta-
ble 2 contains the spectra that the sample system given in
Section 2 can generate.

A behavior of a system defines the probability of a spec-
trum being generated. If B is a behavior of system σ, then
B is a random variable drawing values from allσ. To simplify

our notation, we call pB (s) =̂ P(B = s).

4. THE ACCURACY THEOREMS
In this section, we extend the model in Section 3 and

show how diagnosis accuracy can be computed given that
only some components are observable.

Diagnosis accuracy is defined as a partition of the system
components into groups that have two characteristics:

• If two components are in the same partition, then a
fault in one of them is indistinguishable from a fault
in the other. This means an SFL algorithm will not be
able to tell the difference between their health. This is
the theoretical maximum bound for diagnosis accuracy.

• If two components are not in the same partition, then
a fault in one of them is distinguishable from a fault
in the other. This means an SFL algorithm will be
able to tell the difference between their health. This is
the theoretical minimum bound for diagnosis accuracy.
The minimum bound guarantee only holds for single-
fault systems as multiple faults in several components
across different groups may be indistinguishable from
a failure in a single group.

Computing the diagnosis accuracy enables reasoning about
whether there are enough probes in the system, whether they
are in the right place, and whether enough behaviors have
been observed for diagnosis.

For example, consider the computations in Table 1. If
only C4 fails, we can infer that MOSDB is not faulty despite
the fact that we cannot observe it. Otherwise we would see
C3 and C5 failing too. We know it has to be either TC.1
or TC.2. However, because there are no computations in
which only TC.1 or TC.2 appear, we cannot tell whether
the problem is in TC.1 or TC.2. In the example in Table 1,
the MOSDB is in a different accuracy group from TC.1 and
TC.2. TC.1 and TC.2 are in the same accuracy group. Ta-
ble 5 contains all accuracy groups of the system in Section 2.

Reasoning about unobservable components requires a pri-
ori knowledge of the possible spectra in a system. In the
previous paragraph, our reasoning required us to refer to
Table 1 which represents our a priori knowledge in this case.
We argue that this a priori knowledge is generally available:
System designers know the system’s architecture and what
paths through the architecture are exercised. Even if some
components or connectors cannot be probed, system design-
ers know that they exist and what they do. Still, when this
a priori knowledge is unavailable, analysis of accuracy of
the observable components can still be done, even though
diagnosing unobservable components is not possible, as we
will discuss in Section 4.5.

Note that computation of diagnosis accuracy does not it-
self compute or rank fault candidates. Such rankings would
be handed as a second step, as is typical in SFL, and could be
handled by any number of algorithms (some are referenced
in Section 7). Indeed, diagnostic accuracy is compatible
with any spectrum-based fault localization algorithm that
conforms to the model presented in Sections 3, 4.1 and 4.2.

4.1 A Probabilistic Behavior Model
In system σ, a computation c fails (feval(c) = ⊥) if and

only if any of the components in its spectrum fail. A com-
ponent that does not cause the spectrum to fail is a healthy

component. The health of a component is a value in [0, 1]
that defines the probability that the component will not fail
if exercised.

A health state (or state, for short) H of system σ is an
assignment of health values, hH (i) to each component i ∈
compsσ. The probability of a computation c succeeding is
given by

∏
i∈spec(c) hH (i). (This model assumes that failures

of the components are independent. Handling correlated
faults can be done by introducing correlation components
as described in [7].)

For a system σ, behavior B and state H , we define an
instance of the system, Iσ,B,H , which is a random vari-
able drawing values from (2compsσ \ {∅}) × {>,⊥}. The
probability of the system generating a correct computation
with spectrum x is given by P(Iσ,B,H = c ∧ spec(c) =
x ∧ feval(c) = >) = pB (x)

∏
i∈x hH (i). The probability of

the system generating an incorrect computation with spec-
trum x is P(Iσ,B,H = c ∧ spec(c) = x ∧ feval(c) = ⊥) =
pB (x)(1−

∏
i∈x hH (i)).

These probabilities state how likely are we to observe suc-
cesses and failures in different spectra given a set of healthly
components, and forms the basis for accuracy: as we will
see later, if two different health states yield the exact same
probability of success for all possible spectra, then we cannot
distinguish one from the other by observation of the spectra.

4.2 Observability and Distinguishability
The previous section presented a general probabilistic be-

havior model for systems. In this section, we will extend the
model to account for the (un)observability of components.

In general, not all components in a system may be ob-
servable. In our example, the databases cannot be observed.
Unobservability can happen, as described in Section 1, for
a variety of reasons. However, these components may still
fail and we want to be able to pinpoint them as the source
of a failure in such cases. If we do not account for failures
in unobservable components, we may diagnose the incorrect
components, triggering incorrect repair actions.

To compensate for the lack of observability of some com-
ponents, we need to have some information about when such
components can potentially be used. This is less informa-
tion than observing the components directly. For example,
computations C1 and C5 in Table 2 use the same visible
components. In either case we only know that the MOS
and ADS were involved in the computation. So, if we ob-
serve a computation using the MOS and ADS and neither
the FT, TC.1 or TC.2, we know that ADSDB was involved
and maybe MOSDB was involved, depending on whether we
are observing C1 or C5.

To account for unobservability, we divide the components
of a system σ into two groups, the group of observable com-
ponents, obsσ, and the group of unobservable components,
nobsσ. This division must form a partition of compsσ: the
two sets are disjoint (obsσ∩nobsσ = ∅), and complete (obsσ∪
nobsσ = compsσ).

We assume there are no spectra in which only unobserv-
able components take part as SFL algorithms assume there
are no empty spectra in the system and, therefore, there is
no reason to handle this degenerate case.

