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Abstract—An important domain for autonomic systems is the
area of ubiquitous computing: users are increasingly surrounded
by technology that is heterogeneous, pervasive, and variable. In
this paper we describe our work in developing self-adapting com-
puting infrastructure that automates the configuration and recon-
figuration of such environments. Focusing on the engineering is-
sues of self-adaptation in the presence of heterogeneous platforms,
legacy applications, mobile users, and resource variable environ-
ments, we describe a new approach based on the following key
ideas: 1) explicit representation of user tasks allows us to deter-
mine what service qualities are required of a given configuration;
2) decoupling task and preference specification from the lower level
mechanisms that carry out those preferences provides a clean engi-
neering separation of concerns between what is needed and how it is
carried out; and 3) efficient algorithms allow us to calculate in real
time near-optimal resource allocations and reallocations for a given
task.

Index Terms—Multifidelity applications, resource-aware com-
puting, self-adaptation, ubiquitous computing.

I. INTRODUCTION

S ELF-ADAPTIVE systems are becoming increasingly im-
portant. What was once the concern of specialized systems,

with high availability requirements, is now recognized as being
relevant to almost all of today’s complex systems [10], [20].
Increasingly, computing systems that people depend on cannot
be taken off-line for repair—they must adapt to failures in en-
vironments that are not entirely under the control of the system
implementers and they must adjust their runtime characteristics
to accommodate changing loads, resources, and goals.

One particularly important domain for self-adaptation is the
area of ubiquitous computing. Today users are surrounded by
technology that is heterogeneous, pervasive, and variable. It is
heterogeneous because computation can take place using a wide
variety of computing platforms, interfaces, networks, and ser-
vices. It is pervasive through wireless and wired connectivity
that pervades most of our working and living environments.
It is variable because resources are subject to change: users
can move from resource-rich settings (such as workstations and
high-bandwidth networks in an office) to resource-poor envi-
ronments (such as a PDA in a park).
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Coping with this situation requires automated mechanisms.
In particular, ideally systems should be able to adapt to user
mobility, recover from service failures and degradations, and al-
low continuity across diverse environments. Without automated
mechanisms to support this kind of adaptation, users become
increasingly overloaded with distractions of managing their sys-
tem configurations; alternatively, they may simply opt not to use
the capabilities of their environments.

This automation raises a number of serious engineering chal-
lenges: How can one determine when reconfiguration is appro-
priate? Assuming reconfiguration is desirable, how does one
determine a satisfactory allocation of resources, particularly if
there are multiple ways to support a given computing task or
limitations on the resource pool? How can users instruct the
system about the kinds of adaptation that are desired, with-
out becoming bogged down in low-level system details? How
can one add adaptation mechanisms to the everyday comput-
ing environments that users are familiar with, e.g., text editors,
spreadsheets, video viewers, browsers, etc.

In this paper we describe our experience over the past five
years of developing self-adapting ubiquitous computing infras-
tructure that automates the configuration and reconfiguration of
everyday computing environments. Focusing on the engineering
issues of providing self-adaptation in the presence of heteroge-
neous platforms, legacy applications, mobile users, and resource
variable environments, Project Aura [9] has developed an ap-
proach that we believe addresses each of the questions above.
The key ideas behind this work are the following: 1) explicit
representation of user tasks allows us to determine what service
qualities are required of a given configuration; 2) decoupling
task and preference specification from the lower level mech-
anisms that carry out those preferences provides a clean engi-
neering separation of concerns between what is needed and how
it is carried out; and 3) efficient algorithms allow us to calculate
in real time near-optimal resource allocations and reallocations
for a given task.

This paper is organized as follows. Section II describes our
work in the context of related research. Section III outlines
the research challenges in making self-adaptive systems task-
aware, describes the Aura architecture, and illustrates how the
architecture addresses such research challenges. In Section IV,
we elaborate on the specifics of supporting such an architec-
ture: how the requirements and user preferences are captured
for each task, the formal underpinnings of the internal rep-
resentation of tasks and preferences, and the algorithm that
supports automatic system configuration and self-adaptation.
In Section V we evaluate the effectiveness of the approach and
consider lessons learned from this work. Section VI presents the
conclusions.
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II. RELATED WORK

Currently, adaptive systems fall into two broad categories:
fault-tolerant systems and fidelity-aware systems. First, fault-
tolerant systems react to component failure, compensating for
errors by using a variety of techniques such as redundancy and
graceful degradation [6], [13]. Such systems have been prevalent
in safety-critical systems or systems for which the cost of off-
line repair is prohibitive (e.g., telecom, space systems, power
control systems, etc.). The primary goal of these systems is to
prevent or delay large-scale system failure.

Second, fidelity-aware systems react to resource variation:
components adapt their computing strategies so that they can
function optimally with the current set of resources (bandwidth,
memory, CPU, power, etc.) [8], [17], [22], [24]. Many of these
systems emerged with the advent of mobile computing over
wireless networks, where resource variability becomes a criti-
cal concern. While most of this research focuses on one com-
ponent at a time, our work leverages on this research but tackles
the problem of multicomponent integration, configuration, and
reconfiguration. Although somewhat related, this kind of auto-
matic configuration is distinct from the automatic configuration
being investigated in [21]. In [21], the configuration is taken
in the sense of building and installing new applications into an
environment, whereas in our work it is taken in the sense of
selecting and controlling applications so that the user can go
about his tasks with minimal disruption.

Our work addresses two of the five principles of outonomic
computing, which were first introduced in [16]. Specifically,
Aura provides self-optimization and self-healing for everyday
user tasks in the domain of ubiquitous computing.

Our work leverages microeconomic principles to determine
optimal resource allocation. In this respect, our work is sim-
ilar to [2], which addresses resource allocation in large-scale
enterprise deployments. Computing the utility (value) of differ-
ent resource allocation schemes is expensive. To help mitigate
that problem, [2] describes a cooperative mechanism for incre-
mentally eliciting utility. In our work, we separate elicitation
of inputs into two levels. Specifically, we rely on history-based
profiling to obtain application resource requirements for a par-
ticular level of quality of service (see [22]) and explicitly acquire
user preferences for quality of service using techniques and user
interfaces described in this paper.

