
uDesign: End-User Design Applied to 

Monitoring and Control Applications for Smart Spaces1 
 

João Pedro Sousa,
†
 Bradley Schmerl,

‡
 Vahe Poladian,

‡
 Alex Brodsky

†
 

†
George Mason University 

Fairfax VA 22030 USA 

{jpsousa, brodsky}@gmu.edu 

‡
Carnegie Mellon University 

Pittsburgh PA 15213 USA 

{schmerl, poladian}@cs.cmu.edu 

 

 

Abstract 

This paper introduces an architectural style for 

enabling end-users to quickly design and deploy soft-

ware systems in domains characterized by highly per-

sonalized and dynamic requirements. 

The style offers an intuitive metaphor based on box-

es, pipes, and wires, but retains enough preciseness 

that systems can be automatically assembled and dy-

namically reconfigured based on uDesign descriptions. 

uDesign was primarily motivated and validated within 

monitoring and control applications for smart spaces, 

but we envision possible extensions to other domains. 

Our contribution differs from early attempts at end-

user programming by dealing with higher level soft-

ware architectural abstractions rather than program-

ming, and by addressing run-time descriptions rather 

than code structures. 

The paper presents validation of uDesign along the 

following aspects: (a) expressiveness, by means of two 

case studies, one in health care, and one in home secu-

rity, (b) soundness, by providing uDesign’s formal 

semantics, and (c) implementability, by describing a 

mapping of uDesign to an existing software infrastruc-

ture: the Aura infrastructure. 

1. Introduction
1
 

Easy assembly of software systems is increasingly 

important in domains such as assisted living and long 

term healthcare, smart homes, surveillance of public 

and private spaces, and emergency response. Such do-

mains are characterized by (i) highly personalized re-

quirements, for which generic one-size-fits-all software 

solutions are less than ideal; and by (ii) dynamic 

changes, both with respect to which devices are conve-

nient to use and the requirements for the system. 

For example, a doctor should be able to easily write 

                                                           
1 This work partially funded by NSF grants CCR-

0205266, CCF-0438929, CNS-0613823, by DARPA grant 

N66001-99-2-8918, and by the Korean ETRI Institute.  

a prescription for the healthcare features and behavior 

of an outpatient‟s home, much like medicine is pre-

scribed today. The patient could tailor the prescribed 

behavior to suit personal and privacy preferences; for 

instance, by including family members as first line 

responders. Also, the components and behavior of the 

system might be adjusted over time, by healthcare pro-

fessionals or the patient, to accommodate new devices 

and/or behaviors in response to the patient‟s progress. 

Existing approaches focus on easy deployment of 

solutions by means of “friendly” programming envi-

ronments (e.g., [1][3]) and by exploiting new technol-

ogies such as service-oriented computing and composi-

tion of web services. 

Nevertheless, designing and assembling such sys-

tems remains a task that requires a fair amount of effort 

and programming skill. Deploying an application that 

used to take days or weeks for constructing the code 

from scratch may now be reduced to a few hours for a 

trained programmer. However, the skill and effort re-

quired for that is still beyond the capabilities and wil-

lingness of end-users. 

This paper introduces an approach that allows end-

users to assemble and evolve highly personalized soft-

ware systems for monitoring and control in smart spac-

es. Ideally, such an approach is: 

a) simple enough for end-users to manipulate with 

little initial training; 

b) effective as far as the ratio between the recog-

nized benefit and the effort spent; and, 

c) precise enough to enable the automatic assembly 

of a running system based on a description pro-

vided by the end-user. 

We hypothesize that an approach based on code 

structures and programming primitives is too fine 

grained and removed from the experience of end-users 

for achieving such goals. Instead, our work investigates 

whether combining the component and connector view 

of a system‟s architecture with activity-oriented com-

puting (more below) results in a suitable foundation to 

address this problem. 



 

 

The conceptual model that we propose uses a meta-

phor of boxes, pipes, and wires. This is similar to con-

sumer electronics, where end-users may buy a number 

of devices and cables and try different assembly confi-

gurations having a basic knowledge of what travels on 

each cable, but without having to understand the cor-

responding electrical specifications. 

The contribution of this paper is uDesign, an archi-

tectural style for describing systems of the class exem-

plified above, for which a formal semantics is defined, 

as well as a mapping to an existing software infrastruc-

ture. uDesign is an architectural style in the sense that 

it prescribes the kinds of components and connectors 

that can be used to assemble a system. It can be 

thought of as an extension of the pipe-and-filter style 

[10] where boxes are more general than filters of data, 

and a new kind of connector is made first class: wires 

for controlling the starting and stopping of activities in 

boxes. 

In the remainder of this paper, Section 2 presents a 

brief rationale for the organization of uDesign and 

compares with related work. Prior work by the authors 

focused on the automatic assembly of systems given a 

specification of the available resources and of its re-

quired features [12]. Such required features are derived 

from representing user activities as first class con-

structs in software systems, giving rise to activity 

oriented computing [13]. High-level mechanisms for 

specifying the interconnection and coordination of the 

parts of a system have been lacking, though, and that is 

precisely the focus of this paper.  

Section 3 leads the way for the presentation of the 

case studies by offering a description of uDesign‟s 

concepts at a level that would be appropriate for end-

users. 

Sections 4 and 5 present two examples, one in long-

term healthcare, and another in home security and au-

tomation.  Being able to understand case studies such 

as these after the informal introduction in Section 3 

constitutes supporting evidence concerning the sim-

plicity and effectiveness of uDesign: goals (a) and (b) 

above.  However, fully validating these goals requires 

conducting user studies that present realistic problems 

to real users.  For that, tools for editing uDesign must 

be brought to a level of maturity where they can be 

used by non-computer scientists. This is the object of 

ongoing and future work. 