For each spectrum x of system σ, we define its projected
spectrum, x ′, which is the subset of x that contains only
observable components: x ′ =̂ x ∩ obsσ. The projected spec-
trum x ′ is what we observe when x happens in the system.

Table 3: Projected spectra corresponding to the ex-
ample of Table 2.

Projected FT MOS ADS TC.1 TC.2
P1 (C1,C5) - X X - -
P2 (C2) - - X - -
P3 (C3) X X - - -
P4 (C4) - X - X X

Table 3 contains the projected spectra corresponding to the
example in Table 2.

Because projected spectra are subsets of the spectra, it
may happen that two spectra, x1, x2 ∈ allσ are such that
x1 6= x2 ∧ x ′1 = x ′2. In this case, we say that spectra x1 and
x2 are indistinguishable. What we observe when x1 happens
is the same as when x2 happens. Given a projected spectra
y ′, we define the reverse projection of y ′, revσ(y ′), the set
of spectra x such that x ∈ allσ and x ′ = y ′. Naturally,
x ∈ revσ(x ′). In our example, the projected spectra of both
C1 and C5 is P1. The reverse projection of P1 is C1 and
C5. The reverse projection tells us which spectra could have
been responsible for the observation.

Given a system instance Iσ,B,H , the probability that we
observe a projected spectra y ′ and a failure evaluation of> is
given by hH (y) =̂

∑
x∈revσ(y′) pB (x)

∏
i∈x hH (i). This equa-

tion just states that the probability of observing a successful
projected spectra y ′ is to observe any successful spectra x
such that x ′ = y ′.

We define the set of all projected spectra of a system σ,
allprojσ, as the set with the projections of all spectra in
allσ. allprojσ =

⋃
x∈allσ x ′. The projected spectra define the

observable behavior of the system. The probability of a pro-
jected spectra y ′ being observed is pB (y ′) =

∑
x∈revσ(y′) pB (x).

Two systems, σ with behavior Bσ and state Hσ, and φ,
with behavior Bφ and state Hφ, such that (1) allprojσ =
allprojφ, (2) ∀ y ′ : allprojσ • pBσ (y ′) = pBφ(y ′) and (3)

∀ y ′ : allprojσ • hHσ (y ′) = hHφ(y ′), are indistinguishable by
observation.

If two systems σ and φ are indistinguishable by obser-
vation then, without any additional information other than
observation of projected spectra, it is not possible to know
whether observations are being produced by σ or φ as they
will generate the same observations with the same probabil-
ity distribution.

4.3 The Accuracy Groups
For a component i of a system σ, we define its partici-

pating projection, partprojσ(i) as being the set of projected
spectra of σ that contain in its reverse projection at least
one spectra containing i . The participating projection of a
component is the set of all projected spectra that the com-
ponent may influence. If the component i is observable, then
the projected spectra is the set of all computations in which
i is involved. Observing one of those spectra implies i was
used. For example, P1 is in the participating projection of
the MOS; the MOS was used if we observe P1.

However, if the component is not observable, then observ-
ing one of the spectra in partprojσ(i) means component i
may have been used in the computation. We may not be
able to tell for sure as there may be computations x1 and x2
such that i participates in x1 but not x2 and x ′1 = x ′2. For ex-
ample, P1 is in the participating projection of the MOSDB;
the MOSDB may have been used if we observe P1. How-
ever, P2 is not in its participating projection so observing P2

Table 4: Participating projection of all components
in the example of tables 2 and 3.

Component Participating projection
FT P3
MOS P1, P3, P4
ADS P1, P2
MOSDB P1, P3, P4
ADSDB P1, P2
TC.1 P4
TC.2 P4

Table 5: Accuracy groups corresponding to the com-
ponents in 4.

Group Participating projection
FT P3
MOS, MOSDB P1, P3, P4
ADS, ADSDB P1, P2
TC.1, TC.2 P4

means the MOSDB was not used. Table 4 contains the par-
ticipating projections of the system whose projected spectra
are in Table 3.

For a system σ, we define its accuracy partition, accσ, as
a partition of all components in compsσ (including those in
nobsσ) into accuracy groups. Two components i and j be-
long to the same accuracy group if and only if they have the
same partipating projection. Two components belong to the
same accuracy group if and only if their health can influence
the exact same set of visible behaviors. Table 5 contains the
accuracy groups corresponding to the participating projec-
tions of Table 4.

4.4 The Accuracy Theorems
To prove the claims about the theoretical maximum and

minimum bounds of accuracy we need to prove some pre-
liminary results. First we show through Theorem 1 that the
probability of projected spectra being observed can always
be computed. Then we show through Theorem 2 that it is
not possible to compute the relative probability of undistin-
guishable spectra.

Then we prove the theorems that establish the maximum
bounds for diagnosis accuracy: the Strong Accuarcy Theo-
rem, Theorem 3, and the Weak Accuracy Theorem, Theo-
rem 4. The former is more restrictive than the latter but the
latter is universally applicable. The last theorem presented,
Theorem 5 provides the minimum bounds for diagnosis ac-
curacy.

4.4.1 Initial Theorems

Theorem 1. Let Iσ,B,H be an instance of a known sys-
tem σ with an unknown behavior B and unknown health H .
Observation of the system allows eventually determining the
value of pB (y ′) (with an arbitrary low error margin) for all
projected spectra y ′.

This theorem states that by observing a system, even-
tually we will determine the probabilities with which each
projected spectra will occur.

Proof. Since, by definition, all projected spectra are dis-
tinguishable by observation and pB (y ′) is the probability

that y ′ is generated, then, by the law of large numbers, the
statistical observation of outcomes of the projected spectra
will converge to their probabilities.