Resource scheduling [15], resource allocation [18], [23], and
admission control have been extensively addressed in research.
From an analytical point of view, closest to our work are
Q-RAM [18], a resource reservation and admission control sys-
tem maximizing the utility of a multimedia server based on
preferences of simultaneously connected clients; Knapsack al-
gorithms [25]; and winner determination in combinatorial auc-
tions. In our work, we handle the additional problems of se-
lecting applications among alternatives and accounting for cost
of change. Dynamic resolution of resource allocation policy
conflicts involving multiple mobile users is addressed in [3] us-
ing sealed bid auctions. While our work shares utility-theoretic
concepts with [3], the problem solved in our work is differ-
ent. In [3], the objective was to select among a handful of

policies so as to maximize an objective function of multiple
users. In our work, the objective is to choose among possi-
bly thousands of configurations so as to maximize the objec-
tive function of one user. As such, our work has no game-
theoretic aspects, but faces a harder computational problem.
Furthermore, our work takes into account tasks that users wish
to perform.

At a coarser grain, research in distributed systems addresses
global adaptation, for example, a system might reconfigure a
set of clients and servers to achieve optimal load balancing.
Typically, such systems use global system models, such as ar-
chitectural models, to achieve these results [5], [11], [12]. To
achieve fault-tolerance and coarse-grain adaptation (e.g., hot
component swapping) our work builds on this as well as on
service location and discovery protocols [14], [26].

III. TASK-BASED SELF-ADAPTATION

A. Task-Aware Systems

A central tenet of our work is that systems are used to carry
out high-level activities of users: planning a trip, buying a car,
communicating with others, etc. In today’s systems these ac-
tivities and goals are implicit. Users must map their tasks to
computing systems by invoking specific applications (document
editors, e-mail programs, spreadsheets, etc.) on specific files,
with knowledge of specific resources. In a ubiquitous comput-
ing world with shifting resources and increased heterogeneity,
the cognitive load required for users to manage this manually
quickly becomes untenable.

In contrast, a task-aware system makes user tasks explicit by
encoding user goals and by providing a placeholder to repre-
sent the quality attributes of the services used to perform those
tasks. So, for example, for a particular task, in the presence of
limited bandwidth, the user may be willing to live with a small
video screen size, while in another task reducing the frame rate
would be preferable. In task-aware systems, users specify their
tasks and goals, and it is the job of the system to automati-
cally map them into the capabilities available in the ubiquitous
environment.

Once such information is represented, a self-managing system
can in principle query the task to determine both when the
system is behaving within an acceptable envelope for the task
and also can choose among alternative system reconfigurations
when it is not.

However, a number of important research questions arise, and
the way we answer them strongly influences the way we look at
and build task-aware systems:

1) How do we represent a task? What encoding schemes can
best be used to capture the user’s requirements for system
quality?

2) How should we characterize the knowledge for mapping
a user task to a system’s configuration? As a user moves
from task to task, different configurations will be appro-
priate, even for the same set of applications.

3) Should we trigger an adaptation as soon as an opportunity
for improvement is detected, or should we factor in how
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distracting the change will be to the user against how
serious the fault is?

4) Is the binary notion of fault enough, or do we need to
come up with a measure of fault “hardness”—a continuum
between “all is well,” and “the system is down”?

5) What is the length of time that the user is expected to carry
out the current task? What are likely other tasks that the
user will work on next?

Over the past five years we have been experimenting with var-
ious answers to these questions. Centered on a large ubiquitous
computing research project, Project Aura [9], we have evolved
a system that, in brief, addresses these questions as follows.

1) We represent a task as a set of services, together with a set
of quality attribute preferences expressed as multidimen-
sional utility functions, possibly conditioned by context
conditions.

2) We define a vocabulary for expressing requirements,
which delimits the space of requirements that the auto-
matic reconfiguration can cover. The set of requirements
for a particular task expresses which services are needed
from the system as well as the fidelity constraints that
make the system adequate or inadequate for the task at
hand. The required services are dynamically mapped to
the available components and the fidelity constraints are
mapped to resource-adaptation policies.

3) We incorporate the notion of cost of reconfiguration into
the evaluation of alternative reconfigurations. This cost
captures user’s intolerance for configuration changes by
the infrastructure. A high cost of reconfiguration will make
the system highly stable, but frequently less optimal; a
low cost of configuration will permit the system to change
frequently, but may introduce more user distraction from
reconfigurations.

4) We invert the notion of fault by adopting an econometric-
based notion of task feasibility, ranging from 0 (the task
is not feasible under the current system conditions) to 1
(system is totally appropriate for the current task). This
enables an objective evaluation of configuration alterna-
tives, regardless of the sources of change (both changes
to the task and also to the availability of resources and
components).

We now describe the system architecture that permits such
task-based self-adaptation and elaborate on these decisions.

B. Aura Layers

The starting point for understanding Aura is a layered view
of its infrastructure together with an explanation of the roles
of each layer with respect to task suspend/resume and dynamic
adaptation. Table I summarizes the relevant terminology.

The infrastructure exploits knowledge about a user’s tasks
to automatically configure and reconfigure the environment on
behalf of the user. First, the infrastructure needs to know what
to configure for; that is, what a user needs from the environment
in order to carry out his or her tasks. Second, the infrastructure
needs to know how to best configure the environment, i.e., it

TABLE I
TERMINOLOGY

TABLE II
SUMMARY OF THE SOFTWARE LAYERS IN THE INFRASTRUCTURE

needs mechanisms to optimally match the user’s needs to the
capabilities and resources in the environment.

In our architecture, each of these two subproblems is ad-
dressed by a distinct software layer: 1) the task management
layer determines what the user needs from the environment at
a specific time and location and 2) the environment manage-
ment layer determines how to best configure the environment to
support the user’s needs.

Table II summarizes the roles of the software layers in the
infrastructure. The top layer, task management (TM), captures
knowledge about user tasks and associated intent. Such knowl-
edge is used to coordinate the configuration of the environment
upon changes in the user’s task or context. For instance, when
the user attempts to carry out a task in a new environment, TM
coordinates access to all the information related to the user’s
task and negotiates task support with environment management
(EM). TM also monitors explicit indications from the user and
events in the physical context surrounding the user. Upon getting
indication that the user intends to suspend the current task or
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resume some other task, TM coordinates saving the user-level
state of the suspended task and reinstantiates the resumed task,
as appropriate. TM may also capture complex representations
of user tasks (out of scope of this paper) including task decom-
position (e.g., task A is composed of subtasks B and C), plans
(e.g., C should be carried out after B), and context dependencies
(e.g., the user can do B while sitting or walking, but not while
driving).

The EM layer maintains abstract models of the environment.
These models provide a level of indirection between the user’s
needs, expressed in environment-independent terms, and the
concrete capabilities of each environment.