Concerning the preciseness of uDesign, goal (c), 

above, Section 6 enumerates its syntactic primitives 

and specifies their semantics using Zed [14], while 

Section 7 maps those primitives to an existing software 

infrastructure.  

Section 8 concludes the paper and summarizes the 

main contributions and future work. 

2. Approach 

uDesign differs from other languages targeted at 

end-users in two fundamental aspects: it represents 

run-time structures rather than code structures, and it 

differs in the level of abstraction of such structures. 

Additionally, as frequently done in design disciplines, 

uDesign supports separable views of structure and be-

havior (e.g. [2]). 

First, the boxes in uDesign correspond to running 

entities that are available to be incorporated in a sys-

tem, rather than to classes or instance factories. Choos-

ing the latter option would mean that end-users would 

have to create logical abstractions, i.e., programs or 

scripts, to control the creation, interconnection, and 

destruction of instances in the system. 

In contrast, uDesign relies on discovery mechan-

isms to identify service instances that are available, and 

offers interactive primitives for end-users to integrate 

and interconnect those services into a system. 

Second, there is a clear tradeoff between the detail 

that the user is asked to manipulate and the usability 

for a broad user base. The more detail, the more power 

the user has to construct complex behaviors, but more 

effort and training are required to use that detail. To 

help manage this tradeoff, a recent trend set by service-

oriented computing is to have a separation of the roles 

of service supplier and service consumer. uDesign 

takes that trend one step further by supporting two 

groups of service consumers: domain specialists, such 

as doctors; and end users with a general education. 

Services are required to work out of the box, with a 

default behavior, or possibly with a set of typical beha-

vior templates. A general user should be able to make 

use of such services using the default behaviors or pos-

sibly recognizing abstract parameters or modes of op-

eration, such as normal operation and emergency oper-

ation. Domain specialists, or technically bent users, 

would be able to understand and tailor those generic 

templates; for example, a doctor defining that the 

emergency mode corresponds to the heart rate exceed-

ing 140 beats per minute (bmp) for a given patient, but 

only 120bpm for another patient. 

2.1 Related work 

A number of research projects, such as eHome 

[6][7], AMIGO [1], ETRI Open Home Framework [4], 

have addressed challenges in home task automation. 

The technical problems addressed by these projects 

include: device and software interoperability, deploy-

ment management, and installation-time configuration. 

The eHome Systems project [6][7] addresses device 

interoperability, installation time configuration and 

deployment automation, with the focus of reducing the 

costs due to home automation product and service ven-



 

 

dors. eHome‟s three-phase software process model: 

Specification, Configuration, and Deployment (SCD), 

logically parallels the task description and task confi-

guration steps in the Aura Software Architecture, 

which forms the infrastructural basis for our current 

work. The eHome Configurator tool leverages the con-

figurable features of the eHome platform and allows 

vendor technicians to easily tailor the installation to the 

needs of the client. Unlike the eHome project, that tar-

gets installation time configuration by vendors of soft-

ware, uDesign targets everyday users and allows con-

figuration after installation. 

The Open Home Framework (OHF) developed by 

the ETRI institute [4] focuses on hardware, software, 

and protocol interoperability and integration issues. 

Having collaborated with the ETRI institute, we have 

discovered that the features offered by Aura, and uDe-

sign specifically, are complementary to those provided 

by the OHF Home Server. Specifically, uDesign al-

lows end users to define tasks for communication and 

notification tailored to a user‟s unique needs, prefe-

rences, and context. 

The Amigo project has proposed a reference archi-

tecture [1] for networked home service automation. 

The key issue handled by the architecture is interope-

rability among different vendors of device and service 

providers. According to the project web site, the archi-

tecture will provide the following features: context 

awareness and notification, quality of service, user 

security and privacy. These features are not yet fully 

designed or documented. While the Amigo architecture 

provides some functionality similar to that of uDesign, 

the latter is targeted to the end-user for flexible runtime 

configuration, while Amigo does not offer such fea-

tures. 

Another domain where a service-oriented, dia-

grammatic approach to constructing activities is being 

investigated is in the domain of robotics. Microsoft 

Robotics Studio [5] uses a Visual Programming Lan-

guage (VPL) as its main programming description. 

Users can drag and drop services into a diagram and 

connect them together. The graph then forms a dataf-

low-based program that is used to control a robot. The 

dataflow connections are strongly typed, and the reali-

zation of services can be chosen to be simulations or 

robot code. The approach is similar to uDesign. It does 

not allow resumption or suspension of activities as in 

uDesign, and mixes the structural and behavioral as-

pects of the dataflow. Furthermore, the target audience 

is robotics programmers, rather than end users. 

There has been considerable work on Business 

Process Execution Language (BPEL) (e.g., see [8] for 

an overview and formal semantics), and Business 

Process Modeling Notation (BPMN) (e.g., see [15] for 

an overview and mapping to BPEL). BPEL is an ex-

ecutable business process language, serialized in XML, 

to support programming in the large. BPEL allows one 

to specify a business process behavior, both of a partic-

ipant, and of a protocol with visible message inter-

change. BPEL‟s scope includes the description of 

process activities and their partial ordering, correlation 

of messages and process instances, and recovery beha-

vior. While BPEL is a textual language (XML), BPMN 

is designed around a graphical notation, and can be 

used as a graphical interface for BPEL (although we 

are not aware of one-to-one mappings between BPEL 

and BPMN). While the motivation behind BPEL and 

BPMN is to allow the specification of executable 

processes by people who are not necessarily program-

mers, it still requires one to understand the level of 

abstraction that is beyond the capabilities of a typical 

end user, whereas, the level of abstraction for a typical 

end user is exactly the focus of this paper.  

