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ABSTRACT 
Notations and techniques for architectural modeling and analysis 
have matured considerably over the past two decades. However, 
to date these approaches have primarily focused on architectural 
properties and behavior that can be precisely defined. In this 
paper we argue that it is possible to augment existing architecture 
description languages (ADLs) to support reasoning and analysis 
in the presence of uncertainty. Specifically, we outline two basic 
extensions to formal architecture descriptions that take advantage 
of probabilistic specifications to support architecture-based 
analyses such as simulation, detection of behavioral drift, and 
reasoning about the expected outcomes of uncertain behavior. An 
important property of these specifications is that they allow 
incremental refinement – as more is known about the behavior of 
the system, specifications can be extended without invalidating 
previous analyses.  

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Languages (e.g., description, 
interconnection, definition)

General Terms 
Design, Languages 

Keywords 
Software Architecture, probabilistic properties, simulation, anal-
ysis, behavior. 

1. INTRODUCTION 
Architectural description languages (ADLs) have come a long 
way since their introduction in the 1990s. Numerous ADLs have 
been developed [6], several are in industrial use, and several have 
been incorporated into international standards [2][7]. They 
support analyses as diverse as identifying potential deadlocks 

between components, analyzing real-time behavior, detecting 
violations in security flow policies, discovering performance 
bottlenecks, and guaranteeing conformance of a system’s 
architecture to an architectural style or product line framework. 
However, most approaches to modeling systems at the 
architectural level adopt formalisms that require precise 
specification of the properties and behavior of the system under 
construction. For instance, we might analyze specifications of the 
timing properties of components and connectors to determine 
system throughputs and latencies. While a few of these, such as 
queuing-theoretic analyses, incorporate stochastic specifications, 
the use of probabilistic or randomized behavior is limited to a 
very specific kind of analysis, rather than being generally 
applicable to architectural analysis as a whole. 
As a result, it is difficult to use architectural specifications to 
reason about system properties in the absence of precise 
knowledge about properties of the system elements. This in turn 
limits the usefulness of architectural description in representing 
and reasoning about systems where there is considerable 
uncertainty, but where we would like to understand the expected 
behavior even if we cannot know the exact outcome. For 
example, in a service-oriented architecture the actual service 
provided for a client request may depend on a number of dynamic 
factors that cannot be known at design time. Nonetheless, if we 
have some information about the possible services and their 
properties, as well as the likelihoods of their being selected, we 
should be able to reason about some aspects of the system. As 
another example, at an early design stage we may have only a 
vague idea of the behavior of some components. Instead of 
postponing analysis until we are sure about that behavior, we 
might want to do initial analysis that incorporates what we do 
know, and refine that later as more information becomes 
available. 
In order to handle examples like those just mentioned two things 
are needed. First, we need ways to represent uncertainty at the 
architectural level. Second, we need ways to take advantage of 
that information in support of useful, general-purpose analyses.   
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In this paper we summarize our initial results in doing this. 
Focusing specifically on the problem of characterizing behavior 
with probabilistic outcomes, we describe two techniques. The first 
is to augment property specification in ADLs with the ability to 
incorporate uncertainty in those properties. This allows us to talk 
formally about a range of possible behaviors for a given property. 
The second is to augment behavior descriptions to explicitly 
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account for probabilistic behavior. This will allow us to attach 
probabilities to system traces and state changes so we can reason 
about expected behavior as a random variable (in the probabilistic 
sense). We briefly illustrate the utility of these extensions by 
showing how they can form the basis for architecture-based 
simulation, run-time detection of behavioral drift, and formal 
reasoning about the expected outcomes of uncertain behavior. 

2. ARCHITECTURAL UNCERTAINTY 
As indicated above, there are two aspects to our approach to 
dealing with uncertainty: allowing uncertainty to be assigned to 
properties and using those values in analysis and monitoring; and 
augmenting behavior descriptions to explicitly account for 
probabilistic behavior. 

2.1 Architectural properties as distributions 
For the purpose of many architectural simulations and analyses 
we can represent uncertainty as probability distributions. For 
example, the arrival rate of requests into a server might be 
represented as a normal distribution with some mean and 
variance. In past work with analysis [11], it was assumed that the 
values specified represented the mean in the normal distribution, 
and the variance was assumed to be some unspecified constant 
value. Clearly, a more accurate specification of the distribution 
would make for more-meaningful analyses. 
In modern ADLs it is often possible to define new property types. 
In the Acme ADL [3], for example, we are able to define property 
types that can capture these distributions, and then use them in the 
same way as built-in property types. To take advantage of this, we 
define a family (called DistributionFamily) that specifies the new 
distribution property types; architectural designs that make use of 
this family can use these new property types by incorporating that 
family into their definitions. For example, Figure 1 provides the 
definition of a property type for a normal distribution property 
and an example of its use to specify the property arrival-rate. In our 
definition of DistributionFamily, we have included three common 
types of distributions: Normal, Exponential, and Weibull. The 
family can of course be extended with other types of distributions. 