This indirection is used to address both heterogeneity
and dynamic change in the environments. With respect to
heterogeneity, when the user needs a service, such as speech
recognition, EM will find and configure a “supplier” for that
service among those available in the environment. With re-
spect to dynamic change, the existence of explicit models of
the capabilities in the environment enables automatic reasoning
when those capabilities change dynamically. The EM adjusts
such a mapping automatically in response to changes in the
user’s needs (adaptation initiated by TM) and changes in the
environment’s capabilities and resources (adaptation initiated
by EM). In both cases adaptation is guided by the maximiza-
tion of a utility function representing the user’s preferences (see
Section IV-A1).

The environment layer comprises the applications and devices
that can be configured to support a user’s task. Configuration is-
sues aside, these suppliers interact with the user exactly as they
would without the presence of the infrastructure. The infras-
tructure steps in only to automatically configure those suppliers
on behalf of the user. The specific capabilities of each sup-
plier are manipulated by EM, which acts as a translator for the
environment-independent descriptions of user needs issued by
TM.

By factoring models of user preferences and context out of
individual applications, the infrastructure enables applications
to apply the adaptation policies appropriate for each task. This
knowledge is very hard to obtain at the application level, but
once it is determined at the user level, by TM, it can eas-
ily be communicated to the applications supporting the user’s
task.

A detailed description of the architecture, including the for-
mal specification of the interactions between the components in
the layers defined above, is available in [27].

C. Examples of Self-Adaptation

To clarify how this design works, we illustrate how the infras-
tructure outlined in Section III-B handles a variety of examples
of self-adaptation, ranging from traditional repair in reaction to
faults, to reactions to positive changes in the environment, to
reactions to changes in the user’s task.

To set the stage, suppose that Fred is engaged in a conversa-
tion that requires real-time speech-to-speech translation. To do
this task, assume the Aura infrastructure has assembled three
services: speech recognition, language translation, and speech

synthesis. Initially both speech recognition and synthesis are
running on Fred’s handheld. To save resources on Fred’s hand-
held, and since language translation is computationally inten-
sive, but has very low demand on data flow (the text representa-
tion of each utterance), the translation service is configured to
run on a remote server.

1) Fault Tolerance: Suppose now that there is loss of con-
nectivity to the remote server, or equivalently, that there is a
software crash that renders it unavailable. Live monitoring at
the EM level detects that the supplier for language translation is
lost. The EM looks for an alternative supplier for that service,
e.g., translation software on Fred’s handheld, activates it, and
automatically reconfigures the service assembly.

2) Resource/Fidelity Awareness: Computational resources
in Fred’s handheld are allocated by the EM among the ser-
vices supporting Fred’s task. For computing optimal resource
allocation, the EM uses each supplier’s spec sheet (relating fi-
delity levels with resource consumption), live monitoring of the
available resources, and the user’s preferences with respect to
fidelity levels. Suppose that during the social part of the conver-
sation, Fred is fine with a less accurate translation, but response
times should be snappy. The speech recognizer, as the main
driver of the overall response time, gets proportionally more re-
sources and uses faster, if less accurate, recognition algorithms.
When the translation service is activated on Fred’s handheld in
response to the fault mentioned, resources become scarcer for
the three services. However, having the knowledge about Fred’s
preferences passed upon service activation, each supplier can
react appropriately by shifting to computation strategies that
save response times at the expense of accuracy [1].

3) Soft Fault (Negative Delta): Each supplier issues peri-
odic reports on the quality of service (QoS) actually being pro-
vided; in this example, response time and estimated accuracy
of recognition/translation.1 Suppose that at some point during
the conversation, Fred brings up his calendar to check his avail-
ability for a meeting. The suppliers for the speech-to-speech
translation task, already stretched for resources, reduce their
QoS below what Fred’s preferences state as acceptable. The
EM detects this soft fault and replaces the speech recognizer
by a lightweight component, which although unable to provide
as high a QoS as the full-fledged version performs better under
suboptimal resource availability.

4) Soft Fault (Positive Delta): Suppose that at some point,
the language translation supplier running on the remote server
becomes available again. The EM detects the availability of a
new candidate to supply a service required by Fred’s task and
compares the estimated utility of the candidate solution against
the current one. If there is a clear benefit, the EM automatically
reconfigures the service assembly. In calculating the benefit, the
EM factors in a cost of change, which is also specified in the
user’s preferences associated with each service. This mecha-
nism introduces hysteresis in the reconfiguration behavior; thus
avoiding oscillation between closely competing solutions.

1Additionally, the EM uses these periodic QoS reports to monitor the avail-
ability of the suppliers, in a heartbeat fashion.
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5) Task QoS Requirements Change: Suppose that at some
point Fred’s conversation enters a technical core for which
translation accuracy becomes more important than fast response
times. The TM provides the mechanisms, if not to recognize the
change automatically based on Fred’s social context, at least
to allow Fred to quickly indicate his new preferences; for in-
stance, by choosing among a set of preference templates. The
new preferences are distributed by the TM to the EM and all the
suppliers supporting Fred’s task. Given a new set of constraints,
the EM evaluates the current solution against other candidates,
reconfigures, if necessary, and determines the new optimal re-
source allocation. The suppliers that remain in the configuration,
upon receiving the new preferences, change their computation
strategies dynamically, e.g., by changing to algorithms that offer
better accuracy at the expense of response time.

6) Task Suspend/Resume: Suppose that after the conversa-
tion, Fred wants to resume writing one of his research papers.
Again, the TM provides the mechanisms to detect, or for Fred
to quickly indicate, his change of task. Once the TM is aware
that the conversation is over, it coordinates with the suppliers for
capturing the user-level state of the current task, if any, and with
the EM to deactivate (and release the resources for) the current
suppliers. The TM then analyses the description it saved the last
time Fred worked on writing the paper, recognizes which ser-
vices Fred was using, and requests those from the EM. After the
EM identifies the optimal supplier assignment, the TM interacts
with those suppliers to automatically recover the user-level state
where Fred left off. See [27] for a formal specification of such
interactions.

7) Task Service Requirements Change: Suppose that while
writing his paper, Fred recognizes that it would be helpful to re-
fer to a presentation he gave recently to his research group. The
TM enables Fred to explicitly aggregate viewing the presenta-
tion to the ongoing task. As soon as a new service is recognized
as part of the task, the TM requests an incremental update to the
EM, which computes the optimal supplier and resource assign-
ment for the new task definition and automatically performs the
required reconfigurations. Similarly, if Fred decides some ser-
vice is no longer necessary for his task, he can let the TM know
and the corresponding (incremental) deactivations are propa-
gated to the EM and suppliers. By keeping the TM up-to-date
with respect to the requirements of his tasks, Fred benefits from
both the automatic incremental reconfiguration of the environ-
ment and from the ability to suspend/resume exactly the set of
services that he considers relevant for each task.