Theorem 2. Let Iσ,B,H be an instance of a known system
σ with unknown behavior B and unknown health H . Obser-
vation of the system does not allow determining pB (x | x ′)
where x is a spectra except when there is only x whose pro-
jected spectra is x ′.

This theorem states that just by observing a system we
cannot determine the probabilities of the original spectra
ocurring . We will, by Theorem 1, know the probabilities
that projected spectra will occur, but will not be able to know
how these probabilities decompose in the different spectra
that comprise revσ(y ′).

Proof. If x1 6= x2 ∧ y = x ′1 = x ′2, then pB (y) = pB (x1) +
pB (x2) (assuming x1 and x2 are the only spectra that project
to y – extending this to several xi is trivial). Therefore, any
combination of values of the probabilities of x1 and x2 that
sum to the same value will yield the same observations.

Because pB (x1) = pB (x1 | y)pB (y), we know that pB (x1 |
y) + pB (x2 | y) = 1. However, because x1 and x2 are in-
distinguishable by observation, all distributions of 1 over
pB (xi | y) will yield the same result and are, therefore, in-
distinguishable.

4.4.2 The Strong Accuracy Theorem

Theorem 3 (Strong Accuracy Theorem). Let an
instance of a known system σ in an unknown state H1 be
Iσ,B,H1 . Let i and j be two observable components of σ
such that i and j belong to the same accuracy group and
hH1(i) 6= hH1(j). Then, the instance Iσ,B,H2 where H2 is the
same as H1 except that the healths of i and j are reversed,
is indistinguishable from observation from Iσ,B,H1 .

Theorem 3 states an important and intuitive result: if two
components are always used together, we can never distin-
guish the health of one from the health of the other. This
means trying to rank the two components as fault candi-
dates is useless as any distibution of blame for the failures
among them is arbitrary. An example of this is presented in
Section 6 where we show how these results can be used to
reduce the search space for fault candidates.

Proof. The probability that a certain projected spectra
y ′ succeeds in Iσ,B1,H1 , S(y ′), is given by:

S(y ′) =̂
∑

x∈revσ(y′) pB1(x)
∏

i∈x hH1(i)

= pB1(y ′)
∑

x∈revσ(y′) pB1(x | y ′)
∏

i∈x hH1(i)
(1)

Because all observable components appear in all spectra
that project to the same projected spectra, the previous
equation can be rewritten as:

S(y ′) = Ao ×An , where
Ao = pB1(y ′)

∏
i∈y hH1(i)

An =
∑

x∈revσ(y′) pB1(x | y ′)
∏

i∈x\y′ hH1(i)

If i and j are both observable then their health will ap-
pear in Ao and not in An . Because Ao ∝ hH1(i)hH1(j),
the success probability of each spectra is the same in both
cases.

4.4.3 The Weak Accuracy Theorem

Theorem 4 (Weak Accuracy Theorem). Let σ be
a system with components i and j in the same accuracy
group. Let H1 and H2 be two states of the system such
that hH1(k) = hH2(k) for all components k /∈ {i , j}. Let
hH1(i) 6= hH1(j) and let the health of components i and j
be reversed in H2. Then, for every behavior B1, there is at
least one behavior B2 such that Iσ,B1,H1 is indistinguishable
by observation from Iσ,B2,H2 .

Theorem 4 states that a system with observations that
have components i and j in the same accuracy group, regard-
less of whether the compoenents are observable or not, is in-
distinguishable from a system in which the healths of i and j
are reversed. This theorem states that, associated with each
health state, there may be different behavior (B2 6= B1).
However, the observable behavior is not changed, otherwise
the systems would not be indistinguishable. Because this is
a weaker condition that the one in Theorem 3, which says
that the behavior for both health states may be exactly the
same, this theorem is named “weak”.

Proof. This theorem essentially states that, for every
B1, there is a B2 such that, for all y ′ ∈ allprojσ, Equation 1
holds.

For all y ′ ∈ allprojσ, pB1(y ′) = pB2(y ′) otherwise, by
Theorem 1 the behaviors would be distinguishable. This
leaves choosing a B2 such that

∑
x∈revσ(y′) pB2(x | y ′)

∏
k∈x\y′ hH2(k)

=
∑

x∈revσ(y′) pB1(x | y ′)
∏

k∈x\y′ hH1(k)
(2)

For notation simplicity, let hi =̂ hH1(i) = hH2(j) and hj =̂
hH1(j) = hH2(i). It is important to note that either both
components i and j appear in Equation 2 or none appear.
Otherwise they would not be in the same accuracy group.
Equation 2 can be rewritten as:

α2C + β2Dhi + γ2Ehj + δ2Fhihj

= α1C + β1Dhi + γ1Ehj + δ1Fhihj
(3)

The terms C , D , E , and F depend only on the healths in
H1 and H2 but not on hi nor on hj so they are equal in both
sides. The terms αk , βk , γk and δk depend only on B1 and
B2. By Theorem 2, as long as the values in α2, β2, γ2 and
δ2 add up to 1, we can choose whatever values we want as
it will not affect the visible behavior.

Because αk +βk +γk +δk = 1, we can see these as weights
for the other terms. We can choose α2 = α1 and δ2 = δ1
eliminating these terms from the equation. The remaining
equation is:

β2Dhj + γ2Ehi = β1Dhi + γ1Ehj

In this equation, β1 and γ1 are fixed (they are determined
by B1) and we need to find out if there is a β2 and a γ2 (that
define B2) that can solve this equation. It may happen that
either D or E (or both) are zero but in either case solving
the equation is trivial.

