
Proceedings of the International Workshop on Living with Uncertainty (IWLU), Nov. 5, 2007, Atlanta, GA, USA.

Augmenting Architectural Modeling
to Cope with Uncertainty

Orieta Celiku
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15313
+1 412 268 3501

orietac@cs.cmu.edu

David Garlan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15313
+1 412 268 5056

garlan@cs.cmu.edu

Bradley Schmerl
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15313
+1 412 268 5889

schmerl@cs.cmu.edu

ABSTRACT
Notations and techniques for architectural modeling and analysis
have matured considerably over the past two decades. However,
to date these approaches have primarily focused on architectural
properties and behavior that can be precisely defined. In this
paper we argue that it is possible to augment existing architecture
description languages (ADLs) to support reasoning and analysis
in the presence of uncertainty. Specifically, we outline two basic
extensions to formal architecture descriptions that take advantage
of probabilistic specifications to support architecture-based
analyses such as simulation, detection of behavioral drift, and
reasoning about the expected outcomes of uncertain behavior. An
important property of these specifications is that they allow
incremental refinement – as more is known about the behavior of
the system, specifications can be extended without invalidating
previous analyses.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Languages (e.g., description,
interconnection, definition)

General Terms
Design, Languages

Keywords
Software Architecture, probabilistic properties, simulation, anal-
ysis, behavior.

1. INTRODUCTION
Architectural description languages (ADLs) have come a long
way since their introduction in the 1990s. Numerous ADLs have
been developed [6], several are in industrial use, and several have
been incorporated into international standards [2][7]. They
support analyses as diverse as identifying potential deadlocks

between components, analyzing real-time behavior, detecting
violations in security flow policies, discovering performance
bottlenecks, and guaranteeing conformance of a system’s
architecture to an architectural style or product line framework.
However, most approaches to modeling systems at the
architectural level adopt formalisms that require precise
specification of the properties and behavior of the system under
construction. For instance, we might analyze specifications of the
timing properties of components and connectors to determine
system throughputs and latencies. While a few of these, such as
queuing-theoretic analyses, incorporate stochastic specifications,
the use of probabilistic or randomized behavior is limited to a
very specific kind of analysis, rather than being generally
applicable to architectural analysis as a whole.
As a result, it is difficult to use architectural specifications to
reason about system properties in the absence of precise
knowledge about properties of the system elements. This in turn
limits the usefulness of architectural description in representing
and reasoning about systems where there is considerable
uncertainty, but where we would like to understand the expected
behavior even if we cannot know the exact outcome. For
example, in a service-oriented architecture the actual service
provided for a client request may depend on a number of dynamic
factors that cannot be known at design time. Nonetheless, if we
have some information about the possible services and their
properties, as well as the likelihoods of their being selected, we
should be able to reason about some aspects of the system. As
another example, at an early design stage we may have only a
vague idea of the behavior of some components. Instead of
postponing analysis until we are sure about that behavior, we
might want to do initial analysis that incorporates what we do
know, and refine that later as more information becomes
available.
In order to handle examples like those just mentioned two things
are needed. First, we need ways to represent uncertainty at the
architectural level. Second, we need ways to take advantage of
that information in support of useful, general-purpose analyses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In this paper we summarize our initial results in doing this.
Focusing specifically on the problem of characterizing behavior
with probabilistic outcomes, we describe two techniques. The first
is to augment property specification in ADLs with the ability to
incorporate uncertainty in those properties. This allows us to talk
formally about a range of possible behaviors for a given property.
The second is to augment behavior descriptions to explicitly

International Workshop on Living with Uncertainty, Nov. 5, 2007,
Atlanta, GA, USA.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

account for probabilistic behavior. This will allow us to attach
probabilities to system traces and state changes so we can reason
about expected behavior as a random variable (in the probabilistic
sense). We briefly illustrate the utility of these extensions by
showing how they can form the basis for architecture-based
simulation, run-time detection of behavioral drift, and formal
reasoning about the expected outcomes of uncertain behavior.

2. ARCHITECTURAL UNCERTAINTY
As indicated above, there are two aspects to our approach to
dealing with uncertainty: allowing uncertainty to be assigned to
properties and using those values in analysis and monitoring; and
augmenting behavior descriptions to explicitly account for
probabilistic behavior.