D. Controlling Self-Adaptation

Aura can be viewed as a closed-loop control system, which
senses, actuates, and controls the runtime state of the environ-
ment, based on input from the user. Each layer reacts to changes
in user tasks and in the environment at a different granularity
and time scale. The TM acts at a human perceived time scale
(minutes), evaluating the adequacy of sets of services to support
the user’s task. The EM acts at a time scale of seconds, evaluat-
ing the adequacy of the mapping between the requested services
and specific suppliers. Adaptive applications (fidelity-aware and

Fig. 1. Fred’s task definition for writing XYZ’04 paper.

context-aware) choose appropriate computation tactics at a time
scale of milliseconds.

Specifically, let us see how the infrastructure handles the
changes for a number of scenarios described in Section III-C.

1) Task service or QoS requirements change: The TM im-
mediately coordinates a change in the environment, by
adding, disbanding, or replacing suppliers, or changing
their QoS policies appropriately.

2) Hard fault (failure of a running supplier): The EM imme-
diately replaces the failed supplier with an alternative.

3) Soft fault (negative or positive delta in resources): The
suppliers immediately adjust their QoS to the available
resources. The EM periodically computes a new near-
optimal configuration, which may imply swapping sup-
pliers (we have not yet experimented with varying the
time scale of reaction of the EM).

IV. SUPPORTING TASK-BASED ADAPTATION

A. Defining Task Requirements

The user expresses the requirements for a task by specifying
the services needed and the associated preferences. A shared
vocabulary of services and service-specific quality dimensions
must exist between the user and the system. Developing such a
vocabulary is a subject of related research and out of the scope
of this paper (see for instance [7]), but we give insights to the
essential characteristics of such a vocabulary [27], [28].

For instance, to address user mobility across different ma-
chines, we use terms that are generic enough to be meaningful
on different platforms. For example, a task may capture the fact
that the user needs to edit text, as opposed to capturing the fact
that he needs to use Microsoft Word.

To make these ideas concrete, let us suppose that Fred is
about to start writing a new paper. Fred starts by pressing the
down arrow at the bottom of an empty task definition window
and selecting edit text (Fig. 1). The text editor activated by
the infrastructure brings up a (default) blank document and
Fred starts working. As Fred browses the web, he decides to
associate an especially relevant page with the task so that it is
brought up automatically every time the task is resumed. To do
so, Fred simply drags the page shortcut out of the browser and
into the more field of the task window (the default browse web
appears automatically). Later, Fred decides to start analyzing the
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Fig. 2. QoS preferences for the web-browsing service.

performance data on a spreadsheet. Again, Fred simply drags
the file produced by the data gathering tool from the file system
explorer into the more field and selects edit spreadsheet for it.

Note that the infrastructure imposes no constraints on the
user’s work. This comes from recognizing that many user activ-
ities are spontaneous and short lived, and need not be clas-
sified as pertaining to a particular task. However, once the
user recognizes an enduring association with a task, the in-
frastructure makes it easy to update the task definition on the
fly.

In addition to specifying the services required by each task,
the user may specify preferences with respect to how the en-
vironment should be configured. User preferences (and their
formal representation, utility functions) used in our work have
three parts. First, configuration preferences capture preferences
with respect to the set of services to support a task. Sec-
ond, supplier preferences capture which specific suppliers are
preferred to provide the required services. And third, QoS
preferences capture the acceptable QoS levels and preferred
tradeoffs.

The right-hand side of Fig. 1 defines Fred’s configuration
preferences for the task, that is, alternative operation modes
and their order of preference. The (default) full configuration
includes all the activities defined for the task. In addition, Fred
also specifies the skip web degraded-mode configuration for
when the circumstances are such that either a browser or con-
nection are not available or that the QoS is so poor (for instance,
due to low bandwidth) that Fred would rather focus on the other
activities. Fred also permits the paper only configuration for last
resort circumstances, for instance when having only a handheld
with extremely limited resources. Note that Fred can define as
many or as few operating modes as he feels appropriate and indi-
cate his relative preference for each by sliding the corresponding
bar.

Suppose that for typing the notes (edit text service), Fred
prefers MSWord over Emacs, and is unwilling to use the vi editor
at all. This is an example of supplier preferences. Note that
representing supplier preferences by discriminating the supplier
type is a compact representation for the preferences with respect
to the availability of desired features, such as spell checking or
richness of editing capabilities, as well as to the user’s familiarity
with the way those features are offered. For the sake of space, the
user interface for specifying supplier preferences is not shown,
but it is similar to the tabular form shown in Fig. 2.

Suppose now that Fred will be browsing the web over a wire-
less network link. Suppose that the bandwidth suddenly drops:
should the browser preserve the full quality of web pages at
the expense of download time or reduce the quality, for in-
stance by skipping images? The answer depends on Fred’s
QoS preferences for the current task. For browsing citations,
Fred probably will be fine with dropping images and banners,
with benefits in response times. However, for browsing a mu-
seum’s site on painting or online mapping, Fred may prefer
full page quality to be preserved at the expense of download
times.

Let us now look at the user interface of defining QoS pref-
erences. Fig. 2 shows an example of QoS preferences for the
web-browsing service. The service has two dimensions: latency
and content. Latency refers to the average time a web page takes
to load after being requested. Content refers to the richness of the
web page content. Latency is numeric and is expressed in sec-
onds. The user manipulates the good and bad thresholds by drag-
ging the green (lighter) and red (darker) handles, respectively.2

Note that the utility space is represented simply using four in-
tervals: from the lowest where the user prefers the configuration
not to be considered, represented by a cross , to the highest
corresponding to satiation, represented by a happy face .
The slide bar associated to each dimension captures how impor-
tant, that is how much the user cares, about variations along that
dimension.

We do not expect every user to interact with the system at
this kind of detail for every task. Rather, the infrastructure pro-
vides a set of templates for each service type, corresponding
to common situations. For instance, the web-browsing service
includes the high quality template shown in Fig. 2, as well as the
fast loading template, where the latency thresholds are stricter
and the content threshold is more relaxed. The user can choose
which preference template to apply to each service when defin-
ing a task (Fig. 1) or, by selecting customized tuning, manipulate
preferences directly.