Because β2 and γ2 are weighting Dhj and Ehi , this equa-
tion has no solution if and only if Dhj < β1Dhi + γ1Ehj and
if Ehi < β1Dhi + γ1Ehj . Solving these two inequations for
hi and hj yields:

hj <
β1

1−γ1 E
D

hi

hi <
γ1

1−β1 D
E

hj

Replacing hi on the top equation yields hj <
β1

1−γ1 E
D

γ1
1−β1 D

E

hj .

With some algebraic manipulation this leads to 1 + β1
D
E

+

γ1
E
D
< 0 which is impossible as β1, γ1, D and E are all

drawn from [0, 1].
This means that there is always a β2 and γ2 that make

the equation β1Dhi + γ1Ehj = β2Dhj + γ2Ehi true, proving
the theorem.

4.4.4 Minimum Accuracy Theorem
A single fault state of a system is a state in which a single

component, either observable or not, has health < 1.

Theorem 5 (Minimum Accuracy Theorem). Let σ
be a system, B1 its behavior and H1 its single fault state.
Let i be the faulty component. If component i is used in B1,
then let H2 be an arbitrary single-fault state such that there
is a B2 that makes Iσ,B1,H1 indistinguishable from Iσ,B2,H2 .
H2 will have a single fault in the same accuracy group.

The minimum accuracy theorem, Theorem 5, states that
we can always identify the accuracy group that contains the
faulty component in a single fault state. It states that any
two single-fault states that generate the same observable
behavior will necessarily have faults in the same accuracy
group. Together with the weak accuracy theorem, Theo-
rem 4, it states that in a single fault system, it is always and
only possible to identify the accuracy group of the compo-
nent that has failed.

Proof. Let H2 be a single fault state with faulty compo-
nent j which is not in the same accuracy group of i .

Because i and j are not in the same accuracy group, then
partprojσ(i) 6= partprojσ(j), otherwise they would be in the
same accuracy group. Then there exists either a spectrum
in partprojσ(i) which does not exist in partprojσ(j) or the
other way around. Lets consider both cases separately.

• If there is a projected spectrum y ∈ partprojσ(i) such
that y /∈ partprojσ(j), then pB1(y) > 0, meaining that
eventually a spectrum y is observed with a failure eval-
uation ⊥. Since y /∈ partprojσ(j), then this behavior
cannot be reproduced with a single fault in j .

• If there is a projected spectrum y ∈ partprojσ(j) such
that y /∈ partprojσ(i), then pB2(y) > 0. This means
that, in the single fault scenario with H2, y will even-
tually be observed with a failure evaluation of ⊥ which
cannot be reproduced with a single fault in i .

4.5 A Priori and A Posteriori Analyses
Accuracy analysis, as described so far, uses a priori knowl-

edge of the system to determine accuracy groups. If this
knowledge does not exist, it is not possible to pinpoint non-
observable components because we have no information about
them.

However, the strong accuracy theorem (Theorem 3) and
the minimum accuracy theorem (Theorem 5) are still useful
as they may significantly reduce the search space for solu-
tions.

Without a model of allσ, the accuracy groups cannot be
computed. However, the law of large numbers guarantees
that, as the number of observations increase, our estimates
of pB (y) converge to the actual values and we will eventually
identify all possible projected spectra.

This means that, a posteriori we can compute the accu-
racy groups using an estimate of allσ, which is the set of
observed projected spectra. For example, even if the data in
Table 1 were unavailable, we would observe the MOS being
used with the ADS performing computations, the ADS by
itself, the FT with the MOS and the MOS with TC.1 and
TC.2, effectively allowing us to reconstruct Table 3. Natu-
rally we would not be able to observe MOSDB and ADSDB
and, consequently, Table 1 is not reconstructable from ob-
servation. Hence the limitation the a posteriori analysis.

4.6 Implementation Algorithm
The computations described in the previous sections lead

to an algorithm that computes the accuracy groups of a sys-
tem σ given its spectra, allσ, and the list of observable (obsσ)
and non-observable (nobsσ) components. The pizzicato al-
gorithm presented below performs the same computations
we’ve done in the previous sections. It first computes PP ,
the participating projections. This corresponds to what was
done in Table 4. The transformation done for Table 3 is
performed implicitly. Then it computes AG, the accuracy
groups, corresponding to what was done in Table 5.

function pizzicato(allσ, obsσ, nobsσ)
PP ← ∅
for all s ∈ allσ do

s ′ = s ∩ obsσ
for all i ∈ s do

if ¬(∃(a, b) : PP | a = i) then
PP(i)← ∅

end if
PP(i)← PP(i) ∪ {s ′}

end for
end for
AGt ← ∅
for all (i , pp) ∈ PP do

if ¬(∃(a, b) : AGt | a = pp then
AG1(pp) = ∅

end if
AGt(pp)← AGt(pp) ∪ {i}

end for
AG ← ∅
for all (pp, ag) ∈ AGt do

AG ← ag
end for
return AG

end function

The pizzicato algorithm has linear complexity in the num-
ber of components and the number of spectra. Its complex-
ity is O(M × N) where M = #compsσ and N = #allσ
making it a fast-performing algorithm even for very large
systems.

5. RELEVANCE FOR FAULT LOCALIZA-
TION

The accuracy theorems, described above, establish accu-
racy limits on fault localization. However, they do not define
how to perform localization.

Table 6: Example spectra
FT MOS ADS TC.1 TC.2 R1 R2
- X X - - > ⊥
- - X - - > >
- - X - - > >
- - X - - > >
X X - - - > >
- X - X X ⊥ >
- X - X X > >

Table 7: Results of running example of Table 6
through Barinel [4] without pizzicato preprocessing

.