Property type NormalDistribution = Record [ 
 mean : float; 
 stddev : float; 
] 
… 
property arrival-rate : NormalDistribution =  
 [mean=100; stddev=10;]; 

Figure 1. Specifying Normal Distribution Type in Acme. 
To make the entry of distributions easy to use, we provide an 
extension point in our architecture development environment [9], 
that allows clients to add custom user interfaces for entering 
property values of certain types. Figure 2 shows how this looks. 
The user, once the NormalDistribution property type has been 
selected, can input the mean and standard deviation. Once the 
value is entered in this fashion, the custom UI will generate the 
description shown in Figure 1 for the arrival-rate property. 
Now that we can enter probability distributions for properties in 
an architectural design, there are several things that we can do 
with them, including: 
1. Compare observed values with predicted distributions; and 

 
Figure 2. Interface for defining a normal distribution. 
2. Use the values in probabilistic simulations and analyses to 

give more accurate results. 
In previous work on architecture-based dynamic adaptation 
[1][10], we have shown how to connect observations of running 
systems to property values in an architectural description to 
determine whether changes should be made to executing systems. 
We can use this technology and the probability distribution 
extensions to compare the distribution of the observed results with 
the expected results, and can use standard statistical techniques to 
calculate the deviation between the expected and observed values 
(see Figure 3). Such calculations would be useful in deciding 
whether to repair the system under observation or report errors in 
the architecture. 
 

 
Figure 3. Comparing expected and observed distributions. 
 
Without probabilistic properties, our repairs tend to be reactive: 
once a certain value is observed, a repair will be initiated.1 With 
probabilistic properties, we have a way of smoothing out these 

                                                                 
1 In actuality, the values were smoothed by hard-coding 

probability distributions into gauges – elements that report 
values to the architecture. 
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values by instead reacting when the error in the distribution is 
above a certain threshold.  

2.2 Using distributions in analyses 
We can take advantage of probabilistic properties in various 
simulations and analyses. For example, we have developed a 
performance simulation tool (illustrated in Error! Reference 
source not found.) that allows one to define parameters such as 
the processing times for components, the transmission rates for 
connectors, and error rates as probability distributions and then 
use these distributions as the basis for a Monte Carlo-style 
simulation. In such a simulation the system is symbolically 
executed repeatedly using inputs and property choices chosen in 
accordance with the distributions. The final result is a report 
indicating how many requests were generated by the simulation, 
and how many of those requests were processed or failed. It also 
provides feedback on which parts of the architecture are 
overloaded.  

In Error! Reference source not found., the response range on 
properties can be of various categories (e.g., Very Simple, 
Simple, Average, Complex), each with a minimum and maximum 
response time. Currently, a normal distribution is calculated based 
on these ranges, but these could be easily specified directly as 
probability distributions. The Monte Carlo simulation would then 
use these distributions instead of the hardwired normal 
distribution. 
We use a similar approach in security analysis simulations. 
Architects define paths through the architecture that particular 
threats (such as viruses, DoS attacks) can take. In addition, the 

architect indicates which components are 
assets and countermeasures. Value is assigned 
to assets and effectiveness against threats are 
assigned to countermeasures as probabilistic 
properties. Furthermore, probabilities are 
assigned to paths in the architecture. Monte 
Carlo simulation is then performed to 
determine the most probable damage to each of 
the assets in the transactions. 

2.3 Probabilistic uncertainty in 
architectural behavior 
We now describe how architectural 
descriptions can be augmented to explicitly 
incorporate probabilistic uncertainty, the kind 
of properties one may reason about in this 
context, and how incremental refinement of 
specifications can be used to make 
specifications more precise as we learn more 
about them. 
We adopt the formal framework of 
probabilistic action systems developed by 
McIver [4]. The essential idea behind this 
framework is that, in addition to standard 
choices in behavior, we are also given access 
to probabilistic choices, which represent the 
frequency with which branches of a choice are 
executed. Specifications in this framework are 

written as collections of guarded actions that execute in parallel. 
The semantics of the language extends standard assertion-based 

reasoning with probabilistic analysis over a 
suitable probability space on computation 
paths [5]. Specifications can thus be seen as 
mapping initial states to (sets of) probability 

distributions over final states. 

Figure 4. Specifying Performance Attributes. 

The main benefit of McIver’s formalism is that it supports the 
notion of incremental refinement, which we illustrate below. 
Moreover, reasoning in the framework can be automated, using 
both theorem provers and model checkers. 
As an example consider a simple client-server system, where a 
broker is used to connect a client with one of two possible servers.   
Client == 

var c: {wait,sent,received} 
initially c := wait 
request: (c = wait) →  c := sent 
receive: (c = sent) →  c := received 

The client can execute two actions: request a service (when it is 
waiting), and receive a service once a request is made. 
Broker ==    

var r: {listen,serve,serving,served} 
initially r := listen 
request: (r = listen) →  r := serve 
serviceArequest: (r = serve) → r := serving 
serviceBrequest: (r = serve) →  r := serving 
serviceAreceive: (r = serving) →  r := served 
serviceBreceive: (r = serving) →  r := served 
receive: (r = served) →  r := listen 
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The broker listens on variable r, and chooses to serve the client by 
executing one of the actions serviceArequest, serviceBrequest. 
Since both these actions may be enabled simultaneously (when r 
= serving and both servers are waiting) either of them may 
execute, and we assume that we have no information about how 
this kind of nondeterminism is resolved. 
ServerA == 

var sa: {wait,serving,served} 
initially sa := wait 
serviceArequest: (sa = wait) →  sa := serving 
serviceA: (sa = serving) →  sa := served pA ⊕ skip 
serviceAreceive: (sa = served) →  sa := wait 