To make preferences easier to both elicit and process, we
make two simplifying assumptions. First, preferences are mod-
eled independently of each other. In other words, the utility
function for each aspect captures the user’s preferences for that
aspect independently of others. Second, preferences fall into two
categories: those characterized by enumeration and those char-
acterized by numeric values. Supplier preferences are character-
ized by enumeration (e.g., MSWord, Emacs, or other) and so are
QoS dimensions such as audio fidelity (e.g., high, medium, and
low). For these, the utility function takes the form of a discrete
mapping to the utility space (see below).

For preferences characterized by numeric values, we distin-
guish two intervals: one where the user considers the quantity
to be good enough for his task and the other where the user
considers the quantity to be insufficient. Sigmoid functions,
which look like smooth step functions, characterize such in-
tervals and provide a smooth interpolation between the limits of
those intervals (see Fig. 2). Sigmoids are easily encoded by just

2The upper limit of the scale adjusts automatically between the values 10, 50,
100, 500, and 1000, further changes being enabled by a change in unit.
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Fig. 3. Internal representation of the QoS preferences in Fig. 2.

two points: the values corresponding to the knees of the curve
that define the limits good of the good-enough interval and bad
of the inadequate interval. The case of “more-is-better” qual-
ities (e.g., accuracy) are as easily captured as “less-is-better”
qualities (e.g., latency) by flipping the order of the good and
bad values. In case studies evaluated so far, we have found this
level of expressiveness to be sufficient.

Fig. 3 shows the internal representation of the preferences
captured in Fig. 2. Note that the infrastructure creates user in-
terfaces like the one in Fig. 2 dynamically, based on the internal
representation, which in turn is updated by manipulating the
representations in the interface.

B. Formal Underpinnings

This section describes how user preferences, as defined in the
previous section, guide the automatic configuration and recon-
figuration of the environment. Our approach is based on finding
the best match between the user’s needs and preferences for
a specific task, as well as the environment’s capabilities. This
framework is used both to find the optimal initial configuration
and to address the ongoing optimization of the support for the
user’s tasks.

In practice, finding such a match corresponds to a constrained
maximization problem. The function to be maximized is a utility
function that denotes the user preferences and the constraints
are the environment’s capabilities and available resources. The
result of the maximization is an abstract measure of the feasi-
bility of carrying out the task, given the current conditions in
the environment.

Utility Space: Utility functions map the capability space (see
next paragraph) onto the utility space. The latter is represented
by the real number interval [0, 1]. The user will be happier
the higher the values in the utility space. The value 0 corre-
sponds to the environment being unacceptable for the task and
1 corresponds to user satiation, in the sense that increasing the
capabilities of the environment will not improve the user’s per-
ception of feasibility of the specific task.

Capability Space: The capability space Cs corresponding
to service s is the Cartesian product of the individual quality
dimensions d of the service:

Cs=̂ ⊗d∈QoSdim(s) dom(d).

For example, possible quality dimensions for the play video
service are frame update rate, the frame size, and audio quality.

Thus, the capability space of video playing is three dimensional.
Cartesian product is used to combine the capability space of two
services. For distinct services s and t, their combined capability
space is formally expressed as

Cs∪t=̂Cs ⊗ Ct.

For example, a web-browsing service has two quality dimen-
sions, latency and page richness, and video playing has three
dimensions of quality. Thus the joint capability space of video
playing and web browsing has five quality dimensions.

Typically, an application supports only a subset of the capa-
bility space corresponding to its various fidelities of output. In
practice, approximating this subset using a discrete enumeration
of points provides a reasonable solution, even if the correspond-
ing capability space is conceptually continuous. For example,
while it makes sense to discuss a video stream encoding of dec-
imal frames per second, typically video streams are encoded
at integer rates. Despite discrete approximation, our approach
does allow the handling of a rich capability space. For exam-
ple, the capability space of a specific video player application
can have 90 points, which is made possible by combining five
frame rates, six frame sizes, and three audio qualities. Such a
capability space can be made possible by encoding the same
video in multiple frame rates, frame size, and audio quality, and
possibly leveraging application-specific features such as video
smoothing.

An application profile specifies a discrete enumeration of the
capability points supported by an application and correspond-
ing resource demand for each point. Note that specific mech-
anisms for obtaining and expressing application profiles exist.
As demonstrated in [22], resource demand prediction based on
historical data from experimental profiling is both feasible and
accurate. Further, metadata and reflection can be used to express
application profiles [4].

Application profiles describe the relationship between the ca-
pability points supported by applications and the corresponding
resource requirements. Formally, the quality resource mapping
of supplier p is a partial function from the capability space
of service s to the resource space: QoSprofp : Cs �→ R. The
range of the function is the subset of the capability space that is
supported by the supplier.

Resource Space: The resource space R is the Cartesian prod-
uct of the individual resource dimensions r of the entire envi-
ronment E

R=̂ ⊗r∈RESdim(E ) dom(r).

Examples of resource dimensions are CPU cycles, network
bandwidth, memory, and battery. The actual number of resource
dimensions is dependent on the environment.

Utility Functions: There is one utility function for each alter-
native configuration for a given task. The feasibility of the task
corresponds to the best utility among the alternatives, weighted
by the user’s preference for each alternative. The utility function
for each configuration has two components, reflecting QoS and
supplier preferences, respectively.

QoS preferences specify the utility function associated with
each QoS dimension. The names of the QoS dimensions are
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part of the vocabulary shared between the user and the sys-
tem. The utility of service s as a function of the QoS is given
by

UQoS (S)=̂
∏

d∈QoSdim(s)

Fcd

d

where for each QoS dimension d of service s, Fd : dom(d) →
(0, 1] is a function that takes a value in the domain of d and
the weight cd ∈ [0, 1] reflects how much the user cares about
QoS dimension d. As an example, video playing has a QoS
dimension of frame update rate. The function fframerate gives
utility for various frame rates and cframerate specifies the weight
of frame rate.

To evaluate the assignment of specific suppliers, we employ
a supplier-preference function, which is a discreet function that
assigns a score to a supplier, based on its type. We also account
for the cost of switching from one supplier to another at runtime.

Precisely, the utility of the supplier assignment for a set a of
requested services is

USupp(a)=̂
∏
s∈a

hxs
s · FCs

s

where for each service s in the set a, Fs : Supp(S) → (0, 1] is
a function that appraises the choice for the supplier for s and
the weight cs ∈ [0, 1] reflects how much the user cares about
the supplier assignment for that service. hxs

s expresses a change
penalty as follows: hs indicates the user’s tolerance for a change
in supplier assignment. A value close to 1 means that the user
is fine with a change; the closer the value is to zero, the less
happy the user will be. The exponent xs indicates whether the
change penalty should be considered (xs = 1, if the supplier
for s is being exchanged by virtue of dynamic change in the
environment) or not (xs = 0, if the supplier is being newly
added or replaced at the user’s request).