For monitoring and control applications that require 

persistent storage, there has been extensive work on 

Active Databases in the database community (e.g., see 

[9] for overview). Active Databases extend relational 

or object-oriented databases with Event-Condition-

Action (ECA) rules. Each such rule is triggered when a 

designated event occurs, and then, if the condition in 

the rule is satisfied, an action is taken. Conditions may 

involve regular database queries, and actions may in-

volve triggering other rules. Using the ECA paradigm 

within a database management system allows for stan-

dard database features, including atomicity, consisten-

cy, isolation and durability of transactions, which may 

be critical in many application domains. However, the 

level of abstraction in Active Databases, is that of SQL 

(or SQL-like) language, extended with triggers, which 

is not the level of abstraction that can be handled by 

typical end users.  

3. Getting started with uDesign 

This section introduces the concepts in uDesign at 

an intuitive level, illustrating the understanding that 

end-users need to have to create and tailor systems 

such as the ones presented in Sections 4 and 5. A tech-

nical overview of uDesign is presented in Section 6. 

The three main constructs in uDesign are boxes, 

pipes, and wires. Boxes are the locus of computation, 

while pipes stream data among boxes. Wires control 

starting and stopping activities on boxes, as well as the 

flow of data on pipes, based on observed conditions. 

To help manage visual clutter, uDesign defines 

three overlays: structural, box behavior, and pipe be-

havior. The structural overlay identifies the boxes, 

their properties and internal structure, and the piping of 

data among boxes. Boxes may be wrapped inside larg-

er boxes, to allow scaling to more complex systems, or 

simply to hide details from other users. 



 

 

Boxes correspond to entities of interest or their ac-

tivities. For example, boxes may be associated with the 

TV set in the user‟s living room, with the living room 

as a whole, or with the user‟s activity of following a 

TV show. Boxes may also be associated with software 

components, which like devices are viewed in the 

perspective of a concrete operating component that 

contributes to the system‟s function. 

When a box is associated with a physical space or 

an object, such as a couch, what really happens in the 

system is that the box is realized as a combination of 

software and hardware that monitors and maybe con-

trols the corresponding physical entity. Typically, such 

realization is provided as part of the entity: construc-

tors will sell smart homes, and furniture stores will sell 

smart couches (or the means to make old couches 

smart.) It will be up to end-users to determine how 

smart objects can be assembled and reconfigured, via 

their corresponding boxes, to serve the users‟ needs. 

Users and their activities may have associated box-

es. Such boxes identify the properties of interest and 

clarify the user‟s role in achieving the system‟s in-

tended function. Whether to represent a holistic view 

of a user or a specific view of the activities of concern 

is a decision for the end-user to take. In either case, 

smart spaces will be equipped with generic software 

components for modeling activities, and which may be 

associated with humans and their activities. 

Boxes have inputs, which are entry points for data, 

and properties. Properties are any observable aspect of 

a box, such as the video output of a DVD player, 

whether it is powered up, or its location. 

Data may be piped between any property of a box, a 

producer of data, and an input in a box, a consumer of 

data. Whenever a piece of data is available on the pro-

ducer side, the pipe will transmit it towards the con-

sumer side. uDesign tools check for type compatibility 

and disallow invalid piping, such as trying to pipe a 

video output to a textual input. 

The box behavior and pipe behavior overlays 

identify the conditions that give rise to starting and 

stopping activities in boxes, and that enable or disable 

the flow of data on pipes, respectively. 

Conditions are expressions over the inputs and 

properties of the box they are associated with, or over 

the properties of the smaller boxes contained in the 

latter. In addition to operators such as equals (=), and 

(&), and or (|), conditions may include temporal opera-

tors such as count(c, t) that counts how many times 

condition c became true in the latest time interval t; or 

sust(c, t) which is true if condition c sustained a true 

value during the latest time interval t. 

Wires transmit the result of evaluating a condition 

and may trigger one of three operations on boxes: start, 

pause, and stop, denoted by ►,, and ■, respectively. 

Start operations may indicate the values of one or more 

inputs, which then should not be connected to pipes. 

The pause operation preserves the values of the proper-

ties and inputs to the box until a start is triggered again, 

possibly overriding some of those input values. A stop 

operation resets all the values in a box, being used, for 

instance, for privacy purposes. 

Valves can be placed on pipes, preventing the flow 

of data unless the enabling conditions are met. For ex-

ample, the video output of a medical camera will not 

be released unless a potential emergency is declared. 

