
Modeling Uncertainty of Predictive Inputs
in Anticipatory Dynamic Configuration

Vahe Poladian
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
+1-412-268-5941

Vahe.Poladian@cs.cmu.edu

Mary Shaw
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
+1-412-268-2589

Mary.Shaw@cs.cmu.edu

David Garlan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
+412-268-5056

David.Garlan@cs.cmu.edu

ABSTRACT
Dynamic adaptive systems based on multiple concurrent
applications typically employ optimization models to decide how
to allocate scarce resources among the applications and how to
tune their runtime settings for optimal quality-of-service
according to the preferences of an end user.

Traditionally, such systems have avoided dealing with uncertainty
by assuming that current snapshots of the relevant inputs are
precise and by solving for an optimal system point. To achieve
dynamic behavior, a system performs an optimization loop upon
discovering changes in the input variables (e.g. changes in the
available level of resources) and adapts the applications according
to the new optimal solution. Unfortunately, when certain
adaptation actions incur costs, such reactive adaptation strategies
suffer from a significant shortcoming: several locally optimal
decisions over time may often be less than optimal globally.

By using predictive information about the future values of the
problem inputs, we can model and implement an anticipatory
adaptation strategy that helps improve the global behavior of the
system in many situations. However, modeling predictions
requires representing and dealing with uncertainty from different
sources. In this paper, we describe our proposed approach to
represent multiple sources of uncertainty and outline algorithms
for solving the anticipatory configuration problem with predictive
inputs.

Keywords
Adaptive, dynamic, optimization, prediction, uncertainty.

1. INTRODUCTION
Several dynamically adaptive systems (see: [8] [9][10] [12]) have
used optimization models to improve the quality of service
delivered to end users when resource are scarce, i.e. when the
maximum resource demand by all the applications in a user’s task
exceeds the available level of resources. The optimization models

typically require several inputs: (1) requirements for the task and
preferences for various dimensions of task quality from the user,
(2) application resource demand for each adaptive setting, and (3)
the available level of the resources. The adaptive system uses an
algorithm to determine the best suite of applications for a task,
allocates resources among these applications, and dictates to each
application the optimal level of quality so that the utility of the
user is maximized according to his preferences. We call this
dynamic configuration. Once the configuration is determined, the
states of the applications are changed using adaptive mechanisms.

Typically, existing optimization models use only the current
snapshots of the inputs to make a decision. When the value of an
input changes, the optimization algorithm is re-run with the
updated values of the inputs, resulting in a new optimal point.
The system is then adjusted to the new optimal point using
adaptive mechanisms. For example, when the available level of a
resource drops, the previous optimal resource allocation is no
longer feasible, and the system needs to re-configure. Some
adaptive actions are costly because they are disruptive to the user
or require additional resources. These costs are modeled either as
penalties in the preference functions or as a resource expenditures.
We call such a configuration strategy reactive, and note that
several locally optimal reactive decisions might often be less than
optimal over time.

We have proposed an alternative, anticipatory, strategy of
configuration ([13]) that explicitly models predictions of input
values into future. This strategy allows making configuration
decisions that are optimal over time. To model a configuration
strategy with predictions, we need a way to explicitly represent
several sources of uncertainty, potentially complicating the
decision making of the system.

In this paper, we address the challenges of representing and
dealing with the uncertainty in the predictions of the inputs in an
optimization model of a dynamically adaptive system in a
pervasive computing domain. We also propose how existing
algorithms can be modified to solve the dynamic optimization
problem under uncertainty of the predictors.

The paper is organized as follows. Section 2 summarizes related
work. Section 3 introduces the problem in an existing dynamic
adaptive system. In Section 4, we introduce the various sources
of uncertainty and describe our proposed representations. Section
5 describes how the optimization problem with predictive inputs
can be solved. Section 6 concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’07, November, 2007, Atlanta, GA, USA.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

2. RELATED WORK
In his 2001 paper on the challenges of pervasive computing [16],
Satyanarayanan identified prediction as an important desired
feature for systems that aim to provide an improved and seamless
user experience.