Scenario Candidate Rank
R1 TC.1 ≈ 41%
R1 TC.2 ≈ 41%
R1 MOS ≈ 17%
R2 MOS 50%
R2 ADS 50%

Several algorithms exist that perform statistical fault lo-
calization, e.g., Tarantula [22] or Barinel [4]. We argue that
the results presented in Section 4, plus the pizzicato algo-
rithm defined in Section 4.6, complement existing fault lo-
calization algorithms by: (1) reducing the size of the search
space for faults and increasing the accuracy of the output
and (2) allowing a priori detection of indistinguishable faults,
enabling decisions on probe placement and test generation.
In the following sections, we explore these two enhance-
ments.

5.1 Reducing Search Space and Increasing
Accuracy

The first enhancement is the reduction of the search space
by removing indistinguishable components. This is done by
replacing spectra of components with spectra of accuracy
groups before fault localization. Because several fault local-
ization algorithms do not perform this analysis, they have to
process larger sets and produce worse outputs. As shown by
Theorem 4, it is not possible to pinpoint specific components
in accuracy groups so either fault localization algorithms will
not pinpoint the correct components or they will with less
confidence.

Consider, for example, the set of spectra in Table 6 (only
observable components considered) which could be observed
from the system described in Section 2. Results in col-
umn R1 were obtained when TC.1 is non-healthy and re-
sults in column R2 were obtained when MOS was unhealthy.
Both runs are single-fault scenarios which we ran through
Barinel [4], an algorithm which is optimal for this case (see
later in this section for some more information on Barinel).
Table 7 contains the results when running Barinel directly
on the data in Table 6 and Table 8 contains the results when
running Barinel after processing Table 6 through pizzicato.

These results illustrate that, in this case, with pizzicato
preprocessing, the confidence on the first scenario is much

Table 8: Results of running example of Table 6
through Barinel [4] with pizzicato preprocessing

.

Scenario Candidate Rank
R1 (TC.1,TC.2) ≈ 71%
R1 MOS ≈ 29%
R2 MOS 50%
R2 ADS 50%

greater because there are fewer components to “split” the
rank. In fact, if the number of samples is increased, the
confidence without pizzicato preprocessing will stabilize as-
signing blame to TC.1 and TC.2 at 50%/50%, while with
pizzicato it will increase to 100%.

The second scenario illustrates this in comparison with the
previous scenario. Here we also have a 50%/50% split but
this is due to the lack of observations. Since the only scenario
we have a failure in is the first, in which both MOS and ADS
were used together, both have the same probability.

Essentially, preprocessing the output with pizzicato allows
the diagnostic system to distinguish when more information
will eventually pinpoint the source of failure (Scenario 2) or
when it is not useful to wait for more information as failures
are indistinguishable. This is especially useful when using a
measure such as entropy [30] to decide whether to observe
more spectra or produce a diagnosis based on the current
set of spectra, as we have shown in [7].

Some Details on Barinel
Barinel is described in more detail in [2]. Here we provide
some basic description of the algorithm so that the values in
Table 7 and Table 8 can be more easily understood.

Let D denote a set of fault candidates expressing a diag-
nosis. For instance, D = 〈{c1, c3, c4}〉 indicates that com-
ponents c1, c3, and c4 are simultaneously at fault, and no
other. Barinel sorts the faulty candidates in D by the prob-
ability that each candidate explains the fault. As with most
spectrum-based reasoning, it is comprised of two phases:
candidate generation and candidate ranking.

The problem of finding fault candidates can be defined
in terms of the widely-known minimal hitting set (MHS)
problem [15]. The precise computation of MHS is highly
demanding [19], restricting its direct usage for diagnosis.
However, in practice, previous research has found that pre-
cise computation of D is not necessary [1]. Staccato is a
low-cost heuristic for computing a relevant set of multiple-
fault candidates.

Candidate Ranking.
The candidate generation phase may result in an exten-

sive list of diagnosis candidates. As not all candidates have
the same probability of being the true fault explanation,
techniques have been devised to assign a probability to each
diagnosis candidate dk . Each candidate dk is a subset of
the system components that, when at fault, can explain the
faulty behavior. The probability of a diagnosis candidate be-
ing the true fault explanation, Pr(dk | obs), given a number
of observations obs, is computed using Bayesian probability
updates. An observation obs is a tuple (ai∗, ei).

Executing each test case ti from the test suite T , the
probability of each candidate is updated following Bayes’
rule

Pr(dk | obs) = Pr(dk) ·
∏

obsi∈obs

Pr(obsi | dk)

Pr(obsi)

Pr(dk) is the a priori probability of the candidate (i.e., the
probability before any test is executed), defined as Pr(dk) =

p|dk | · (1 − p)M−|dk | where p is the a priori probability of a
component being faulty. The prior probability given no ob-
servations is an approximation to 1 fault for every 1000LOC,
1/1000 = 0.001 [6].

Pr(obsi | dk) represents the conditional probability of the
observed outcome ei produced by a test ti (obsi), assuming
that candidate dk is the actual diagnosis

Pr(obsi | dk) =

0 if ei ∧ dk are inconsistent;

1 if ei is unique to dk ;

ε otherwise.

where ε is defined as

ε =

∏

j∈dk∧aij=1

hj if ei = 0

1−
∏

j∈dk∧aij=1

hj if ei = 1

and aij represents the coverage of the component j when
the test i is executed. As this information is typically not
available, the values for hj ∈ [0, 1] are determined by max-
imizing Pr(obs | dk) using maximum likelihood estimation.
To solve the maximization problem, a simple gradient ascent
procedure [5] (bounded within the domain 0 < hj < 1) is
applied.

Pr(obsi) represents the probability of the observed out-
come, independently of which diagnostic explanation is the
correct one and thus needs not be computed directly. The
value of Pr(obsi) is a normalizing factor given by Pr(obsi) =∑

dk∈D
Pr(obsi | dk) · Pr(dk).