The overall utility is the product of the QoS preference and
supplier preference. The overall utility over a set a of suppliers
is

Uoverall(a) =
∏
s∈a

hxs
s · Fcs

s


 ∏

d∈QoS dim(s)

Fcd

d


 .

1) Optimization Problem: The optimization problem is to
find a supplier assignment a, and for each supplier p in this
assignment, a capability point such that the utility is maximized:

arg max p s ∈Supp(s )
f d ∈dom(d )

∏
s∈a

hxs
s · Fcs

s (ps) ·


 ∏

d∈QoS dim(s)

Fcd

d (fp,d)


 .

The maximization is over a set of constraints, which we express
below. The capability constraint stating that the chosen point
fp,d is in the capability space for supplier p as follows:

∀p∈Supp(s)fp = ⊗d∈QoS dim(s)fp,d ∈ Cp.

And to ensure that the resource constraints are met
∑

p∈Supp(s)

QoSprofp(fp) ≤ |R|

where the summation is in the vector space R of resources and
the inequality is observed in each dimension of that space. In
nonmathematical terms, this constraint expresses the fact that the
aggregate resource demand by all the suppliers cannot exceed
the resource supply.

C. Algorithm and Analysis

In this section we solve the optimization problem. The op-
timization algorithm must be efficient to be usable at runtime.
Two metrics we are interested in are the latency of computing an
answer to a given instance of the problem and the computational
overhead of the algorithm.

1) Algorithm: The algorithm works in three phases: 1)
query; 2) generate; and 3) explore. In the first phase, it queries
for relevant suppliers for each service in the task. In the second
phase, it combines suppliers into configurations and ranks them
only according to the supplier preference. In the third phase, it
explores the quality space of the configurations. The pseudocode
for the algorithm is shown in Fig. 4.

The double product term of the utility formula in B.1 allows
for a clever exploration strategy. The outer product is the supplier
preference score. It can be computed at the time the supplier
assignment is known (in phase 2) and can be used as an upper
bound for overall utility during the explore phase. Since overall
utility is the product of supplier preference and QoS preference,
and the latter is bounded by one, then maximum overall utility
is bounded by supplier preference. The break in the loop in
BestConfig takes advantage of this fact.

Consider a simple example. Assume that two services are
requested. For each service, there are two possible suppliers: a1

and a2 for the first service and b1 and b2 for the second, yielding
four possible configurations as shown in Table III. The search
space can be divided into four quadrants, each representing the
capability space of a specific configuration. We are searching
for a point with the highest utility.

As noted, the maximum utility that can be achieved within
each quadrant is bounded by the supplier preference portion
of utility. These observations help provide a stop condition for
the search: once a point is found that has an overall utility
of Λ, there is no need to explore configurations with supplier
preference portion of utility of less than Λ.

In Table III, the shades of each quadrant reflect the hypo-
thetical values of the supplier preference portion of utility for
each configuration: the darker the shade, the higher the value.
Assume that these values are 0.8, 0.6, 0.4, and 0.2. Each of these
values is an upper bound for maximum overall utility possible
from the respective quadrant. We explore inside the quadrants,
starting from the darkest. If the maximum utility for the quadrant
a1, b1 is higher than 0.6, then we have found the best point in
the entire space and can stop the search. And if not, we continue
the search in quadrant a2, b1, and so on.

Exploring the quality space of a configuration is a variant of
a 0-1 Knapsack problem, called multiple dimensional, multiple
choice 0-1 Knapsack. Multiple dimensions refer to the multi-
ple constraints that are present in the problem. Multiple choice
refers to choosing one among a set of similar items. In our
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Fig. 4. Pseudocode of the algorithm

TABLE III
STRUCTURE OF THE SEARCH SPACE

problem, resources map to knapsack dimensions and the capa-
bility space of one service maps to one set of similar items. This
is a well-studied problem in the optimizations research, and is at
the core of such optimization problems as winner determination
in combinatorial algorithms. Lee et al. [18] and Pisinger [25]
show the problem to be NP-complete and give approximation al-
gorithms. Pisinger [25] gives an exact solution that is demonstra-
bly fast on inputs drawn from certain probability distributions.

TABLE IV
NUMBER OF CONFIGURATIONS GENERATED AND EXPLORED FOR VARIOUS

VALUES OF N AND Λ, MAXIMUM UTILITY ACHIEVED

One of the approximating algorithms to the problem uses
utility to resource ratio as a metric for ranking the capabil-
ity points, it then applies greedy branch-and-bound and LP-
relaxation to find a near-optimal answer. In the multiple resource
case, quadratic weighted-average is used to compute a single re-
source currency from multiple resources and the solution to the
single resource case is reused iteratively [18].

In our solution, SearchQoS invokes a third-party library called
Q-RAM, the package described in [18].

2) Analysis: To analyze the running time of the algorithm,
let

1) n be the number of requested services;
2) P be the total number of available suppliers;
3) p be the number of suppliers for a given service type;
4) q be the size of the capability space of a supplier.

P and p describe the richness of the environment and can poten-
tially increase as more applications, hardware, and devices are
made available. q describes the capability richness of a supplier.
It is reasonable to assume that the size of the user task is limited
to a small number of applications. Thus n is bounded.

Next we analyze the running time of the three phases.
1) The query phase retrieves items from a hashtable. Retriev-

ing one item is logarithmic in the size of the hashtable.
n retrievals from a hashtable of size P/p take O(n ∗
log(P/p)).

2) The generate phase is a recursion of depth n, with a loop
of size p at each level. Thus, it takes O(pn ).

3) The explore phase in the worse case takes O(pn ) ∗ O
(searchQoS). The size of the QoS space of a configuration
of n suppliers each of which has a capability space of
size q is O(qn ). The approximation algorithm we use can
search that space in time O(n ∗ q ∗ log q) [18], [25]. Thus
the explore phase takes O(pn ) ∗ O(n ∗ q ∗ log q) in the
worst case and dominates all other terms. The first term
O(pn ) presents a possible scalability bottleneck.