There is extensive research in resource demand and availability
prediction. NWS [18] and RPS [1] are tools for gathering and
analyzing resource demand and supply. Dinda [3] presents a
comprehensive overview of prediction using linear time series
models. A number of studies (Qiao [14], Sang [15], Wolski [19])
have demonstrated that: (1) resources have good predictability
and (2) when resources are predictable, inexpensive models with
autoregressive (AR) components work just as well as more
complex schemes. Qiao et al [14] conjecture that resource
prediction can be done online, using software running on routers
or compute servers. Gurun et al designed a lightweight version of
NWS called NWSLite suitable for mobile devices [6].

Task-oriented computing was proposed by Sousa [17] who
defined an architecture for pervasive computing and a light-
weight language for describing everyday user tasks. The task
request primitives in 4.1.1 are from that work. The probability
models for describing the activation times and durations of tasks
are our own proposal. To our knowledge, there are no statistical
studies confirming or denying those models.

Analytically, anticipatory configuration is similar to online
stochastic combinatorial optimization (OSCU) problems such as
packet routing and vehicle dispatch ([2][7]). While the problem
domains are different, the configuration strategies have equivalent
concepts and algorithms in that domain. Reactive strategy is
equivalent to the Local algorithm in OSCU. When resource
predictors are perfect, anticipatory strategy is equivalent to the
Offline algorithm. And lastly, anticipatory strategy with noisy
predictors is equivalent to various Expectation algorithms.

3. MODEL FORMULATION
In this section we describe the dynamic configuration problem in
a pervasive computing system. We describe the reactive
configuration model and strategy, and use this setup to introduce
the sources of uncertainty in the problem later in section 4. Inputs
of the model are described in section 3.1, decision variables are
described in section 3.2. The complete mathematical notation of
the reactive model is found in [12] and in the appendix of [13].

3.1 Model Inputs
3.1.1 User task and preference
The basis of configuration is one or more user tasks. A task is a
set of services. Each service is a description of capabilities of
similar applications comprised of a service type (e.g., “play
video”) and zero or more quality of service dimensions (QoS).
For example, the QoS dimensions for a “play video” service are
“frame rate” and “frame size”.

Preferences are mathematical functions with weights that are
specific to each task. There are three types of preferences: QoS
preferences, application affinity preferences, and switch penalties.
There is a QoS preference function per quality dimension and an
application affinity preference for each service as a whole. A
preference function for a QoS dimension captures how the user
values improvements in that dimension. Associated with each

service is a switching penalty that reflects the inconvenience to
the user should the system decide to replace a running application
with an alternative as part of an optimization decision. Penalties
are designed to discourage or, in some cases, to disallow
switching of running applications.

3.1.2 Application Profiles
Each installed application instance has a profile. A profile
specifies the service types that an application can provide and an
enumeration of quality and resource vector tuples: <q, r>. The
application promises to provide a level of QoS q, if corresponding
resource level r is allocated to the application. This is the
estimated resource cost for each level of quality the application
supports.

3.1.3 Resource Availability
Resource availability is a vector showing the current snapshot of
available resources. Resource availability changes over time, but
in the reactive model only the current level of the resource
availability is considered.

3.2 Decision Variables
The decision variable in the reactive model is a configuration with
three components: (1) a suite of applications, one per active
service, (2) quality set-points, one per application selected, and
(3) resource allocation among the applications.

3.3 Optimization Problem
The objective of the system is to optimize a user’s instantaneous
utility (IU) for the task. An IU of a configuration is computed as
a weighted sum of the preference functions over that
configuration. Candidate configurations can be compared using
their IU by applying the preference functions.

4. MODELING UNCERTAINTY FOR
ANTICIPATORY CONFIGURATION
In the anticipatory model of configuration, we need to reason
about the cumulative effect of several configuration decisions
over time. To do so, we use a discrete time model. Let t denote
the current time and T denote the duration of a task.