The Barinel algorithm is used to compute the probabili-
ties of each diagnosis candidate dk .

5.2 Enabling Probe Placement and Test Gen-
eration

When using the accuracy analysis we can detect which
components are indistinguishable. This indistinguishability
may not be fundamental: it may only be due to lack of
probing. In the example of Section 2, components TC.1 and
TC.2 are indistinguishable because they are both invoked
from the MOS in the same computation.

However, placing additional probes may allow splitting
the communication with TC.1 and TC.2, effectively splitting
the spectrum in two: one with MOS and TC.1 and another
with MOS and TC.2.

This decision can be made before the system is run or
dynamically. At run time, as part of a self-adaptive system,
it is possible to decide not to place the probes in the bus
connections (as this will slow the system down) and accept
the inaccurate diagnosis. However, after a problem has been
diagnosed in the accuracy group, probes could be deployed
dynamically to obtain a more accurate diagnosis.

6. APPLICATION EXAMPLE
In the previous sections we presented theoretical results

on diagnosis accuracy and exemplified them on the system
presented in Section 2. In this section we present a sec-
ond example, based on a different computation paradigm,
in order to illustrate how observability affects diagnosis ac-
curacy. We chose a simple, well-known, example to allow for
an intuitive confirmation of the theoretical results obtained.

The system to which we apply the example is a standard
web system in which several clients access a load balancer
which dispatches requests to one web server in a web server
farm. Some requests will not require database access and

C1

C2

LB

W1

W2

DB

Figure 2: Example web system.

Table 9: Spectra of computations performed in the
system of Figure 2.

Compt. C
1

C
1
-L

B

C
2

C
2
-L

B

L
B

L
B
-W

1

W
1

L
B
-W

2

W
2

W
1
-D

B

W
2
-D

B

D
B

SR1W1 X X - - X X X - - - - -
SR2W1 - - X X X X X - - - - -
SR1W2 X X - - X - - X X - - -
SR2W2 - - X X X - - X X - - -
DR1W1 X X - - X X X - - X - X
DR2W1 - - X X X X X - - X - X
DR1W2 X X - - X - - X X - X X
DR2W2 - - X X X - - X X - X X
P1 - - - - X X X - - - - -
P2 - - - - X - - X X - - -

some will. This system is similar to the one used in our pre-
vious work [9, 7] and its architecture is depicted in Figure 2.

Table 9 contains the spectra of all computations performed
in the system of Figure 2. We represent not only the com-
ponents but also the connectors between them. SR1xx and
SR2xx correspond to the static web requests made by clients,
which do not require the database to be used. Static web
requests are usually HTML pages or images. DR1xx and
DR2xx correspond to dynamic web requests made by clients.
In these requests, the web server needs to fetch data from
the database. The Px requests are pings made by the load
balancer to check whether the web servers are still available.

One first scenario, σ1 is the “external” view of the sys-
tem, when only the clients are observable. In this case,
the accuracy groups become: {C1,C1-LB}, {C2,C2-LB},
{LB,LB-W1,W1,LB-W2,W2,W1-DB,W2-DB,DB}

This result means that, for σ1, we cannot distinguish be-
tween a failure in the client and its connection to the load
balancer, we can distinguish between problems in different
clients and we can identify problems from the load balancer
onwards. We cannot pinpoint any specific component from
the load balancer onwards, which makes sense because we
will know whether the system is responding correctly or not
but not which piece is responsible for the failure.

Another scenario, σ2 is a view of the system administrator
when only the load balancer is being observed. Here, LB is
observable and no other component or connector is. This
scenario will yield a single accuracy group with all compo-
nents inside. While it appears uninteresting, this approach
is commonly used in practice, where load balancers are ob-
served to look for failures. When a failure is identified it will
be necessary to deploy more probes to localize a problem.

A more interesting scenario is when we observe W1 and
W2 (the results are the same if (1) we observe LB-W1 and
LB-W2 instead and also do if (2) LB is observed). Here the
accuracy groups become: {W1,LB-W1,W1-DB}, {W2,LB-W2,W2-DB},
{C1,C1-LB,C2,C2-LB,LB,DB}

In this scenario we can pinpoint faults in the web servers
(or their connections) or in everything. However, if we add
C1-LB and C2-LB to the observable components, meaning,

in practical terms, that we probe the input of the load bal-
ancer, the accuracy groups become: {C1,C1-LB, }, {C2,C2-LB},
{W1,LB-W1,W1-DB}, {W2,LB-W2,W2-DB}, {LB,DB}

In this scenario we can now distinguish failures in clients
and web servers although we cannot tell the difference be-
tween failures in the load balancer and the database. While
this may seem unintuitive, it is an expected result: a sce-
nario in which the load balancer fails half the time is equal
to a scenario in which the database always fails and half of
the requests are dynamic.

One aspect of this example that may appear unclear is
that we always assume that all computations terminate nor-
mally, meaning that the load balancer always returns a reply
to a request made by a client. Handling non-responsiveness
requires adding new spectra with only the involved compo-
nents. For example, to handle non-responsiveness of the load
balancer would require a computations that include C1,C1-
LB and LB and another one that includes C2,C2-LB and
LB. Addition of these computations would make the LB
identifiable as a fault in its own failure group because now,
if both C1 and C2 have a non-responsive failure from LB,
the problem must lay in the common component, LB.