2.1 Architectural properties as distributions
For the purpose of many architectural simulations and analyses
we can represent uncertainty as probability distributions. For
example, the arrival rate of requests into a server might be
represented as a normal distribution with some mean and
variance. In past work with analysis [11], it was assumed that the
values specified represented the mean in the normal distribution,
and the variance was assumed to be some unspecified constant
value. Clearly, a more accurate specification of the distribution
would make for more-meaningful analyses.
In modern ADLs it is often possible to define new property types.
In the Acme ADL [3], for example, we are able to define property
types that can capture these distributions, and then use them in the
same way as built-in property types. To take advantage of this, we
define a family (called DistributionFamily) that specifies the new
distribution property types; architectural designs that make use of
this family can use these new property types by incorporating that
family into their definitions. For example, Figure 1 provides the
definition of a property type for a normal distribution property
and an example of its use to specify the property arrival-rate. In our
definition of DistributionFamily, we have included three common
types of distributions: Normal, Exponential, and Weibull. The
family can of course be extended with other types of distributions.

Property type NormalDistribution = Record [
 mean : float;
 stddev : float;
]
…
property arrival-rate : NormalDistribution =
 [mean=100; stddev=10;];

Figure 1. Specifying Normal Distribution Type in Acme.
To make the entry of distributions easy to use, we provide an
extension point in our architecture development environment [9],
that allows clients to add custom user interfaces for entering
property values of certain types. Figure 2 shows how this looks.
The user, once the NormalDistribution property type has been
selected, can input the mean and standard deviation. Once the
value is entered in this fashion, the custom UI will generate the
description shown in Figure 1 for the arrival-rate property.
Now that we can enter probability distributions for properties in
an architectural design, there are several things that we can do
with them, including:
1. Compare observed values with predicted distributions; and

Figure 2. Interface for defining a normal distribution.
2. Use the values in probabilistic simulations and analyses to

give more accurate results.
In previous work on architecture-based dynamic adaptation
[1][10], we have shown how to connect observations of running
systems to property values in an architectural description to
determine whether changes should be made to executing systems.
We can use this technology and the probability distribution
extensions to compare the distribution of the observed results with
the expected results, and can use standard statistical techniques to
calculate the deviation between the expected and observed values
(see Figure 3). Such calculations would be useful in deciding
whether to repair the system under observation or report errors in
the architecture.

Figure 3. Comparing expected and observed distributions.

Without probabilistic properties, our repairs tend to be reactive:
once a certain value is observed, a repair will be initiated.1 With
probabilistic properties, we have a way of smoothing out these

1 In actuality, the values were smoothed by hard-coding

probability distributions into gauges – elements that report
values to the architecture.

 - 2 -

values by instead reacting when the error in the distribution is
above a certain threshold.

2.2 Using distributions in analyses
We can take advantage of probabilistic properties in various
simulations and analyses. For example, we have developed a
performance simulation tool (illustrated in Error! Reference
source not found.) that allows one to define parameters such as
the processing times for components, the transmission rates for
connectors, and error rates as probability distributions and then
use these distributions as the basis for a Monte Carlo-style
simulation. In such a simulation the system is symbolically
executed repeatedly using inputs and property choices chosen in
accordance with the distributions. The final result is a report
indicating how many requests were generated by the simulation,
and how many of those requests were processed or failed. It also
provides feedback on which parts of the architecture are
overloaded.

In Error! Reference source not found., the response range on
properties can be of various categories (e.g., Very Simple,
Simple, Average, Complex), each with a minimum and maximum
response time. Currently, a normal distribution is calculated based
on these ranges, but these could be easily specified directly as
probability distributions. The Monte Carlo simulation would then
use these distributions instead of the hardwired normal
distribution.
We use a similar approach in security analysis simulations.
Architects define paths through the architecture that particular
threats (such as viruses, DoS attacks) can take. In addition, the

architect indicates which components are
assets and countermeasures. Value is assigned
to assets and effectiveness against threats are
assigned to countermeasures as probabilistic
properties. Furthermore, probabilities are
assigned to paths in the architecture. Monte
Carlo simulation is then performed to
determine the most probable damage to each of
the assets in the transactions.

2.3 Probabilistic uncertainty in
architectural behavior
We now describe how architectural
descriptions can be augmented to explicitly
incorporate probabilistic uncertainty, the kind
of properties one may reason about in this
context, and how incremental refinement of
specifications can be used to make
specifications more precise as we learn more
about them.
We adopt the formal framework of
probabilistic action systems developed by
McIver [4]. The essential idea behind this
framework is that, in addition to standard
choices in behavior, we are also given access
to probabilistic choices, which represent the
frequency with which branches of a choice are
executed. Specifications in this framework are

written as collections of guarded actions that execute in parallel.
The semantics of the language extends standard assertion-based

reasoning with probabilistic analysis over a
suitable probability space on computation
paths [5]. Specifications can thus be seen as
mapping initial states to (sets of) probability

distributions over final states.

Figure 4. Specifying Performance Attributes.