Let us demonstrate how the exploration strategy described
earlier helps tackle this bottleneck. Recall the break condition
in the explore phase (illustrated in the example introduced in
Section IV-C1). The number of configurations that are explored
will depend on the distribution of the supplier preference values
and Λ, the highest achievable utility value. Let us assume an
average number of suppliers per service p = 10 and a specific
distribution of supplier preference values that is uniform, i.e., the
most preferred supplier scores 0.9◦, the next one scores 0.91, etc.
Table IV shows the number of configurations generated and the
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TABLE V
SERVICES REQUIRED FOR THE TASK, THEIR QUALITY DIMENSIONS,

AND AVAILABLE SUPPLIERS FOR EACH SERVICE*

number of configurations that are actually explored depending
on the value of maximum achievable utility Λ, and number of
services in the task n.

The first row shows the number of services. The second row
shows the number of configurations generated, which is pn , in
this case, 10n . In each subsequent row, we show the number
of configurations that are sufficient to explore, if the maximum
utility shown in the first column in that row is actually achieved
by some configuration. For instance, for a task with 4 requested
services, even if the maximum utility achievable is as modest as
Λ = 0.6, then the number of supplier configurations explored
is 126, which is two orders of magnitude smaller than 104, the
total number of configurations.

3) Reconfiguration: The algorithm also handles reconfigu-
ration scenarios described in Section III-D. When there is a
running configuration, the utility from the best computed con-
figuration is compared with the observed utility of the running
configuration and a switch is made if the latter is lower than
the former. The cost of change introduces a kind of hysteresis,
giving the currently running configuration preference. Because
a user’s tolerance to change might depend on a type of service,
the model explicitly provides means to specify this.

V. EVALUATION

A. Case Study

In this section we report on a case study of automatically
configuring an environment for reviewing a documentary video
clip. The user watches the clip, taking notes, while browsing the
net for information. Table V lists the services in the task and the
QoS dimensions of each service.

We performed the case study in two steps. In the first step
we collected application profile data, specified preferences, and
identified resource limits. In the second step, we ran a prototype
implementation of the algorithm.

1) Input Data Collection: As an experimental platform, we
chose an IBM Thinkpad 30 laptop, equipped with 256 MB
of memory, 1.6-GHz CPU, WaveLAN card, and Windows XP
Professional. In power-saving mode, the CPU can run at a
percentage of the maximum speed, effectively creating a tight
CPU constraint.

The model requires three inputs: 1) user preferences; 2) appli-
cation profiles; and 3) resource availability. For this experiment,
we used synthetic preferences intended to be representative of
the task. We identified several applications that supported vari-

ous facets of the task. These applications were installed on the
laptop. To obtain application profiles, we measured resource
usage corresponding to a small set of capability points. We
performed this profiling offline, with each supplier running sep-
arately. Resource availability is as follows: 400 MHz of process-
ing power, when the CPU is running at one-fourth of the baseline
speed, 64 MB of free memory after excluding the memory taken
by the operating system and other essential critical systems, and
512 kb/s of bandwidth, provided by an 802.11 wireless access
point backed by a DSL line.

The last column of Table V lists the applications used in the
experiment.

We measured CPU and physical memory load using Windows
Performance Monitor. We used percent processor time, working
set counters of the Process performance object to measure CPU
and memory utilization, respectively. We took the sampling av-
erage over a period of time. The performance monitoring API
does not provide per process network statistics and so the mech-
anism for measuring bandwidth demand was different in each
case, as explained below.

For a representative clip to watch, we obtained a 2-min
trailer of a movie in Windows native .wmv and Real Net-
works native .rpm in several different bitrates. Where cross-
player compatibility is supported, we obtained additional capa-
bility points. For example, RealOne plays .wmv format. Also,
players provide quality knobs, allowing improved quality in
exchange for higher CPU utilization. For example, Windows
Media player supports video smoothing that provides higher
frame rate than the rate encoded in the stream. For each player,
32 quality points were sampled. To measure bandwidth de-
mand, we consider the bit-rate of the stream and cross-check
with the application-reported value. The CPU consumption
of different players are widely different for the same quality
point.

We measured the CPU and memory used while typing and
formatting text for 2 min with each text editor. The memory
consumption of the text editors is widely different.

All browsers surveyed support a text-only mode, providing
two points in the page richness dimension. To obtain different
levels of latency, we used a bandwidth-limiting http proxy and
pointed the browser to the proxy. We measured latency by al-
lowing the following bandwidth limits: 28, 33, 56, 128, 256,
512 kb/s. Our script included a sequence of approximately 15
pages with a mix of both text and graphics on the internet.
By starting with a clean browser cache, we sampled 16 quality
points. We found that the browsers have very similar resource
consumption patterns.

Although we realize that the methods for obtaining resource
consumption measures are not precise, we believe that they yield
good enough approximations for this feasibility analysis.

Note that the capability space of a configuration of suppliers
has approximately 500 points (32 ∗ 16 ∗ 1), based on the sam-
ples taken. Thirty configurations together provide a capability
space of approximately 15 000 points.

2) Prototype Evaluation: The algorithm is guaranteed
to find an optimal assignment of suppliers. Furthermore,
it will obtain the optimal set of quality points for the
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TABLE VI
SUMMARY OF THE EXPERIMENT RESULTS

suppliers, as long as Q-RAM finds the optimal point inside
each quadrant. Whenever Q-RAM returns a near-optimal
answer, our algorithm will return a near-optimal set of quality
points.

Additionally, we evaluated a prototype implementation of the
algorithm according to two metrics: 1) latency and 2) system
overhead. Latency measures the time it takes to compute an op-
timal configuration, from the time that a client program requests
it. Overhead measures percent CPU and memory utilization of
the algorithm. To adapt the configuration in response to environ-
ment changes, it is necessary to run the algorithm periodically.
Thus, the overhead of the periodic invocation provides a useful
metric.

The latency of computing the best configuration averaged
over ten trials was 531 ms. In the query and generate phases,
the algorithm spends less then 10 ms each. In the explore phase,
it is slightly less than 500 ms (approximately 10 ms was due
to parsing the request and formatting the answer). The bulk
of the time in the explore phase was due to external process
invocation and file input–output (Q-RAM package is an external
executable). Thus, the latency can be significantly reduced by
linking into Q-RAM in-process.

We invoke the algorithm a total of 50 times in 5-s intervals
over a period of 250 s and measure average CPU utilization.
Average CPU utilization is 3.8%. This overhead is fairly low and
can be further lowered by running the algorithm less frequently,
e.g., once per 10 or 25 s.