7. RELATED WORK
Recent work has already been done in the area related to

diagnosis accuracy. In [24] probe placement and its impact
on diagnosis is directly discussed. The concept of ambiguity
group is introduced (equivalent, more or less to our accu-
racy group) and ways to introduce probing are proposed.
However, only sequential computations are considered, e.g.,
computations in which the components of the group are ex-
ercised sequentially. Thus our work generalizes that pro-
posed in [24] to any computation model. [10] addresses how
to improve SFL accuracy in tightly coupled systems by split-
ting components into smaller components, although probing
itself is not discussed as all components are assumed to be
observable.

More generally, in the area of self-adaptive systems (SAS),
a significant amount of research has been done. Several
multi-goal optimization frameworks for self-adaptive systems
exist that could benefit from diagnosis accuracy to drive sys-
tem adaptation. Rainbow [12, 20] uses software architecture
as a backbone for SAS and Zanshin [31] uses goal-oriented
requirements. Several surveys and roadmaps exist that refer
some of the many approachs to SAS: [11, 29, 16]. However,
none of this work has directly tackled the problem of diag-
nosis for unobservable components.

Spectrum-based fault localization, the core algorithms that
pinpoint the accuracy groups at fault, also have a variety of
approaches, including algorithmic approaches (e.g., [22, 2]),
simularity coefficient calculation (e.g., [14] and those listed
in [3]), and the use of neural networks [33]. Our work com-
plements these approaches by reducing the size of the can-
didates that need to be considered by these approaches, and
increasing the accuracy of their output.

Furthermore, diagnosis accuracy enables reasoning about
diagnosis uncertainty and has the potential to be used by AI
planners to decide where to place probes. A discussion of
planning under uncertainty can be found in the Cassandra
Planner work [13].

8. CONCLUSIONS AND FUTURE WORK

This paper provides a definition of diagnosis accuracy in
the presence of unobservable components, and an algorithm
to compute it. Diagnosis accuracy is defined as a partition
of the system’s components into groups: components in the
same group cannot be individually identified as faulty. We
provided a theoretical proof that these groups establish a
maximum accuracy bound and that they are also the mini-
mum accuracy bound in the case of a single-fault scenario.

These results allow a diagnostic system to define which
probes to have on a system and identify what they are ca-
pable of pinpointing in the event of a failure. Further, they
provide a basis for dynamically controlling probing on a self-
adaptive system.

We plan to continue future work to extend these results
along three dimensions. First, this work can be used to ex-
tend current state of the art for self-adaptive systems by
including formal reasoning about dynamic probe placement
and dynamic testing. Dynamic probe placement controls
when probes can be placed in a system in order to achieve
an optimum balance between probing cost and diagnosis ac-
curacy. Dynamic testing can be used to produce additional
computations and improve diagnosis. For example, if we are
unsure whether the MOSDB or the MOS are faulty, we can
explicitly exercise just one of them.

Second, the theoretical results in this paper can be im-
proved under some conditions. In the approach taken by
this paper, we have assumed that components are either ob-
servable or non-observable, but, especially in the presence
of dynamic probe placement, components may be observ-
able at some times but not others. This may also occur if
probes cannot always deterimine whether a component par-
ticipated in a computation. For example, a file system probe
may be able to detect when a component was used only if
the component uses the file system. With the current ap-
proach, we need to disregard knowledge of the observations
of these components and consider them as non-observable,
throwing away useful information that could help us to pro-
vide a more accurate diagnosis. We believe it is possible to
extend the theory to consider these sporadic observations.

Third, although in this paper we explored the application
of diagnosis accuracy in the context of self-adaptive systems,
the results presented here are potentially much more general
and may also apply to design time. Design-time code instru-
mentation is akin to probe placement at run time and our
approach would allow (1) determining what needs to be in-
strumented, and (2) when there are enough test cases to
distingush bugs in different parts of the code. Additionally,
pizzicato’s reduction of the search space for faults may im-
prove the performance of existing SFL algorithms.

Acknowledgments
This work was supported in part by the National Science
Foundation under Grant CNS 1116848, the Army Research
Office under Award No. W911NF-09-1-0273, the Office of
Naval Research under Grant N000141310401 and Samsung
Electronics. Furthermore we would like to thank Jungsik
Ahn, of Samsung Electronics, who helped us define the sim-
ulator described in Section 2.

9. REFERENCES
[1] R. Abreu and A. J. C. van Gemund. A low-cost

approximate minimal hitting set algorithm and its

application to model-based diagnosis. In V. Bulitko
and J. C. Beck, editors, Proceedings of the 8th
Symposium on Abstraction, Reformulation and
Approximation (SARA’09), Lake Arrowhead,
California, USA, 8 – 10 July 2009. AAAI Press.

[2] R. Abreu and A. J. C. van Gemund. Diagnosing
multiple intermittent failures using maximum
likelihood estimation. Artif. Intell.,
174(18):1481–1497, 2010.

[3] R. Abreu, P. Zoeteweij, and A. J. C. V. Gemund. An
Evaluation of Similarity Coefficients for Software Fault
Localization. In Pacific Rim International Symposium
on Dependable Computing, pages 39–46, 2006.

[4] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund.
Spectrum-based multiple fault localization. In
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE
’09, pages 88–99, Washington, DC, USA, 2009. IEEE
Computer Society.

[5] M. Avriel. Nonlinear Programming: Analysis and
Methods. Dover Books on Computer Science Series.
Dover Publications, 2003.

[6] J. Carey, N. Gross, M. Stepanek, and O. Port.
Software hell. pages 391–411, 1999.

[7] P. Casanova, D. Garlan, B. Schmerl, and R. Abreu.
Diagnosing architectural run-time failures. In
Proceedings of the 8th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, 20-21 May 2013.

[8] P. Casanova, D. Garlan, B. Schmerl, R. Abreu, and
J. Ahn. Applying autonomic diagnosis at samsung
electronics. Technical Report CMU-ISR-13-111,
Carnegie Mellon University, Sep 2013.