Susan’sHealth 

HeartMonitor 
rate 

StreamLog 

inStream 

VideoCapture 
videoOut 

John’sWatch 

John’sTracker 

location 
available 

SendAlert 

severity 

cell 

PlayVideo 

videoIn 

location 

Susan’sHealth 

HeartMonitor 

rate>120 | rate <50 
sust(rate>90, 0:20) 

(a) Structure overlay 

John’sWatch 

SendAlert.alertSent & !John’sTracker.available 

John’sTracker 

 

available 
SendAlert 

alertSent 
►severity=high; cell=3456… 

►severity=low; cell=3456… 

911 

► 

(b) Box behavior overlay 

Figure 1. Monitoring Susan’s heart 

911 



 

 

4. Susan’s heart condition 

This section presents a case where an elderly lady, 

Susan, has developed a heart condition. Susan‟s doctor 

allowed her to return home, but wants her condition to 

be constantly monitored. For that, the doctor has 

created a box in uDesign for monitoring Susan‟s 

health, which wraps three services (see Figure 1(a), left 

hand side): heart rate monitoring, stream logging, for 

offline reference, and video capture. The latter is meant 

for checking on Susan remotely should a problem 

arise. The doctor also asked Susan if she would be in-

terested in obtaining the devices to gather more sophis-

ticated biometrics, such as skin galvanic response, but 

given Susan‟s current condition they agreed to leave 

those out for the moment. 

The doctor used pipes to connect the monitored rate 

to the log input, and also to make the video output vis-

ible at the top level. After discussing Susan‟s lifestyle 

and physiological characteristics, the doctor identified 

two conditions to be monitored: when Susan‟s heart 

rate sustains a level above 90bpm (beats per minute) 

over 20 minutes, and when it either exceeds 120bpm or 

is short of 50bmp (Figure 1(b), left hand side).  

To make it easy for Susan‟s family to recognize the 

prescribed conditions, the doctor names them emer-

gency and concern. uDesign can show either these 

names or the expressions (as in the figure). The doctor 

also discusses the possibility of involving Susan‟s fam-

ily as first-line responders to the conditions above, 

notwithstanding alerting emergency services. 

Later at home, Susan discusses the doctor‟s pre-

scription with her son John and they agree on alerting 

John if either condition is observed, and on alerting the 

emergency services in the event of an emergency, or if 

a concern condition arises but John is not available. 

To coordinate the activities on his side, John defines 

the John‟sWatch box where he includes services to 

follow his location and determine if he is available, and 

for alerting him over the cell phone network. The loca-

tion service also helps determine the best device to 

map the PlayVideo service. John leaves the video pipe 

unhooked, to preserve Susan‟s privacy, planning to 

establish the connection only if the need arises. Alter-

natively, John could have used valves to control the 

flow of video on the pipe (see the next example). 

5. Surveillance in John’s home 

John moved recently to a new house and made ar-

rangements for a dog-sitter to come in during the day 

and walk his dog. However, John would like to be sure 

that the sitter does not venture into the private areas of 

the house. After work, John buys a couple of uDesign-

enabled cameras and motion detectors. Upon powering 

up these devices at the home, uDesign‟s wireless dis-

covery mechanisms pick them up, and John is able to 

assign them unique names within his house. 

John deploys one camera and motion detector by 

the kitchen door, where the sitter will be coming in, 

and another camera and detector in the hallway leading 

up to the main part of the house (Figure 2). Instead of 

installing a uDesign-enabled electric opener for the 

kitchen door, John just provided the sitter with a key. 

To be aware of the sitter‟s movements, John uses 

uDesign to pipe the output of the door camera to his 

cell phone, places a valve on that pipe so that video 

only flows when someone is detected in the door area. 

John‟s cell phone will alert him of incoming video. 

For the hallway camera, John chooses to record its 

output when a presence is detected, which John may 

review upon returning home. This is accomplished by 

placing a valve on the output of the hallway‟s camera, 

saving the home‟s wireless network from continuously 

piping video when no-one is in the hall.  

6. uDesign Architectural Style 

This section elaborates the uDesign architectural 

style using Zed [14], which defines both the architec-

tural element types and the behavior and construction 

rules that comprise uDesign.  

Figure 3 shows generic depictions of the elements, 

To reduce visual clutter, uDesign diagrams are orga-

nized in three overlays: structure, Figure 3(a), box be-

havior, Figure 3(b) top part, and pipe behavior, Figure 

3(b) bottom part. To manage complexity, box decom-

position is supported (Figure 3(c)). 

Overlays are projections, or views, of the formal 

model of a system.  When users edit a specification 

using overlays, consistency is guaranteed by an inter-

nal representation, the model of the system, which con-

forms to the semantics presented in this section. 

The component types of uDesign are boxes, which 

have a name, inputs and properties; data stores, typical-

ly representing files. The connector type Pipe comes in 

two flavors: first, a producer-consumer kind, which 

connects box properties to inputs, and is represented as 

HomeSurveillance 

DoorDetect 

presence 

Figure 2.  Surveillance in John’s home 

DoorCam 

out 

HallWCam 

out VideoRec 

in 

► 

 

HallWDetect 

presence 

!presence 

John’sPhone 

videoIn 



 

 

a single headed arrow in the direction of data flow. The 

second flavor supports read/write random access to 

data stores and is represented by double headed arrows 

(not further discussed here, for the sake of space). 

Formally, the structure of a box is: 
BoxStructure
i, p:  NAME;  type: NAME  TYPE 


i  p = ;  dom type = i  p 


where names in all caps are given sets (same through-

out this section) and the constraints assert that inputs 

and properties must have distinct names, and also that 

all inputs and properties have a known type. 

The behavior of a box is: 
Operation ::start pause stop 

Valuation NAME  VALUE 

Condition  NAME  EXPR
BoxBehavior
op: ID  Operation 

init: ID  Valuation 

cond: ID  Condition 

startName, condName: ID  NAME 


dom init  dom op  start
dom startName  dom op  start
dom cond  dom op =  

dom condName  dom cond 

 

where operations are represented on the left hand side 

of a box (top of Figure 3(b)), and conditions to be mo-

nitored on the right. Start operations have an associated 

valuation, more below, which are enforced each time 

the corresponding start operation is activated. 