Memory usage of the process running the algorithm is ap-
proximately 8.8 MB. While this is a significant overhead, most
of it is due to the Java virtual machine. Table VI summarizes
the key results of the experiments.

B. Lessons Learned and Design Guidelines for Applications

The form of self-adaptation that we address in this work
is targeted at support for everyday computing in ubiquitous
computing environments. An essential component of this work
is to integrate applications into the infrastructure. However, us-
ing existing applications is a challenge since these applications
are in general not designed for self-configuring capabilities,
such as those that we are attempting to provide.

To integrate legacy applications as suppliers of Aura, we
have written wrappers around the applications. These wrappers
mediate communication with Aura so that the application state
can be set and retrieved and the resource usage and QoS can
be monitored. Our experience in writing over a dozen suppliers
for applications in both Windows and Linux environments has
proven that it is easy to implement wrappers to get basic set/get
state functionality. However, it is much more challenging to
control application adaptation policies.

In order to facilitate smooth integration of applications into
the infrastructure, we have identified the following two groups
of desirable requirements.

1) To support mobility and coarse-grained adaptation, we
require applications to provide mechanisms to get and set
the task-level state of each application.

2) To support fine-grained QoS adaptation, we require ap-
plications to report aggregate resource usage and QoS
information and to provide mechanism to restrict usage of
certain resources.

1) Mobility: As described in Section III-B, the task layer
requires that the user-level state of applications be retrieved and
set. This facilitates task transfer between environments and en-
ables task suspend and resume by a user. Our approach requires
some consensus about the meaning of the state of a particular
generic service, such as text editing. However, not all appli-
cations need to handle all the details of the task state: certain
additional properties can be treated as optional. If a supplier
cannot interpret these properties, they are simply ignored, but
preserved for future instantiations of the task.

In our experience with developing suppliers, we have had
mixed success with getting state information from applications.
While more recent applications allow reflective access to get
and set this information through programmatic interfaces such
as .NET, it is not as easy with older applications. Even when
applications provide a programmatic interface, it is possible that
they do not expose the required information. For example, to
restore the state of web browsing, it is desirable to set and get the
history of the browser so that backward and forward browsing
state can be maintained. Internet Explorer, while providing an
interface for setting the current web page, does not provide these
additional APIs.

We argue that our requirements for a programmatic interface
to set and get the state of the task are not unreasonable. Ap-
plications increasingly allow access to such information. In our
experience, it has always been possible to get and set some form
of the state; the challenge has been in the varying mechanisms
that we have had to use, and the issue has been the scope of the
information that we have access to.

Our experience has also demonstrated the need for applica-
tions to “sandbox” the set of materials belonging to one task. For
example, suppose that one user task requires two spreadsheets
to be edited, while another task requires one spreadsheet to be
edited. If these tasks are simultaneously active, the originating
task of each spreadsheet needs to be recorded. Applications
provide varying support for such sandboxing. Microsoft Excel
supports directly such functionality because there can be
multiple physical instances of the Excel process running,
each with its own set of files. On the other hand, Microsoft
PowerPoint makes this difficult, because only one process
instance can be running on a given workstation. This makes
the design of the supplier wrapper much more complex and
time-consuming.

2) Adaptation: To allow for adaptation to changing re-
sources, in Section IV-B we described a formalism that can
provide optimal configurations or reconfigurations based on the
available supply of resources and the expected resource usage
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of the applications. For the mathematical formalism to work
in practice, the Aura infrastructure requires information about
resource usage and QoS of applications, resource supply in the
environment, as well as a certain level of cooperation from ap-
plications about expected resource usage.

In practice, the following set of requirements need to be sat-
isfied in order for the mathematical model of Aura to produce
accurate outcomes: 1) ability to monitor application-provided
QoS; 2) ability to monitor and report application resource usage;
3) ability to monitor available resource supply; and 4) ability to
enforce resource usage limits on applications.

Let us discuss how each of these requirements can be trans-
lated into design guidelines for application and system develop-
ers. Requirement 1) can be satisfied directly by application de-
velopers by exposing rich APIs that report the QoS. For example,
many of the commercial and open-source video/media players
report the richness of the stream in bit rates, the frame update rate
of the video, the size of the frame, the color depth, etc. Require-
ments 2) and 3) can be satisfied by a shared service that is either
provided by the operating system or third-party middleware.
While modern operating systems generally provide reasonable
performance and resource-monitoring hooks, there is room for
improvement. However, some resources can be more difficult
to account for on a per-process basis (e.g., battery). Notice that
there are research systems, such as the Nemesis operating sys-
tem [19] and Odyssey adaptive platform [24] that specifically
provide accurate resource usage and supply estimates.

With respect to requirement 4), we believe that a twofold ap-
proach is needed. First, applications can provide various adap-
tation strategies (e.g., more CPU-intensive video stream de-
coding or less CPU-intensive decoding); we believe that ap-
plications should provide the ability to comply with resource
usage limitations. Some of the video players on the market
provide such ability directly, e.g., with respect to network band-
width. However, it is also desirable to have an operating system-
provided mechanism for ensuring that resource limitations are
enforced if an application proves to be uncooperative. For ex-
ample, some video players aggressively prefetch, thereby using
all available bandwidth despite being told to use a low bit rate
stream. In such cases, a mechanism external to application (e.g.,
bandwidth throttling) can enforce resource limitations imposed
on applications.3

VI. CONCLUSION AND FUTURE WORK

In this paper we have described an approach to self-
configuring capabilities for everyday computing environments.
Motivated by the challenges of supporting heterogeneity, re-
source variability, mobility, ubiquity, and task-specific user re-
quirements, we have developed a self-adaptation infrastructure
that has three distinctive features. It allows explicit representa-
tion of user tasks, including preferences and service qualities.
It provides an EM capability to translate user-oriented task and

3Notice that we are not advocating here the need for applications to interfere
with the low level scheduling of resources by the operating system. We simply
advocate that on the level timescale of seconds the resource usage by applications
should be consistent with the expected quality of service delivered.

preference specifications into resource allocations that match
the intended environment. Finally, it provides a formal basis for
understanding the resource allocation and derived algorithms
that support optimal allocation at runtime.

While providing a good starting point, this work also suggests
a number of important future directions. First is the extension
of task specification so that it can express richer notions of
task, such as work flow, cognitive models, and goal-driven task
realization. Second is the extension of resource allocation al-
gorithms to take advantage of future predictions. This entails
much richer notions of utility, such as those prescribed by op-
tions theory. Finally, there are many directions that one could
pursue in the area of user interface design to make it even easier
for users to create and reuse task descriptions.
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