
Modeling Uncertainty of Predictive Inputs 
in Anticipatory Dynamic Configuration

Vahe Poladian 
School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 
+1-412-268-5941 

Vahe.Poladian@cs.cmu.edu 

Mary Shaw 
School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 
+1-412-268-2589 

Mary.Shaw@cs.cmu.edu 

David Garlan 
School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 
+412-268-5056 

David.Garlan@cs.cmu.edu 
 
 

ABSTRACT 
Dynamic adaptive systems based on multiple concurrent 
applications typically employ optimization models to decide how 
to allocate scarce resources among the applications and how to 
tune their runtime settings for optimal quality-of-service 
according to the preferences of an end user. 

Traditionally, such systems have avoided dealing with uncertainty 
by assuming that current snapshots of the relevant inputs are 
precise and by solving for an optimal system point.  To achieve 
dynamic behavior, a system performs an optimization loop upon 
discovering changes in the input variables (e.g. changes in the 
available level of resources) and adapts the applications according 
to the new optimal solution.  Unfortunately, when certain 
adaptation actions incur costs, such reactive adaptation strategies 
suffer from a significant shortcoming: several locally optimal 
decisions over time may often be less than optimal globally. 

By using predictive information about the future values of the 
problem inputs, we can model and implement an anticipatory 
adaptation strategy that helps improve the global behavior of the 
system in many situations.  However, modeling predictions 
requires representing and dealing with uncertainty from different 
sources.  In this paper, we describe our proposed approach to 
represent multiple sources of uncertainty and outline algorithms 
for solving the anticipatory configuration problem with predictive 
inputs. 
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1. INTRODUCTION 
Several dynamically adaptive systems (see: [8] [9][10] [12]) have 
used optimization models to improve the quality of service 
delivered to end users when resource are scarce, i.e. when the 
maximum resource demand by all the applications in a user’s task 
exceeds the available level of resources.  The optimization models 

typically require several inputs: (1) requirements for the task and 
preferences for various dimensions of task quality from the user, 
(2) application resource demand for each adaptive setting, and (3) 
the available level of the resources.  The adaptive system uses an 
algorithm to determine the best suite of applications for a task, 
allocates resources among these applications, and dictates to each 
application the optimal level of quality so that the utility of the 
user is maximized according to his preferences.  We call this 
dynamic configuration.  Once the configuration is determined, the 
states of the applications are changed using adaptive mechanisms. 

Typically, existing optimization models use only the current 
snapshots of the inputs to make a decision.  When the value of an 
input changes, the optimization algorithm is re-run with the 
updated values of the inputs, resulting in a new optimal point.  
The system is then adjusted to the new optimal point using 
adaptive mechanisms.  For example, when the available level of a 
resource drops, the previous optimal resource allocation is no 
longer feasible, and the system needs to re-configure.  Some 
adaptive actions are costly because they are disruptive to the user 
or require additional resources.  These costs are modeled either as 
penalties in the preference functions or as a resource expenditures. 
We call such a configuration strategy reactive, and note that 
several locally optimal reactive decisions might often be less than 
optimal over time. 

We have proposed an alternative, anticipatory, strategy of 
configuration ([13]) that explicitly models predictions of input 
values into future.  This strategy allows making configuration 
decisions that are optimal over time.  To model a configuration 
strategy with predictions, we need a way to explicitly represent 
several sources of uncertainty, potentially complicating the 
decision making of the system. 

In this paper, we address the challenges of representing and 
dealing with the uncertainty in the predictions of the inputs in an 
optimization model of a dynamically adaptive system in a 
pervasive computing domain.  We also propose how existing 
algorithms can be modified to solve the dynamic optimization 
problem under uncertainty of the predictors. 

The paper is organized as follows.  Section 2 summarizes related 
work.  Section 3 introduces the problem in an existing dynamic 
adaptive system.  In Section 4, we introduce the various sources 
of uncertainty and describe our proposed representations.  Section 
5 describes how the optimization problem with predictive inputs 
can be solved.  Section 6 concludes the paper. 
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2. RELATED WORK 
In his 2001 paper on the challenges of pervasive computing [16], 
Satyanarayanan identified prediction as an important desired 
feature for systems that aim to provide an improved and seamless 
user experience. 