The main benefit of McIver’s formalism is that it supports the
notion of incremental refinement, which we illustrate below.
Moreover, reasoning in the framework can be automated, using
both theorem provers and model checkers.
As an example consider a simple client-server system, where a
broker is used to connect a client with one of two possible servers.
Client ==

var c: {wait,sent,received}
initially c := wait
request: (c = wait) → c := sent
receive: (c = sent) → c := received

The client can execute two actions: request a service (when it is
waiting), and receive a service once a request is made.
Broker ==

var r: {listen,serve,serving,served}
initially r := listen
request: (r = listen) → r := serve
serviceArequest: (r = serve) → r := serving
serviceBrequest: (r = serve) → r := serving
serviceAreceive: (r = serving) → r := served
serviceBreceive: (r = serving) → r := served
receive: (r = served) → r := listen

 - 3 -

The broker listens on variable r, and chooses to serve the client by
executing one of the actions serviceArequest, serviceBrequest.
Since both these actions may be enabled simultaneously (when r
= serving and both servers are waiting) either of them may
execute, and we assume that we have no information about how
this kind of nondeterminism is resolved.
ServerA ==

var sa: {wait,serving,served}
initially sa := wait
serviceArequest: (sa = wait) → sa := serving
serviceA: (sa = serving) → sa := served pA ⊕ skip
serviceAreceive: (sa = served) → sa := wait

The statement sa := served pA ⊕ skip is an example of an explicit
probabilistic choice and is interpreted as follows: sa := served is
executed with probability pA and the statement skip (which leaves
all the variables unchanged) is executed with probability 1-pA. In
this situation the probabilistic choice expresses that ServerA
chooses to delay serving the client with probability 1-pA. ServerB
is specified analogously, and chooses to delay serving the client
with probability 1-pB.
The specified components are called action systems [4]. The
entire client-server system is expressed as the parallel
composition of the specified action systems:
 Client-Server1 == Client || Broker || ServerA || ServerB
We assume that the components of this parallel composition
synchronize on the entire set of action labels; for example, for a
client to execute request, the broker must also simultaneously
execute its request action. The declared variables are assumed to
be global. Parallel composition of action systems is made under
standard noninterference assumptions (e.g., two synchronizing
actions do not update the same variable simultaneously).
What properties can we reason about given our specification? Can
we guarantee with absolute certainty that the client will be
eventually served? When probabilities are in the picture we
cannot guarantee properties with absolute certainty. However, we
can reason about the probability with which properties hold (or
more generally the expected value of some random variable of
interest). For example, the semantics of the action systems above
[4] allows us to prove that when pA and pB are positive constants
(or in case they are state functions they are bounded away from 0)
the client will eventually be served with probability 1; in other
words the client will not be served with vanishing probability.
(Note that if we were to use standard choice, instead of the
probabilistic one, to specify the service action (written s := served
[] skip) we would have no information at all about how the choice
would be resolved.) Other properties that we can check our
specification against include various probabilistic versions of
temporal properties. The guarantees on such properties are usually
expressed as “the least probability with which the property
holds.”
Now let us assume that the servers are augmented with clocks (ta,
and tb respectively) that count the number of times that the server
“stutters” on action service before sending back a response.

ServerA1 ==
var sa: {wait,serving,served},
 ta: Nat
initially sa := wait; ta := 0
serviceArequest: (sa = wait) → sa := serving
serviceA: (sa = serving) → sa := served pA ⊕ ta := ta + 1
serviceAreceive: (sa = served) → sa := wait

Now the entire system can be expressed as
 Client-Server2 == Client || Broker || ServerA1 || ServerB1
What we would like to do is to be able to answer questions such
as: What is the probability that the client will receive an answer
within the first tick? The semantics of our system would
guarantee an answer within the first tick with probability at least
pA min pB. To understand why this is, note that we interpret
standard nondeterminsm as follows: when two or more actions are
enabled any of them can be chosen for execution. In other words,
we can only guarantee that the system will do at least as well as
the worst server.
Let us now briefly illustrate how the broker specification may be
refined. Even without knowing how pA and pB are related we
notice that we can do better than in the original specification by
replacing the nondeterministic choice over which service to
request by a (fair) coin flip. This would indeed improve the least
probability of getting an answer within the first tick to (1/2)pA +
(1/2)pB, since as expected, probabilistic choices are interpreted as
“averaging” the expected results according to the specified
probabilities. (In fact, a nondeterministic choice S1 [] S2 is always
refined by a probabilistic choice S1 p ⊕ S2 since a valid
implementation of arbitrary choice is one in which a (biased) coin
is used to decide which branch to execute.) Crucially, such
notions of refinement allow us to reuse analyses: if property P
holds with probability p in a specification S, then P will hold with
probability at least p for any refinement S’ of S.
However, we may also opt to postpone the decision of how to
refine server selection until we have more information about pA
and pB. In fact, it is clear that weighing the choice towards the
service that has a higher probability of returning a quick answer is
better than flipping a fair coin. This is an example where we can
make specifications more precise as we learn more about
descriptions.
The framework that we have described enables reasoning about
the mentioned refinements. Moreover, refinements of the state
space are also possible (enabling more abstract data types to be
refined into more concrete ones). However, in its current form the
formalism is not tailored to expressing certain architectural
notions and concerns. For example, one cannot differentiate
between specifications of ports and roles. A related concern is
how to express the conditions for port-role compatibility. More
generally, although the framework is suitable for expressing
hierarchies, further investigation is needed to determine how to
best expose behavior at the interface level.