[9] P. Casanova, B. R. Schmerl, D. Garlan, and R. Abreu.
Architecture-based run-time fault diagnosis. In
I. Crnkovic, V. Gruhn, and M. Book, editors, ECSA,
volume 6903 of Lecture Notes in Computer Science,
pages 261–277. Springer, 2011.

[10] C. Chen, H.-G. Gross, and A. Zaidman. Improving
service diagnosis through increased monitoring
granularity. In Proceedings of the 7th International
Conference on Software Security and Reliability
(SERE), 18-29 June 2013.

[11] B. H. Cheng et al. In B. H. Cheng, R. Lemos,
H. Giese, P. Inverardi, and J. Magee, editors, Software
Engineering for Self-Adaptive Systems, chapter
Software Engineering for Self-Adaptive Systems: A
Research Roadmap, pages 1–26. Springer-Verlag,
Berlin, Heidelberg, 2009.

[12] S.-W. Cheng, D. Garlan, and B. Schmerl.
Architecture-based self-adaptation in the presence of
multiple objectives. In Proceedings of the 2006
international workshop on Self-adaptation and
self-managing systems, SEAMS ’06, pages 2–8, New
York, NY, USA, 2006. ACM.

[13] G. Collins and L. Pryor. Planning under uncertainty:
Some key issues. In Proceedings of the Fourteenth
International Joint Conference on Artificial
Intelligence, pages 1567–1573, 1995.

[14] A. da Silva Meyer, A. A. F. Farcia, and A. P.
de Souza. Comparison of similarity coefficients used
for cluster analysis with dominant markers in maize

(zea mays l). Genetics and Molecular Biology,
27(1):83–91, 2004.

[15] J. de Kleer and B. C. Williams. Diagnosing multiple
faults. Artif. Intell., 32(1):97–130, Apr. 1987.

[16] R. de Lemos et al. Software Engineering for
Self-Adaptive Systems: A second Research Roadmap.
In R. de Lemos, H. Giese, H. Müller, and M. Shaw,
editors, Software Engineering for Self-Adaptive
Systems, number 10431 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2011. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[17] A. Feldman, G. M. Provan, and A. J. C. van Gemund.
Computing minimal diagnoses by greedy stochastic
search. In D. Fox and C. P. Gomes, editors, AAAI,
pages 911–918. AAAI Press, 2008.

[18] A. Feldman and A. van Gemund. A two-step
hierarchical algorithm for model-based diagnosis. In
Proceedings of the 21st national conference on
Artificial intelligence - Volume 1, AAAI’06, pages
827–833. AAAI Press, 2006.

[19] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[20] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: architecture-based
self-adaptation with reusable infrastructure.
Computer, 37(10):46–54, 2004.

[21] A. Gonzalez-Sanchez, E. Piel, H.-G. Gross, and A. van
Gemund. Prioritizing tests for software fault
localization. In Quality Software (QSIC), 2010 10th
International Conference on, pages 42–51, 2010.

[22] J. A. Jones and M. J. Harrold. Empirical evaluation of
the Tarantula automatic fault-localization technique.
In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, ASE
’05, pages 273–282, New York, NY, USA, 2005. ACM.

[23] J. Kephart and D. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[24] C. Landi, A. van Gemund, and M. Zanella. Test oracle
placement in spectrum-based fault localization. In
Proceedings 24th International Workshop on Principles
of Diagnosis: DX-2013, October 1-4 2013. To appear.

[25] W. Mayer and M. Stumptner. Evaluating models for
model-based debugging. In Proceedings of the 2008
23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08, pages
128–137, Washington, DC, USA, 2008. IEEE
Computer Society.

[26] E. Piel, A. Gonzalez-Sanchez, H. Gross, and A. J.
Van Gemund. Spectrum-based health monitoring for
self-adaptive systems. In Self-Adaptive and
Self-Organizing Systems (SASO), 2011 Fifth IEEE
International Conference on, pages 99–108. IEEE,
2011.

[27] É. Piel, A. Gonzalez-Sanchez, H.-G. Gross, and A. J.
van Gemund. Online fault localization and health
monitoring for software systems. In Situation
Awareness with Systems of Systems, pages 229–245.
Springer, 2013.

[28] É. Piel, A. Gonzalez-Sanchez, H.-G. Gross, A. J. van
Gemund, and R. Abreu. Online spectrum-based fault

localization for health monitoring and fault recovery of
self-adaptive systems. In ICAS 2012, The Eighth
International Conference on Autonomic and
Autonomous Systems, pages 64–73, 2012.

[29] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans.
Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

[30] C. E. Shannon and W. Weaver. The Mathematical
Theory of Communication. Univ of Illinois Press, 1949.

[31] V. Souza and J. Mylopoulos. From awareness
requirements to adaptive systems: A control-theoretic
approach. In Requirements@Run.Time
(RE@RunTime), 2011 2nd International Workshop
on, pages 9–15, 2011.

[32] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo,

and K. Inoue. Learning revised models for planning in
adaptive systems. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 63–71, Piscataway, NJ, USA, 2013.
IEEE Press.

[33] W. E. Wong and Y. Qi. BP neural network-based
effective fault localization. International Journal of
Software Engineering and Knowledge Engineering,
19(04):573–597, 2009.

[34] F. Wotawa, M. Stumptner, and W. Mayer.
Model-based debugging or how to diagnose programs
automatically. In T. Hendtlass and M. Ali, editors,
Developments in Applied Artificial Intelligence,
volume 2358 of Lecture Notes in Computer Science,
pages 746–757. Springer Berlin Heidelberg, 2002.