There is extensive research in resource demand and availability 
prediction.  NWS [18] and RPS [1] are tools for gathering and 
analyzing resource demand and supply. Dinda [3] presents a 
comprehensive overview of prediction using linear time series 
models. A number of studies (Qiao [14], Sang [15], Wolski [19]) 
have demonstrated that: (1) resources have good predictability 
and (2) when resources are predictable, inexpensive models with 
autoregressive (AR) components work just as well as more 
complex schemes. Qiao et al [14] conjecture that resource 
prediction can be done online, using software running on routers 
or compute servers.  Gurun et al designed a lightweight version of 
NWS called NWSLite suitable for mobile devices [6]. 

Task-oriented computing was proposed by Sousa [17] who 
defined an architecture for pervasive computing and a light-
weight language for describing everyday user tasks.  The task 
request primitives in 4.1.1 are from that work.  The probability 
models for describing the activation times and durations of tasks 
are our own proposal.  To our knowledge, there are no statistical 
studies confirming or denying those models. 

Analytically, anticipatory configuration is similar to online 
stochastic combinatorial optimization (OSCU) problems such as 
packet routing and vehicle dispatch ([2][7]). While the problem 
domains are different, the configuration strategies have equivalent 
concepts and algorithms in that domain.  Reactive strategy is 
equivalent to the Local algorithm in OSCU.  When resource 
predictors are perfect, anticipatory strategy is equivalent to the 
Offline algorithm.  And lastly, anticipatory strategy with noisy 
predictors is equivalent to various Expectation algorithms. 

3. MODEL FORMULATION 
In this section we describe the dynamic configuration problem in 
a pervasive computing system.  We describe the reactive 
configuration model and strategy, and use this setup to introduce 
the sources of uncertainty in the problem later in section 4.  Inputs 
of the model are described in section 3.1, decision variables are 
described in section 3.2.  The complete mathematical notation of 
the reactive model is found in [12] and in the appendix of [13]. 

3.1 Model Inputs 
3.1.1 User task and preference 
The basis of configuration is one or more user tasks.  A task is a 
set of services.  Each service is a description of capabilities of 
similar applications comprised of a service type (e.g., “play 
video”) and zero or more quality of service dimensions (QoS).  
For example, the QoS dimensions for a “play video” service are 
“frame rate” and “frame size”. 

Preferences are mathematical functions with weights that are 
specific to each task.  There are three types of preferences: QoS 
preferences, application affinity preferences, and switch penalties.  
There is a QoS preference function per quality dimension and an 
application affinity preference for each service as a whole. A 
preference function for a QoS dimension captures how the user 
values improvements in that dimension.  Associated with each 

service is a switching penalty that reflects the inconvenience to 
the user should the system decide to replace a running application 
with an alternative as part of an optimization decision.  Penalties 
are designed to discourage or, in some cases, to disallow 
switching of running applications. 

3.1.2 Application Profiles 
Each installed application instance has a profile.  A profile 
specifies the service types that an application can provide and an 
enumeration of quality and resource vector tuples: <q, r>.  The 
application promises to provide a level of QoS q, if corresponding 
resource level r is allocated to the application.  This is the 
estimated resource cost for each level of quality the application 
supports. 

3.1.3 Resource Availability 
Resource availability is a vector showing the current snapshot of 
available resources.  Resource availability changes over time, but 
in the reactive model only the current level of the resource 
availability is considered. 

3.2 Decision Variables 
The decision variable in the reactive model is a configuration with 
three components: (1) a suite of applications, one per active 
service, (2) quality set-points, one per application selected, and 
(3) resource allocation among the applications. 

3.3 Optimization Problem 
The objective of the system is to optimize a user’s instantaneous 
utility (IU) for the task.  An IU of a configuration is computed as 
a weighted sum of the preference functions over that 
configuration. Candidate configurations can be compared using 
their IU by applying the preference functions. 

4. MODELING UNCERTAINTY FOR 
ANTICIPATORY CONFIGURATION 
In the anticipatory model of configuration, we need to reason 
about the cumulative effect of several configuration decisions 
over time.  To do so, we use a discrete time model.  Let t denote 
the current time and T denote the duration of a task. 