The statement sa := served pA ⊕ skip is an example of an explicit 
probabilistic choice and is interpreted as follows: sa := served is 
executed with probability pA and the statement skip (which leaves 
all the variables unchanged) is executed with probability 1-pA. In 
this situation the probabilistic choice expresses that ServerA 
chooses to delay serving the client with probability 1-pA. ServerB 
is specified analogously, and chooses to delay serving the client 
with probability 1-pB.  
The specified components are called action systems [4]. The 
entire client-server system is expressed as the parallel 
composition of the specified action systems: 
      Client-Server1 == Client || Broker || ServerA || ServerB  
We assume that the components of this parallel composition 
synchronize on the entire set of action labels; for example, for a 
client to execute request, the broker must also simultaneously 
execute its request action. The declared variables are assumed to 
be global. Parallel composition of action systems is made under 
standard noninterference assumptions (e.g., two synchronizing 
actions do not update the same variable simultaneously).  
What properties can we reason about given our specification? Can 
we guarantee with absolute certainty that the client will be 
eventually served? When probabilities are in the picture we 
cannot guarantee properties with absolute certainty. However, we 
can reason about the probability with which properties hold (or 
more generally the expected value of some random variable of 
interest). For example, the semantics of the action systems above 
[4] allows us to prove that when pA and pB are positive constants 
(or in case they are state functions they are bounded away from 0) 
the client will eventually be served with probability 1; in other 
words the client will not be served with vanishing probability. 
(Note that if we were to use standard choice, instead of the 
probabilistic one, to specify the service action (written s := served 
[] skip) we would have no information at all about how the choice 
would be resolved.) Other properties that we can check our 
specification against include various probabilistic versions of 
temporal properties. The guarantees on such properties are usually 
expressed as “the least probability with which the property 
holds.” 
Now let us assume that the servers are augmented with clocks (ta, 
and tb respectively) that count the number of times that the server 
“stutters” on action service before sending back a response. 

ServerA1 == 
var sa: {wait,serving,served},  
      ta: Nat 
initially sa := wait; ta := 0 
serviceArequest: (sa = wait) →  sa := serving 
serviceA: (sa = serving) →  sa := served pA ⊕ ta := ta + 1  
serviceAreceive: (sa = served) →  sa := wait 

Now the entire system can be expressed as  
      Client-Server2 == Client || Broker || ServerA1 || ServerB1 
What we would like to do is to be able to answer questions such 
as: What is the probability that the client will receive an answer 
within the first tick? The semantics of our system would 
guarantee an answer within the first tick with probability at least 
pA min pB. To understand why this is, note that we interpret 
standard nondeterminsm as follows: when two or more actions are 
enabled any of them can be chosen for execution. In other words, 
we can only guarantee that the system will do at least as well as 
the worst server. 
Let us now briefly illustrate how the broker specification may be 
refined. Even without knowing how pA and pB are related we 
notice that we can do better than in the original specification by 
replacing the nondeterministic choice over which service to 
request by a (fair) coin flip. This would indeed improve the least 
probability of getting an answer within the first tick to (1/2)pA + 
(1/2)pB, since as expected, probabilistic choices are interpreted as 
“averaging” the expected results according to the specified 
probabilities. (In fact, a nondeterministic choice S1 [] S2 is always 
refined by a probabilistic choice S1 p ⊕ S2 since a valid 
implementation of arbitrary choice is one in which a (biased) coin 
is used to decide which branch to execute.) Crucially, such 
notions of refinement allow us to reuse analyses: if property P 
holds with probability p in a specification S, then P will hold with 
probability at least p for any refinement S’ of S.  
However, we may also opt to postpone the decision of how to 
refine server selection until we have more information about pA 
and pB. In fact, it is clear that weighing the choice towards the 
service that has a higher probability of returning a quick answer is 
better than flipping a fair coin.  This is an example where we can 
make specifications more precise as we learn more about 
descriptions. 
The framework that we have described enables reasoning about 
the mentioned refinements. Moreover, refinements of the state 
space are also possible (enabling more abstract data types to be 
refined into more concrete ones). However, in its current form the 
formalism is not tailored to expressing certain architectural 
notions and concerns. For example, one cannot differentiate 
between specifications of ports and roles. A related concern is 
how to express the conditions for port-role compatibility. More 
generally, although the framework is suitable for expressing 
hierarchies, further investigation is needed to determine how to 
best expose behavior at the interface level.  

3. DISCUSSION 
As we have argued above, considerable leverage can be obtained 
by incorporating uncertainty into architectural descriptions. The 
easiest way to do this is augment architectural representations so 
that one can specify properties in terms of probability 
distributions, thereby permitting one to describe a range of 
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