3. DISCUSSION
As we have argued above, considerable leverage can be obtained
by incorporating uncertainty into architectural descriptions. The
easiest way to do this is augment architectural representations so
that one can specify properties in terms of probability
distributions, thereby permitting one to describe a range of

 - 4 -

[3] D. Garlan, R.T. Monroe and D. Wile. Acme: Architectural
Description of Component-Based Systems. In Gary T.
Leavens and Murali Sitaraman editors, Foundations of
Component-Based Systems, Pages 47-68, Cambridge
University Press, 2000.

behaviors, while still permitting analysis of deviation from the
expected patterns, and supporting Monte Carlo style simulation.
More complex, but also relatively straightforward, is to adopt
behavioral descriptions that permit one to include uncertainty – in
our case we adopt the framework of [4], which supports
probabilistic choice, and supports monotonic reasoning in the
presence of refinement.

[4] A. McIver. Quantitative Refinement and Model Checking
for the Analysis of Probabilistic Systems. In Formal
Methods 2006, Springer, LNCS 4085, pages 131-146,
August 2006.

We view this work as a starting point, however. Additional
aspects of uncertainty that we would like to characterize formally
include dynamic evolution of the architectural structure under
uncertainty, general specification of resource consumption in the
presence of uncertainty, and a closer linkage between simple
stochastic property specifications and probabilistic behavioral
descriptions. We are also exploring the possibility of including
properties that represent dynamically-updated predictions of
future states of the system, such as anticipated performance [8].
Such predictions necessarily require one to characterize and
reason about uncertainty.

[5] A. McIver and C. Morgan. Abstraction, Refinement and
Proof for Probabilistic Systems. Springer, 2005.

[6] N. Medvidovic and R.N. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Trans. Software Eng., vol. 26,
no. 1, pp. 70-93, Jan. 2000.

[7] Object Management Group. UML 2.0 Superstructure
Specification: Final Adopted Specification.
http://www.omg.org/docs/ptc/03-08-02.pdf, August, 2003.

4. ACKNOWLEDGMENTS [8] V. Poladian, D. Garlan, M. Shaw, B. Schmerl, J.P. Sousa and
M. Satyanarayanan. Leveraging Resource Prediction for
Anticipatory Dynamic Configuration. In Proceedings of the
First IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, SASO-2007, Pages 214-223, 8-11
July 2007.

This research was supported by DARPA under grants N66001-99-
2-8918 and F30602-00-2-0616, by the US Army Research Office
(ARO) under grant numbers DAAD19-02-1-0389 ("Perpetually
Available and Secure Information Systems") to Carnegie Mellon
University's CyLab and DAAD19-01-1-0485, and the NASA
High Dependability Computing Program under cooperative
agreement NCC-2-1298. The views and conclusions described
here are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
DARPA, the ARO, NASA, the US government, or any other
entity.

[9] B. Schmerl and D. Garlan. AcmeStudio: Supporting Style-
Centered Architecture Development (Research
Demonstration). In Proceedings of the 26th International
Conference on Software Engineering, Edinburgh, Scotland,
23-28 May 2004.

[10] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman and H. Yan.
Discovering Architectures from Running Systems. In IEEE
Transactions on Software Engineering, Vol. 32(7), July
2006.

5. REFERENCES
[1] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl and P.

Steenkiste. Rainbow: Architecture-Based Self Adaptation
with Reusable Infrastructure. In IEEE Computer, Vol.
37(10), October 2004.

[11] B. Spitznagel and D. Garlan. Architecture-Based
Performance Analysis. In Proceedings of the 1998
Conference on Software Engineering and Knowledge
Engineering (SEKE'98), June 1998. [2] P. Feiler, D. Gluch, J. Hudak. The Architecture Analysis &

Design Language (AADL): An Introduction. Software
Engineering Institute, Carnegie Mellon University Technical
Report (CMU/SEI-2006-TN-011), Pittsburgh, PA, 2006.

 - 5 -

	1. INTRODUCTION
	2. ARCHITECTURAL UNCERTAINTY
	2.1 Architectural properties as distributions
	2.2 Using distributions in analyses
	2.3 Probabilistic uncertainty in architectural behavior

	3. DISCUSSION
	4. ACKNOWLEDGMENTS
	5. REFERENCES