The objective of dynamic configuration in the anticipatory model 
is to maximize the expected value of the accrued utility (AU) over 
time.  Accrued utility of a task from time t to time t+T is the 
integral of instantaneous utility over that period of time.   In a 
discrete time model, that integral is the sum of instantaneous 
utility values over the period from t to t+T. 

The anticipatory model of configuration requires predictions of 
the input variables over a foreseeable period of time.  These 
predictions come from different sources and contain uncertainties 
of different types that are unique to the source.  In the next three 
sections we describe the representations of the predictions and 
uncertainty from each source. 

4.1 Predictive Input Sources and Uncertainty 
4.1.1 User task 
A user makes requests to the system using a small vocabulary:  



{add, replace, disband,} 

The “add” operation requests a service to be activated.  The 
“replace” operation shows user’s displeasure with a running 
application, and explicitly asks for that application to be replaced 
by another.  The “disband” operation tells the infrastructure to 
save the state of the application and close it.  The “add” and 
“replace” operations can be accompanied with a set of 
preferences. 

Predicting a user’s task requests amounts to predicting when in 
the future the user will make a service request operation with 
respect to any of the services currently under consideration as well 
as the request type.  The set of services of interest is the union of 
the services in all currently defined tasks. 

A trace of past user requests can be captured as follows: 

s1: (op11,t11), (op12, t12),…,  

s2: (op21, t21), (op22, t22),…,  

… 

where opij denotes a service request operation and tij denotes the 
time.  We can leverage this concise notation for predictions. 

The primary objective of task operation sequence prediction is to 
predict future resource demand.  The “add” operation will result 
in resource demand increase.  The “disband” operation will result 
in resource demand decrease. 

The “replace” operation is allows the user to over-ride a system 
decision and replace a running application that the user is 
unhappy with.  In general, the effect of “replace” operations on 
resource demand is less clear. 

Given the clear effect of “add” and “disband” operations on 
resource demand, we start with a simple prediction goal: 

• predicting when a service (or a group of services) is added, 

• predicting how long a service (or a group of services) is 
needed, i.e., when these services will be disbanded. 

Using three representative examples we build our case for 
describing the predictions for “add” and “disband” requests.   

In the first example, a professor has a task of giving a lecture.  
The lecture is a regularly scheduled activity occurring on specific 
days of the week at scheduled times.  Although the lecture has 
scheduled start and end times, the actual start and end times might 
vary slightly from the schedule slightly. 

In the second example, a movie critic is working on a review.  The 
completion of the task is driven by quality and amount of work.  
We can elicit a completion time from the user and further enhance 
that estimate using past observations of estimated and actual 
duration pairs.  Upon completion of the session, we might be able 
to elicit from the user the time of the next activation of the task. 

In the third example, the user receives an e-mail from a friend and 
clicks on a link that opens to a video from a popular site such as 
youtube.com.  If the video is not interesting, the user abandons 
watching it after a few seconds.  On the other hand, if the video is 
interesting, there is a high chance that the user watches it to 
completion and might choose to watch similar videos. 

These examples suggest that we need to allow different shapes to 
express the probability distribution of the activation time and the 
duration of a task depending on the type of the task: 

• For tasks following a strict schedule, both the activation 
time of the task and the end of a task can be derived from a 
source such as an electronic calendar.  We propose to use 
normal random variables with small variances to capture 
the times of both events, 

• For tasks that are not subject to a strict deadline, the 
activation times and duration can be estimated by the user.  
Both estimates will have errors and we propose to 
represent these using normal random variables with 
variances determined by historical data, 

• For ad-hoc tasks, we propose to represent their activation 
time using a random variable following an exponential 
distribution, 

• Durations of some tasks that have multiple peaks can be 
captured using mixture of normal distributions, 

• For deadline-driven tasks, we propose to capture the 
activation time of the task as a normal random variable 
around a known mean and the end-time as one-half of a 
normal random variable, 

We propose a hierarchical representation for expressing 
predictions of future user tasks requests.  This representation 
assigns a type to each task from a small vocabulary.  Next, for 
each type of task, we use a probability distribution to describe the 
activation and ending times of the task.  We assume that the type 
assigned to the tasks is precise, so uncertainty is in the activation 
and ending times of the task. 