Although operations (op) and conditions (cond) 

have an internal identifier (of type ID), start operations 

and conditions may also be associated with a name. 

This is to make them easier to recognize by non-expert 

users, who don‟t necessarily have deep domain know-

ledge. If a name is given, it will appear on the dia-

grams, although users may edit the corresponding ex-

pression on demand. 

The Box schema coordinates structure and behavior: 

Box
name: GNAME 

BoxStructure; BoxBehavior 


v: ran init dom v  i 

c: ran cond; n:  NAME; e: EXPR c = n e  n  i  p 

 

Specifically, the domain of every valuation v is a 

subset of inputs, that is, a valuation maps some number 

of inputs to values; and every condition c is expressed 

as an expression written in terms of some number of 

inputs and properties of that same box. 

There are two alternatives for naming boxes, which 

in the Zed model are both abstracted in the given set 

GNAME. First, a name may identify a specific entity or 

activity, such as Susan‟sHealth or John‟sKitchen. The 

structure of such names is entity@environment, where 

environments are uniquely identified and follow the 

usual conventions for URL “domains.” Typically, en-

vironment names are assigned to independently admi-

nistered geographic areas, such as homes and company 

buildings or campuses. For simplicity, the environment 

part of a name is omitted in diagrams for entities that 

reside in that environment. Data stores are also named 

in this fashion. 

Second, a name may identify a generic entity of a 

given type, name:type, such as s:Screen. This indicates 

that the user is not concerned about identifying a spe-

cific screen to incorporate the system, but rather is 

willing to use one that is convenient. This corresponds 

to the notion of generic service. Resolving for a con-

crete service supplier is done dynamically, using opti-

mized service discovery mechanisms such as the ones 

described in [12]. The naming of types follows the 

usual convention for defining ontology and name spac-

es in the internet, for which domain experts may pro-

vide local aliases to make names more recognizable to 

end-users. 

The definition of a system‟s structure uses generic 

operations allOpenInputs and allProperties, which extract 

(a) Structure 

x 

i p 

f 

y 

i p 

z 

i p 

(b) Behavior 

x 

► ival 

 cond 

 

x 

c1 

c2 

y 

► 

 

x 

p1 

p2 

p3 

y 

i1 

i2 

i3 

z 

c5 

c

1 

c

2 

c

4 

c

3 

x 

► y 

► 
z 

► 

x 

► y 

► 
z 

► 

x 

 y 

► 
z 

► 

(c) Decomposition 

x 

y.i                         y.p1 
y 
i p1 

 p2 

Figure 3. Syntactic primitives in uDesign 



 

 

the corresponding sets of names from a set of boxes. 

Open inputs are the ones that are not part of some val-

uation associated to a start operation. 

allOpenInputs:  Box   NAME 

allProperties:  Box   NAME 


s:  Box allOpenInputs s 

  = n: NAME b: s v: ran b . init n  b . i  n  dom v
s:  Box allProperties s = n: NAME b: s n  b . p 

A system‟s structure is characterized by a set of 

boxes, Figure 3(a), where no two distinct boxes have 

the same name, and by the pipes that interconnect box 

properties to open inputs of those boxes. The fact that 

pipes are formally defined as a (partial) function from 

inputs to properties means that a property may be piped 

to any number of inputs, but an input may receive data 

from at most one property. 

SystemStructure
boxes:  Box 

pipes: NAME  NAME 


b1, b2: boxes b1 . name = b2 . name  b1 = b2 

dom pipes  allOpenInputs boxes 

ran pipes  allProperties boxes 

 

Similarly, the definition of a system‟s behavior uses 

generic operations allOps and allConds, which extract 

the corresponding sets of ids from a set of boxes. 

allOps:  Box   ID 

allConds:  Box   ID 


s:  Box allOps s = opId: ID b: s opId  dom b . op
s:  Box allConds s = cId: ID b: s cId  dom b . cond

A system‟s behavior is characterized by the wires 

that connect conditions to operations, and by the valves 

placed on pipes. There are no restrictions to the wiring 

of conditions and operations: an operation is activated 

if any of the attached wires goes live, that is, if any of 

the related conditions hold.  

SystemBehavior 
boxes:  Box;    pipes: NAME  NAME 

wires: ID  ID 

valves: ID  NAME  NAME 


dom wires  allConds boxes; ran wires  allOps boxes 

dom valves  allConds boxes; p: ran valves p  pipes 

 

Valves relate conditions with pipes. For data to flow 

in a pipe, it is necessary that all the valves are open, 

that is, that all the related conditions hold. The bottom 

of Figure 3(b) shows the diagrammatic representation 

of two special cases and the general case of valve re-

presentation. In the general case, illustrated by c5 in the 

figure, a wire is shown connecting the condition and 

the commanded valve, . To reduce clutter, in case the 

pipe is attached to either an input or property of a box 

b, and the controlling condition also belongs to b, than 

the valve is shown next to the input (c2 and c4) or prop-

erty (c1 and c3) and the wire is not shown. 

A system coordinates structure and behavior: 
System SystemStructure  SystemBehavior 

where boxes and pipes are shared among the two. 