The objective of dynamic configuration in the anticipatory model
is to maximize the expected value of the accrued utility (AU) over
time. Accrued utility of a task from time t to time t+T is the
integral of instantaneous utility over that period of time. In a
discrete time model, that integral is the sum of instantaneous
utility values over the period from t to t+T.

The anticipatory model of configuration requires predictions of
the input variables over a foreseeable period of time. These
predictions come from different sources and contain uncertainties
of different types that are unique to the source. In the next three
sections we describe the representations of the predictions and
uncertainty from each source.

4.1 Predictive Input Sources and Uncertainty
4.1.1 User task
A user makes requests to the system using a small vocabulary:

{add, replace, disband,}

The “add” operation requests a service to be activated. The
“replace” operation shows user’s displeasure with a running
application, and explicitly asks for that application to be replaced
by another. The “disband” operation tells the infrastructure to
save the state of the application and close it. The “add” and
“replace” operations can be accompanied with a set of
preferences.

Predicting a user’s task requests amounts to predicting when in
the future the user will make a service request operation with
respect to any of the services currently under consideration as well
as the request type. The set of services of interest is the union of
the services in all currently defined tasks.

A trace of past user requests can be captured as follows:

s1: (op11,t11), (op12, t12),…,

s2: (op21, t21), (op22, t22),…,

…

where opij denotes a service request operation and tij denotes the
time. We can leverage this concise notation for predictions.

The primary objective of task operation sequence prediction is to
predict future resource demand. The “add” operation will result
in resource demand increase. The “disband” operation will result
in resource demand decrease.

The “replace” operation is allows the user to over-ride a system
decision and replace a running application that the user is
unhappy with. In general, the effect of “replace” operations on
resource demand is less clear.

Given the clear effect of “add” and “disband” operations on
resource demand, we start with a simple prediction goal:

• predicting when a service (or a group of services) is added,

• predicting how long a service (or a group of services) is
needed, i.e., when these services will be disbanded.

Using three representative examples we build our case for
describing the predictions for “add” and “disband” requests.

In the first example, a professor has a task of giving a lecture.
The lecture is a regularly scheduled activity occurring on specific
days of the week at scheduled times. Although the lecture has
scheduled start and end times, the actual start and end times might
vary slightly from the schedule slightly.

In the second example, a movie critic is working on a review. The
completion of the task is driven by quality and amount of work.
We can elicit a completion time from the user and further enhance
that estimate using past observations of estimated and actual
duration pairs. Upon completion of the session, we might be able
to elicit from the user the time of the next activation of the task.

In the third example, the user receives an e-mail from a friend and
clicks on a link that opens to a video from a popular site such as
youtube.com. If the video is not interesting, the user abandons
watching it after a few seconds. On the other hand, if the video is
interesting, there is a high chance that the user watches it to
completion and might choose to watch similar videos.

These examples suggest that we need to allow different shapes to
express the probability distribution of the activation time and the
duration of a task depending on the type of the task:

• For tasks following a strict schedule, both the activation
time of the task and the end of a task can be derived from a
source such as an electronic calendar. We propose to use
normal random variables with small variances to capture
the times of both events,

• For tasks that are not subject to a strict deadline, the
activation times and duration can be estimated by the user.
Both estimates will have errors and we propose to
represent these using normal random variables with
variances determined by historical data,

• For ad-hoc tasks, we propose to represent their activation
time using a random variable following an exponential
distribution,

• Durations of some tasks that have multiple peaks can be
captured using mixture of normal distributions,

• For deadline-driven tasks, we propose to capture the
activation time of the task as a normal random variable
around a known mean and the end-time as one-half of a
normal random variable,

We propose a hierarchical representation for expressing
predictions of future user tasks requests. This representation
assigns a type to each task from a small vocabulary. Next, for
each type of task, we use a probability distribution to describe the
activation and ending times of the task. We assume that the type
assigned to the tasks is precise, so uncertainty is in the activation
and ending times of the task.