Because we are unable to fully enumerate all possible types of 
tasks and the probability distributions of their activation and end 
times, we propose to use a discrete representation for capturing 
distributions.  In this manner, the notation will not require an 
agreement between the provider of information and the consumer 
for describing each distribution that might occur. 

For example, a normal probability density function can be 
approximated using a binomial distribution.  Desired precision 
can be achieved using any number of integer probability masses. 

4.1.2 Application Profiles 
The source of uncertainty in application profiles is the resource 
requirement for every adaptive quality level.  In the reactive 
model, the resource-quality pairs are non-random.  Research in 
adaptive systems (e.g., [9][11]) provides evidence that the 
variance of average resource usage per quality level is very small.  
We propose to ignore the uncertainty due to such small variance 
and continue treating the inputs in the application profiles as non-
random, as was the case in the reactive model. 

4.1.3 Resource Availability 
We leverage and extend existing research in resource prediction to 
represent uncertainty in resource availability.  First, we discuss 
the prediction of resources that are not directly under our user’s 
control, e.g. network bandwidth and CPU of compute servers.  
These resources have many consumers, typically in the hundreds 
or thousands, and the predictability of such resources is a direct 
result of utilization by a large pool of users. 

Modeling Network Bandwidth, CPU Prediction 
The prediction for resource availability should describe the 
probabilities of future resource paths.  So the variable being 



predicted is a random process over time.  Predictions of values 
further into the future have larger errors, making the graphical 
representation of a predictor look like a cone. 

We propose combining three different types of predictors: (1) 
recent history linear predictor, (2) seasonal predictor, and (3) 
bounding predictor, to arrive at an aggregate resource predictor. 

A recent history linear predictor is motivated by existing 
prediction research ([3][19]) and exploits serial correlation in the 
adjacent values of resource availability time series.  
Autoregressive (AR), moving-average (MA), and autoregressive 
and moving average (ARMA) Gaussian models of low order often 
predict resource time series very well if there is any predictability.   

Formally, an autoregressive linear recent history predictor of 
order p for resource R is an equation of the form: 

Rt+1|t = �1  r t  + �2 r t-1+ … + �p r t-p+1 + Z t+1, 

where r i are the previous p observations of the resource (the small 
letters indicate that these numbers are not random), �i are 
parameters of the model and are known at prediction time, and Z 

t+1 is a normal random variable with mean 0 and variance �, Z t+1 
~ N(0, �). 

The above prediction is only one step-ahead, but using recursive 
substitution we can describe a multiple step-ahead, path-
dependant prediction. 

While a recent history predictor exploits serial correlation in the 
recent history of a time series, a seasonal predictor captures 
periodic patterns.  In the time series classical decomposition, 
seasonal components are identified and removed first, before a 
time series is analyzed using recent history model.  At prediction 
time, seasonal components are added back to compute the final 
prediction. 

The prediction of a seasonal component is a time-series of non-
random values.  Because the predicted values of a seasonal 
component are not random, they don’t change with passage of 
time. 

And lastly, a bounding predictor specifies absolute minimum and 
maximum values for the series.  This predictor is motivated by 
various sources of information that can guarantee or almost 
guarantee that the available level of the resource is within some 
minimum and maximum thresholds. 

When one instance of a recent history and multiple instances of 
seasonal and bounding predictors are available, we propose the 
following algorithm to combine the predictors: 

• combine all the seasonal predictors together using basic 
addition, resulting in a single seasonal predictor, 

• combine all the bounding predictors together, using the 
maximum of all minimums and the minimum of all 
maximums, resulting in a single bounding predictor, 

• add the aggregate seasonal predictor to the recent history 
predictor, resulting in a shift of the mean, 

• use the aggregate bounding predictor to limit possible 
values of the resource. 

In [13] we demonstrated how a data structure based on a trinomial 
tree can be used to approximate an aggregate resource prediction.  
The tree has a branching factor of 3 for nodes up to a specified 
depth; nodes beyond that depth have a branching factor of 1.  

Thus, we capture the mean and the variance of the prediction for 
the near future using three probability masses.  For predictions 
farther in the future, we only capture the mean prediction.  This 
structure was effective to capture predictions for anticipatory 
configuration.  Similar trees with a branching factor equal to any 
odd number can be constructed.   