Operations such as adding a pipe or a valve to a sys-

tem can also be modeled: 

addPipe
 SystemStructure 

pipeSource?: NAME;   pipeSink?: NAME 


pipeSink?  allOpenInputs boxes 

pipeSource?  allProperties boxes 

boxes' = boxes 

pipes' = pipes  pipeSink?  pipeSource?

where the pipeSource? parameter must be an open input, 

and the pipeSink? a property in the system‟s set of box-

es. As a result of adding a pipe, the pipes function in 

the system‟s structure includes the new mapping. 

addValve 
 SystemBehavior;   SystemStructure 

cond?: ID;      pipe?: NAME  NAME 


cond?  allConds boxes;   pipe?  pipes 

wires' = wires;     valves' = valves  cond?  pipe?


Adding a valve changes the system‟s behavior, but 

not its structure. As a result of the operation, the valves 

relation incorporates the mapping between the condi-

tion cond? and the pipe?, which must both be already 

defined in the system. 

To manage complexity, a user may decide to wrap a 

system or part of a system as a box. Structurally, any 

property or input of the wrapped boxes may be pro-

moted to the top level either using the dot notation, or 

by driving a pipe to the edge of the wrapping box, as 

illustrated at the top of Figure 3(c). Formally, the struc-

ture of a composite box combines the features of a Box 

with those of a SystemStructure:  

CompositeStructure 
Box;   SystemStructure 

iMap: NAME  NAME;   pMap: NAME  NAME 


dom iMap  allOpenInputs boxes;   ran iMap  i 

b: boxes; i0, i1: NAME 
i0  b . i  iMap i0 = i1  b . type i0 = type i1 

dom pMap  allProperties boxes;    ran pMap  p 

b: boxes; p0, p1: NAME 



 

 

p0  b . p  pMap p0 = p1  b . type p0 = type p1 

 

The partial surjections (one-to-one) iMap and pMap 

map some number of open inputs and properties of the 

wrapped boxes to the top-level box, such that the cor-

responding types are preserved. All the top-level inputs 

and properties are images in these mappings, that is, no 

inputs or properties can be defined at the top level that 

have no correspondence in the wrapped boxes. 

The behavior of a composite box combines the fea-

tures of a Box with those of a SystemBehavior: 
CompositeBehavior 
Box;   SystemBehavior 

opMap: ID  ID;   cMap: ID  ID 


dom opMap  allOps boxes;   ran opMap  dom op 

dom cMap  allConds boxes;   ran cMap  dom cond 

 

Operations at both levels can be freely related. In 

general, one can imagine composites with dormant 

states, where a stop at the top level deactivates most 

wrapped components, while activating a few others. To 

cover common cases, the editing tools take as a default 

that an operation at the top level is mapped as the cor-

responding operation in all the wrapped boxes (lighter 

color wires in Figure 3(c)). That default can be over-

written by explicitly establishing the desired relation. 

Also, if a user has access privileges to see the internals 

of a composite, the editing tools support wiring direct-

ly to the wrapped boxes (bottom of Figure 3(c)) al-

though semantically that corresponds to defining a 

condition/operation at top level which is then related to 

the wrapped box. 

Additional conditions can be defined at the top lev-

el, using both the names of the conditions in the 

wrapped boxes as well as properties and inputs, using 

the dot notation as before. 

Finally, the generic notion of BOX is either an ele-

mentary Box, or a composite: 
BOX Box  CompositeStructure  CompositeBehavior 

Recursive decomposition of systems would be 

modeled by changing the SystemStructure and SystemBe-

havior schemas above to refer of a set of BOX, rather 

than Box. 

7. uDesign implementation 

This section describes how uDesign maps to activi-

ty-oriented systems (e.g. [13]), and to a specific im-

plementation thereof: the Aura infrastructure. We start 

by summarizing Aura (details can be found in [11].) 

Activities, or tasks, are a first class concept in Aura 

and correspond to everyday activities of users or auto-

mated agents; for example, write paper X, or monitor 

Susan’s health. Activity models describe the services 

and materials required to support the activity, as well 

as user preferences concerning the selection and confi-

guration of those services. 

Services correspond to features such as edit text, or 

monitor heart rate, or to capabilities of humans, such 

as answer the door. Materials correspond to data stores 

manipulated by services. Services may define ports 

[10], and activity models may then include service 

interconnections via typed connectors.  

The Aura infrastructure takes activity models, 

represented in XML, finds appropriate service suppli-

ers in the environment and, upon request, assembles 

and activates those services. 

Figure 4 shows the architecture of the Aura infra-

structure, with two component types, Aura and the 

Environment Manager (EM), and the three interaction 

protocols (connectors) between them. The double box 

for the Aura type indicates that typically there will be 

many Aura component instances in each environment, 

while the EM (single box) will have only one instance. 

The EM provides the mechanisms to optimally mar-

shal the supply of services required by activities [12]. 

It also monitors these services to ensure that they are 

satisfying user goals, recommending reconfigurations 

where appropriate. Environments typically correspond 

to a physical space (e.g., a floor or a building), but they 

are defined administratively and so can also encompass 

logical spaces (e.g., including a printer at the office in 

the home environment). 

While an EM contains generic mechanisms for ser-

vice discovery and configuration, Auras contain do-

main-specific knowledge about activities and services. 

Auras are abstract models of entities in the real 

world, such as users, spaces, devices, and software 

components. Auras provide mechanisms to monitor 

and control the entities they represent. In the case of 

software, Auras may wrap existing applications to con-

form to the infrastructure‟s protocols. Rather than re-

quiring writing a new portfolio of applications, this 

approach makes it easy to integrate legacy applications 

into the Aura infrastructure. For instance Emacs, 

MSWord and Notepad have been wrapped to become 

Auras that offer edit text services. Such Auras act as 

translators between the generic configuration directives 

issued by the EM and other Auras, and the specific 

APIs offered by the component they encapsulate. 