Because we are unable to fully enumerate all possible types of
tasks and the probability distributions of their activation and end
times, we propose to use a discrete representation for capturing
distributions. In this manner, the notation will not require an
agreement between the provider of information and the consumer
for describing each distribution that might occur.

For example, a normal probability density function can be
approximated using a binomial distribution. Desired precision
can be achieved using any number of integer probability masses.

4.1.2 Application Profiles
The source of uncertainty in application profiles is the resource
requirement for every adaptive quality level. In the reactive
model, the resource-quality pairs are non-random. Research in
adaptive systems (e.g., [9][11]) provides evidence that the
variance of average resource usage per quality level is very small.
We propose to ignore the uncertainty due to such small variance
and continue treating the inputs in the application profiles as non-
random, as was the case in the reactive model.

4.1.3 Resource Availability
We leverage and extend existing research in resource prediction to
represent uncertainty in resource availability. First, we discuss
the prediction of resources that are not directly under our user’s
control, e.g. network bandwidth and CPU of compute servers.
These resources have many consumers, typically in the hundreds
or thousands, and the predictability of such resources is a direct
result of utilization by a large pool of users.

Modeling Network Bandwidth, CPU Prediction
The prediction for resource availability should describe the
probabilities of future resource paths. So the variable being

predicted is a random process over time. Predictions of values
further into the future have larger errors, making the graphical
representation of a predictor look like a cone.

We propose combining three different types of predictors: (1)
recent history linear predictor, (2) seasonal predictor, and (3)
bounding predictor, to arrive at an aggregate resource predictor.

A recent history linear predictor is motivated by existing
prediction research ([3][19]) and exploits serial correlation in the
adjacent values of resource availability time series.
Autoregressive (AR), moving-average (MA), and autoregressive
and moving average (ARMA) Gaussian models of low order often
predict resource time series very well if there is any predictability.

Formally, an autoregressive linear recent history predictor of
order p for resource R is an equation of the form:

Rt+1|t = �1 r t + �2 r t-1+ … + �p r t-p+1 + Z t+1,

where r i are the previous p observations of the resource (the small
letters indicate that these numbers are not random), �i are
parameters of the model and are known at prediction time, and Z

t+1 is a normal random variable with mean 0 and variance �, Z t+1
~ N(0, �).

The above prediction is only one step-ahead, but using recursive
substitution we can describe a multiple step-ahead, path-
dependant prediction.

While a recent history predictor exploits serial correlation in the
recent history of a time series, a seasonal predictor captures
periodic patterns. In the time series classical decomposition,
seasonal components are identified and removed first, before a
time series is analyzed using recent history model. At prediction
time, seasonal components are added back to compute the final
prediction.

The prediction of a seasonal component is a time-series of non-
random values. Because the predicted values of a seasonal
component are not random, they don’t change with passage of
time.

And lastly, a bounding predictor specifies absolute minimum and
maximum values for the series. This predictor is motivated by
various sources of information that can guarantee or almost
guarantee that the available level of the resource is within some
minimum and maximum thresholds.

When one instance of a recent history and multiple instances of
seasonal and bounding predictors are available, we propose the
following algorithm to combine the predictors:

• combine all the seasonal predictors together using basic
addition, resulting in a single seasonal predictor,

• combine all the bounding predictors together, using the
maximum of all minimums and the minimum of all
maximums, resulting in a single bounding predictor,

• add the aggregate seasonal predictor to the recent history
predictor, resulting in a shift of the mean,

• use the aggregate bounding predictor to limit possible
values of the resource.

In [13] we demonstrated how a data structure based on a trinomial
tree can be used to approximate an aggregate resource prediction.
The tree has a branching factor of 3 for nodes up to a specified
depth; nodes beyond that depth have a branching factor of 1.