Modeling Battery Prediction 
Of the resources that are entirely under the user’s control, battery 
energy is uniquely different.  First, unlike bandwidth or CPU, this 
resource can be stored, depletes with usage, and can be charged.  
Second, currently available level of battery can be estimated very 
precisely.  Third, the uncertainty of its availability in the future is 
dependent on user’s own usage of the resource and the probability 
of being charged from a wall outlet.  And fourth, there is a 
correlation between battery energy spent and available CPU as 
many modern hardware platforms offer power saving settings that 
can dynamically alter CPU voltage and clock rate. 

We propose to model the aggregate drain rate of battery per unit 
as a decision variable.  In order to limit the search space of 
possible drain rates over time, we propose to consider only those 
drain levels that have an impact on another resource’s availability 
and to keep the drain rate unchanged if user’s task has not 
changed. 

And lastly, because remaining battery energy can be valuable for 
future tasks, we propose to account for that using an additional 
preference function elicited from the user.  Using only two 
threshold values and one utility value, we can allow the user to 
express the following preference: remaining battery below the 
lower threshold level L provides a significant negative utility, 
between the lower threshold L and the upper threshold U utility 
increases monotonically from zero to some value U, and above the 
upper threshold value L utility remains at U. 

4.2 Decision Variables 
In the anticipatory model of configuration, the decision variable is 
a contingent time series of configurations.  After making each 
configuration decision, the system commits to the first decision in 
the series, leaving the possibility of changing subsequent 
decisions.  The system then observes changes in the input 
variables, and repeats the above optimization. 

4.3 Optimization Problem 
In the model of anticipatory configuration, we optimize the value 
of expected accrued utility (AU) subject to the quality-resource 
profiles of available applications and predictions of the resources.  

5. CONFIGURATION ALGORITHM 
IDEAS 
We propose to stage the problem of anticipatory configuration 
into increasingly difficult instances.  We make assumptions about 
the predictions, and then gradually relax those. 

These are the assumptions that allow the staging of the problem:  

A1. The time frame of optimization is fixed from t to t+T, and the 
predictions of future user task requests are known exactly, 

A2.  Battery energy is excluded from consideration, 

A3.  The predictions of all the resources except battery are known 
exactly, i.e., they contain no uncertainty. 



We propose to stage the problem as follows.  Initially, we require 
all three assumptions to hold.  In the second stage, we relax only 
A3, allowing for uncertainty in resource predictions but excluding 
battery from consideration.  In the third stage, in addition to 
having dropped A3, we also drop A2, taking battery availability 
and drain into account.  In the fourth stage, we drop A1 as well, 
allowing task activation times and durations to be random as 
described in section 4.1.1. 

In [13], we demonstrated solutions to the first and second stage 
problems.  The solution to the first stage is a dynamic 
programming algorithm that inducts backwards in time.  The 
solution to the second stage problem is a modified version of that 
dynamic program that performs expectation maximization over 
the predicted resource paths. 

We propose to solve the stage three version of the problem by 
modeling the drain rate of battery per unit time as a decision 
variable and including a term in accrued utility to account for the 
remaining battery energy.  We have preliminary evidence that the 
algorithm from [13] can be modified to solve this problem. 

At this time, we don’t have a fully developed solution to the stage 
four version of the problem.  Our proposal is to further modify the 
existing dynamic programming algorithm.  However, with the 
activation times and durations of tasks allowed to be random, the 
definition of the accrued utility might need to be modified to 
allow for comparisons between utility from quality of service and 
utility from longer task duration. 

6. CONCLUSIONS 
In this paper we have described an improved optimization model 
for a dynamically adaptive system in the pervasive computing 
domain.  This new anticipatory model uses predictions of future 
values of inputs and improves over an earlier reactive model in 
many situations.  We have described representations for various 
sources of uncertainty in the predictions of the inputs.  Further, 
we have presented ideas for staging and solving the resulting 
stochastic optimization problem by modifying an existing 
dynamic programming algorithm. 

Ongoing work focuses on designing a runtime architecture that 
allows resource and user task request predictors.  We are working 
on runtime representations of predictive uncertainty and 
implementations of the dynamic optimization algorithms. 
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