Prism 

Figure 4.  The Aura Architecture 

Environment 

Manager 

Aura 

SAAP Service Announcement 

and Activation Protocol 

SRP  Service Request Protocol 

SUP  Service Use Protocol 

SUP 

SAAP SRP 



 

 

Earlier versions of the architecture separated the 

roles of service supplier and consumer into two com-

ponent types: Supplier and Prism [11]. However, the 

work leading up to [13] made us realize that the same 

component, an Aura, can play either the role of a task 

manager (Prism) or of a Supplier of services, or both. 

For example, John‟s Aura manages John‟s activities, 

such as looking after Susan, but also offers services 

that John can provide, such as answering the door. 

An Aura that plays the role of a service supplier, 

denoted AuraSUP, announces its services with the EM 

via the Service Announcement and Activation Protocol 

(SAAP) connector, and finds itself on the supplying 

end of the Service Use Protocol (SUP) connector (see 

Figure 4). An Aura that plays the role of a task manag-

er, denoted AuraTM, requests the services required for 

each task from the EM via the Service Request Proto-

col (SRP) connector, and finds itself on the consuming 

end of the SUP connector. 

When a user enters an environment, an AuraTM is 

associated with him or her to manage the user‟s tasks. 

A task model contains information about the desired 

services that should be brought to bear to help the user 

carry out the task. To resume a task in a particular en-

vironment, AuraTM communicates with EM to request 

service suppliers using a combination of the protocols. 

These protocols, shown in Figure 5, starts with AuraTM 

opening a session for a particular task with newTask; 

after getting a reply from EM, a unique session id is 

used for subsequent communication about this task. 

AuraTM then obtains estimates for the how well the 

environment can support a particular task by sending a 

budget message and getting taskLayout messages in re-

sponse. It is possible that more than one way of instan-

tiating a task depending on the degree of richness of 

service suppliers in the environment (e.g., requesting 

an editText service might be provided by a NotePad 

ssupplier or a Word supplier). AuraTM learns user pre-

ferences which guide the choice of service suppliers. 

The EM will then activate those AurasSUP. 

Once an AuraSUP has been activated by the EM, Au-

raTM interacts with it to set its state so that the user can 

start using them. A state might include the materials 

(files) to use, the size of windows, cursor positions, 

etc. When the user is finished with the task in that en-

vironment, AuraTM will issue a getState on each of the 

service suppliers to get the updated information about 

their state, and then will request that EM disband the 

task. This deactivates each of the AurasSUP and closes 

the session between the EM and AuraTM for that task. 

7.1 Mapping uDesign to Aura 

uDesign takes a unified view of Auras, activities, 

and services. Auras that just offer services correspond 

to boxes with no substructure. Auras that manage ac-

tivities (AuraTM) correspond to composite boxes – the 

activities themselves correspond to subsystems inside 

the composite box. Resuming an activity in Aura cor-

responds to a start operation in a composite box that 

activates the subsystem corresponding to the activity. 

The structure overlay in uDesign corresponds to de-

fining which services and materials are required to 

support an activity. For example, in Aura, Susan‟s-

Health is one of the activities of user Susan, and it re-

quires services HeartMonitor, VideoCapture and so 

forth. In uDesign, Susan‟sHealth is a composite box 

that wraps boxes HeartMonitor, VideoCapture and so 

forth (see Figure 1). Inputs and properties of boxes 

map to service ports in Aura, which can then be inter-

connected by connectors of type pipe.  

The behavior overlay in uDesign corresponds to de-

fining under which conditions activities/services are to 

be activated. The way current Aura protocols support 

uDesign behavior is better illustrated with an example: 

the AuraTM for HomeSurveillance issues a setState in-

structing the AuraSUP for HallWDetect to monitor the 

presence condition, as defined in Figure 2. When the 

condition holds, the AuraSUP issues a stateSnaphot de-

scribing the event. The AuraTM then uses the SRP and 

SUP to start an AuraSUP for video recording. 

Although this implementation strategy works to 

coordinate services and activities within the same Au-

ra, it becomes cumbersome for achieving coordination 

across different Auras. Since uDesign allows end-users 

to extend wires across systems, we are currently de-

signing extensions to the Aura protocols to support 

direct coordination between Auras. 

Table 1 summarizes how the three operations in 

AuraTM EM AuraSUP 

newTask 

createdTask <id> 

budget <id, tDesc> 

taskLayout <id, cDesc> 

setup <id, tDesc> 

activate <id> 

ackActivate <cId> 
taskLayout <id, cDesc> 

setState <id, state> 

getState <id> 

stateSnapshot<id, state> 

disband <id> 

deactivate <id> 

ackDeactivate <cId> 

taskGone <id> 

Figure 5.  Task lifecycle in Aura 
S

R
P

1  
S

U
P

1  
S

R
P

2  
S

U
P

2  



 

 

uDesign are realized using the protocols in the Aura 

architecture. Start, ►, corresponds to resuming an ac-

tivity: SRP1 followed by SUP1 in Figure 5. The distinc-

tion between pause,and stop, ■, is that the latter 

does not capture the current state of the suppliers. 

Finally, valves enable the flow of data in uDesign 

pipes. Depending on the implementation of pipe con-

nectors, such enabling conditions may be communi-

cated to the pipe, or they may have to be communi-

cated to the sending port. 

8. Conclusion and future work 

In previous work, like many other researchers, we 

have focused on building a software infrastructure over 

which enhanced applications for pervasive computing 

could be built and deployed. Specifically, we built the 

Aura infrastructure, which promotes user activities to 

first class primitives in software systems. 