Thus, we capture the mean and the variance of the prediction for
the near future using three probability masses. For predictions
farther in the future, we only capture the mean prediction. This
structure was effective to capture predictions for anticipatory
configuration. Similar trees with a branching factor equal to any
odd number can be constructed.

Modeling Battery Prediction
Of the resources that are entirely under the user’s control, battery
energy is uniquely different. First, unlike bandwidth or CPU, this
resource can be stored, depletes with usage, and can be charged.
Second, currently available level of battery can be estimated very
precisely. Third, the uncertainty of its availability in the future is
dependent on user’s own usage of the resource and the probability
of being charged from a wall outlet. And fourth, there is a
correlation between battery energy spent and available CPU as
many modern hardware platforms offer power saving settings that
can dynamically alter CPU voltage and clock rate.

We propose to model the aggregate drain rate of battery per unit
as a decision variable. In order to limit the search space of
possible drain rates over time, we propose to consider only those
drain levels that have an impact on another resource’s availability
and to keep the drain rate unchanged if user’s task has not
changed.

And lastly, because remaining battery energy can be valuable for
future tasks, we propose to account for that using an additional
preference function elicited from the user. Using only two
threshold values and one utility value, we can allow the user to
express the following preference: remaining battery below the
lower threshold level L provides a significant negative utility,
between the lower threshold L and the upper threshold U utility
increases monotonically from zero to some value U, and above the
upper threshold value L utility remains at U.

4.2 Decision Variables
In the anticipatory model of configuration, the decision variable is
a contingent time series of configurations. After making each
configuration decision, the system commits to the first decision in
the series, leaving the possibility of changing subsequent
decisions. The system then observes changes in the input
variables, and repeats the above optimization.

4.3 Optimization Problem
In the model of anticipatory configuration, we optimize the value
of expected accrued utility (AU) subject to the quality-resource
profiles of available applications and predictions of the resources.

5. CONFIGURATION ALGORITHM
IDEAS
We propose to stage the problem of anticipatory configuration
into increasingly difficult instances. We make assumptions about
the predictions, and then gradually relax those.

These are the assumptions that allow the staging of the problem:

A1. The time frame of optimization is fixed from t to t+T, and the
predictions of future user task requests are known exactly,

A2. Battery energy is excluded from consideration,

A3. The predictions of all the resources except battery are known
exactly, i.e., they contain no uncertainty.

We propose to stage the problem as follows. Initially, we require
all three assumptions to hold. In the second stage, we relax only
A3, allowing for uncertainty in resource predictions but excluding
battery from consideration. In the third stage, in addition to
having dropped A3, we also drop A2, taking battery availability
and drain into account. In the fourth stage, we drop A1 as well,
allowing task activation times and durations to be random as
described in section 4.1.1.

In [13], we demonstrated solutions to the first and second stage
problems. The solution to the first stage is a dynamic
programming algorithm that inducts backwards in time. The
solution to the second stage problem is a modified version of that
dynamic program that performs expectation maximization over
the predicted resource paths.

We propose to solve the stage three version of the problem by
modeling the drain rate of battery per unit time as a decision
variable and including a term in accrued utility to account for the
remaining battery energy. We have preliminary evidence that the
algorithm from [13] can be modified to solve this problem.

At this time, we don’t have a fully developed solution to the stage
four version of the problem. Our proposal is to further modify the
existing dynamic programming algorithm. However, with the
activation times and durations of tasks allowed to be random, the
definition of the accrued utility might need to be modified to
allow for comparisons between utility from quality of service and
utility from longer task duration.

6. CONCLUSIONS
In this paper we have described an improved optimization model
for a dynamically adaptive system in the pervasive computing
domain. This new anticipatory model uses predictions of future
values of inputs and improves over an earlier reactive model in
many situations. We have described representations for various
sources of uncertainty in the predictions of the inputs. Further,
we have presented ideas for staging and solving the resulting
stochastic optimization problem by modifying an existing
dynamic programming algorithm.