However, the means for end users to assemble and 

configure highly personalized and flexible solutions 

have been largely missing. Although infrastructures 

such as Aura and others make it easier to develop solu-

tions for smart spaces, the mechanisms for intercon-

necting and coordinating components have remained at 

a level of detail more appropriate to computer special-

ists. This is precisely the gap addressed by uDesign. 

Our main goal is to provide a method of connecting 

services that is appealing to a large user base by mak-

ing it similar to connecting consumer electronics. Simi-

lar composition approaches are beginning to dominate 

domains such as business environments and robotics. 

uDesign offers overlays to capture the structure and 

behavior of a system. Such separation is a recognized 

good practice in design methodology, and the formal 

basis (Section 6) of uDesign guarantees that no incon-

sistencies will arise from using separate views. Check-

ing the system structure follows the formal model. 

uDesign leverages concepts of software architecture 

and this paper shows it can be implemented on top of 

the existing Aura infrastructure with minor extensions. 

This work also clarifies the APIs and architectural as-

sumptions that individual components must support to 

be integrated into the proposed framework.  

Part of our working hypothesis is that uDesign will 

be accessible to a broad range of users, including non-

experts. This hypothesis needs further validation. Spe-

cifically, we plan to conduct user studies involving 

both end users and domain specialists in domains such 

as assisted living and home security.  This will involve 

developing a set of tools that are robust and usable by 

end-users in a real setting, rather than a lab. In these 

studies we will also assess the scalability of our ap-

proach. We believe that the hierarchical decomposition 

of boxes will aid in addressing this. 

References 
[1] N. Georgantas, S. Mokhtar Y.-D. Bromberg, Yerom, 

V. Issarny, J. Kalaoja, J. Kantarovitch, A. Gerodolle,  

R, Mevissen, "The Amigo Service Architecture for the 

Open Networked Home Environment". Proceedings of 

the 5th Working IEEE/IFIP Conference on Software 

Architecture (WICSA'05), pp. 295-296, 2005. 

[2] J.S. Gero. Categorizing Technological Knowledge 

From a Design Methodological Perspective. Confe-

rence „Technological Knowledge: Philosophical Ref-

lections‟, Boxmeer, The Netherlands, 2002. 

[3] GraphLogic Inc. PointDragon. http://pointdragon.com. 

[4] I. Han; H.-S. Park; Y.-K. Jeong; K.-R. Park. An inte-

grated home server for communication, broadcast re-

ception, and home automation, Consumer Electronics, 

IEEE Transactions on, Vol 52(1), 2006. 

[5] Microsoft Inc. Microsoft Robotics Studio Developer 

Center. http://msdn2.microsoft.com/en-

us/robotics/default.aspx, accessed September 2007. 

[6] U. Norbisrath, I. Armac, D. Retkowitz, P. Salumaa: 

Modeling eHome Systems. S. Terzis (ed.): 4th Intl 

Workshop on Middleware for Pervasive and Ad-Hoc 

Computing, Melbourne, Australia. ACM Press, 2006. 

[7] U. Norbisrath, C. Mosler, I. Armac: The eHome Confi-

gurator Tool Suite. 1st Intl Workshop on Pervasive Sys-

tems (PerSys 2006), Montpellier, France, 30-31 2006, 

LNCS 4278, p. 1315-1324, Springer, 2006. 

[8] C. Ouyanga, E. Verbeekb, W. van der Aalsta, S. Breu-

tela, M. Dumasa, A ter Hofstedea. Formal semantics 

and analysis of control flow in WS-BPEL. Science of 

Computer Programming Volume 67, Issues 2-3, 1 July 

2007, Pages 162-198. 

[9] N.W. Paton (Ed.). Active Rules in Database Systems. 

Monographs in Computer Science, Spring, 1998. 

[10] M. Shaw, D. Garlan. Software Architecture: Perspec-

tives on an Emerging Discipline. Prentice Hall, 1996. 

[11] J.P. Sousa, D. Garlan. The Aura Software Architecture: 

an Infrastructure for Ubiquitous Computing. Carnegie 

Mellon Technical Report, CMU-CS-03-183, 2003. 

[12] J.P. Sousa, V. Poladian, D. Garlan, B. Schmerl, M. 

Shaw. Task-Based Adaptation for Ubiquitous Compu-

ting. In IEEE Trans on Systems, Man, and Cybernetics, 

Part C: Applications and Reviews, Special Issue on 

Engineering Autonomic Systems, Vol. 36(3), May 2006 

[13] J.P. Sousa, B. Schmerl, P. Steenkiste and D. Garlan. 

Activity-oriented Computing. In S. Mostefaoui, Z. 

Maamar and G. Giaglis (Eds), Advances in Ubiquitous 

Computing: Future Paradigms and Directions, IGI 

Publishing, Herschey, PA, 2008 

[14] The Z Notation: A Reference Manual. Prentice Hall 

Intl Series in Computer Science, Prentice-Hall, 1992. 

[15] S. White, Using BPMN to Model a BPEL Process - all 

4 versions »BPTrends, 2005. 

http://businessprocesstrends.com. 

Table 1. uDesign behavior vs. Aura protocols 

operation Aura protocol activity 

► SRP1 SUP1 (Resume) 


 

SUP2  SRP2 (Suspend) 

■ SRP2 (Stop) 

 

http://msdn2.microsoft.com/en-us/robotics/default.aspx
http://msdn2.microsoft.com/en-us/robotics/default.aspx