Ongoing work focuses on designing a runtime architecture that
allows resource and user task request predictors. We are working
on runtime representations of predictive uncertainty and
implementations of the dynamic optimization algorithms.

7. ACKNOWLEDGMENTS
This work was funded in part by NSF grants CCR-0205266, CCF-
0438929, CNS-0613823, and by DARPA grant N66001-99-2-
8918. Authors thank professors Anthony Brockwell, Peter
Steenkiste, and Mahadev Satyanarayanan (Carnegie Mellon); and
Peter Dinda (Northwestern University) for their suggestions.

8. REFERENCES
[1] P. Dinda. Design, Implementation, and Performance of an

Extensible Toolkit for Resource Prediction In Distributed
Systems. IEEE Transactions on Parallel and Dist Systems
(TPDS), 17:2, February 2006.

[2] R. Bent and P. Van Hentenryck. Regrets Only! Online
Stochastic Optimization under Time Constraints. Proc 19th
AAAI, 2004.

[3] P. Dinda, D. O'Hallaron. Host Load Prediction Using Linear
Models. Cluster Computing, 3:4, 2000.

[4] D. Garlan, et al. Project Aura: Towards Distraction-Free
Pervasive Computing. IEEE Pervasive Computing, 21:2,
April-June, 2002.

[5] D. Garlan, et al. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. IEEE Computer,
37:10, 2004.

[6] S. Gurun, et al. NWSLite: A Light-Weight Prediction Utility
for Mobile Devices. Proc. 2nd IEEE Int’l Conf. on Mobile
Systems, Applications, and Services (MobiSys), 2004.

[7] P. Hentenryck, et al. Online Stochastic Optimization Under
Time Constraints. Working paper, last accessed in February
2007 at http://www.cs.brown.edu/people/pvh/aor5.pdf.

[8] C. Lee. On Quality of Service Management. PhD Thesis,
Carnegie Mellon University Technical Report CMU-CS-99-
165, 1999.

[9] D. Narayanan, M. Satyanarayanan. Predictive Resource
Management for Wearable Computing. Proc. 1st IEEE Int’l
Conf. on Mobile Systems, Applications, and Services
(MobiSys), 2003.

[10] R. Neugebauer and D. McAuley. Congestion Prices as
Feedback Signals: An Approach to QoS Management. Proc.
ACM SIGOPS European Workshop, 2000.

[11] B. Noble, et al. Agile Application-Aware Adaptation for
Mobility. Proc. ACM Symp on Operating Systems Principles
(SOSP), 1997.

[12] V. Poladian, et al. Dynamic Configuration of Resource-
Aware Services. Proc IEEE Intl Conf on Software
Engineering (ICSE), 2004.

[13] V. Poladian, et al. Leveraging Resource Predictions in
Anticipatory Dynamic Configuration. Proc IEEE Intl Conf
on Self-Adaptive and Self-Organizing Syst. (SASO), 2007.

[14] Y. Qiao, J. Skicewicz, P. Dinda. An Empirical Study of the
Multiscale Predictability of Network Traffic. Proc Intl
Symposium on High Performance Distributed Computing
(HPDC), 2004.

[15] A. Sang and S. Li. Predictability analysis of network traffic.
Proc. of INFOCOM, 2000.

[16] M. Satyanarayanan. Pervasive Computing: Vision and
Challenges. IEEE Personal Communications, August 2001.

[17] J.P. Sousa, D. Garlan. The Aura Software Architecture: an
Infrastructure for Ubiquitous Computing. Carnegie Mellon
Technical Report, CMU-CS-03-183, 2003.

[18] R. Wolski, et al. The network weather service: A distributed
resource performance forecasting system. J. of Future
Generation Computing Systems, 1999.

[19] R. Wolski, et al. Predicting the CPU availability of time-
shared Unix systems. Proc Intl Symp High Perf Dist
Computing (HPDC), 1999.

