
Understanding Misconfigurations in ROS: An Empirical Study
and Current Approaches

Paulo Canelas
pacsantos@cmu.edu

School of Computer Science,
Carnegie Mellon University

Pittsburgh, PA, USA

Bradley Schmerl
schmerl@cmu.edu

School of Computer Science,
Carnegie Mellon University

Pittsburgh, PA, USA

Alcides Fonseca
amfonseca@fc.ul.pt

Faculdade de Ciências,
Universidade de Lisboa

Lisboa, Portugal

Christopher S. Timperley
ctimperley@cmu.edu

School of Computer Science,
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract
The Robot Operating System (ROS) is a highly popular framework
and ecosystem that allows developers to build robot software sys-
tems from reusable, off-the-shelf components. Systems are often
built by customizing and connecting components into a working
ensemble via configuration files. While reusable components allow
developers to quickly prototype working robots in theory, in prac-
tice, ensuring that those components are configured and connected
appropriately is fundamentally challenging, as evidenced by the
large number of questions asked on developer forums. Developers
must be careful to abide by the assumptions of individual compo-
nents, which are often unchecked and unstated when building their
systems. Failure to do so can result in misconfigurations that are
only discovered once the robot is deployed in the field, at which
point errors may lead to unpredictable and dangerous behavior. De-
spite misconfigurations having been studied in the broader context
of software engineering, robotics software (and ROS in particular)
poses domain-specific challenges with potentially disastrous conse-
quences. To understand and improve the reliability of ROS projects,
it is critical to identify the types of misconfigurations developers
face. To that end, we study ROS Answers, a Q&A platform, to iden-
tify and categorize misconfigurations during ROS development. We
then conduct a literature review to assess the coverage of these
misconfigurations using existing detection techniques. In total, we
find 12 high-level categories and 50 sub-categories of misconfigura-
tions. Of these categories, 27 are not covered by existing techniques.
To conclude, we discuss how to tackle those misconfigurations in
future work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA 2024, 16-20 September, 2024, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts
• Computer systems organization→ Robotics; • General and
reference → Empirical studies.

Keywords
Robotic Systems, Misconfigurations, Empirical Study, Literature
Review
ACM Reference Format:
Paulo Canelas, Bradley Schmerl, Alcides Fonseca, and Christopher S. Tim-
perley. 2024. Understanding Misconfigurations in ROS: An Empirical Study
and Current Approaches. In Proceedings of ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA 2024). ACM, New York, NY,
USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The Robot Operating System (ROS), known as the “Linux of Ro-
botics”, is the de facto open-source framework for building robot
software [39]. ROS’s package ecosystem provides developers with
reusable, off-the-shelf components that implement common robot
functions (e.g., perception, planning, localization, drivers) [14, 30].
In theory, ROS allows developers to quickly prototype robot soft-
ware by integrating such components and adjusting their parame-
ters via configuration files (e.g., Launch XML, ROS Param YAML)
to match their intended application and environment.

Despite the relative ease of integrating components using con-
figuration files in ROS, correctly configuring systems presents a
considerable challenge. For instance, the software’s configuration
depends on the robot’s hardware and operating environment (e.g.,
specific types of sensors and their placement in the robot).1 When
communicating with each other, components must make matching
assumptions about their environment (e.g., when the camera is
10 cm above the wheels, a reference transformation is required).2
Finally, timeliness properties must be considered when integrating
components to avoid negatively impacting robot behavior (e.g.,
frames may be dropped when processing high-resolution image
streams, leading to unstable and dangerous motion).3

1https://answers.ros.org/question/59087
2https://answers.ros.org/question/227092
3https://answers.ros.org/question/248656

https://orcid.org/0000-0002-0154-8989
https://orcid.org/0000-0001-7828-622X
https://orcid.org/0000-0002-0879-4015
https://orcid.org/0000-0002-9785-324X
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://answers.ros.org/question/59087
https://answers.ros.org/question/227092
https://answers.ros.org/question/248656

ISSTA 2024, 16-20 September, 2024, Vienna, Austria Canelas et al.

To provide plug-and-play functionality, ROS components are typ-
ically required tomake assumptions about the context in which they
are used (e.g., a topic should receive messages of the correct type at
a certain frequency) that are neither checked nor documented [14].
Misconfigurations occur when one or more components make dif-
ferent, conflicting assumptions about the robot, leading to unin-
tended and potentially dangerous behavior (e.g., property damage,
human harm) during deployment. Given the importance of safety
within this domain, it is vital to identify misconfigurations before
the robot is deployed, and as early as possible. To that end, the
robotics software engineering community has begun to develop
tools to detect certain misconfigurations, such as those related to
physical units [28], architecture [48], and reference frames [27].

To systematically tackle the misconfiguration problem, it is criti-
cal to understand the types of misconfigurations that occur in the
wild and whether existing tools are designed to detect them. Based
on our own experiences with ROS, we know that physical units,
architectural, and reference frames are not ROS’s only categories
of misconfiguration. Software misconfigurations have been thor-
oughly studied in different contexts of software development (e.g.,
security [13, 40], databases [33, 57], cloud computing [24, 50, 59]
and networks [36]). However, misconfigurations within ROS are
inherently different due to their cyber-physical nature.

In this work, we set out to identify the broader set of miscon-
figurations that impact ROS systems and to determine which
detection techniques address them and which misconfigu-
ration types are going undetected. This knowledge can guide
future research in the robotics software engineering community in
developing novel tools and techniques to address them.

We first derive a taxonomy of misconfigurations within ROS
systems by conducting an empirical study of relevant questions
posted to ROS Answers, a ROS-specific Q&A site similar to Stack
Overflow. Secondly, after devising a taxonomy of misconfigurations,
we determine the extent to which state-of-the-art analysis tools help
to address those issues by conducting a systematic literature review
of analysis papers published at several major software engineering,
architecture, testing, and robotics conferences. Finally, as part of our
analysis, we highlight misconfigurations unaddressed by existing
techniques and further discuss research opportunities in developing
new techniques for them.

Through our study, we make the following contributions:

• A taxonomy of misconfigurations in ROS, based on a quali-
tative study of a popular Q&A platform (Section 3);

• A literature review of the state-of-the-art approaches and
how they cover the misconfigurations (Section 4);

• A dataset of misconfigurations and questions manually ana-
lyzed and categorized that can be used to guide future stud-
ies and develop novel techniques (https://anonymous.4open.
science/r/artifact-study-misconfigurations-5D6A).

2 Background
In this section, we provide a high-level introduction to ROS as a
middleware for building component-based robotics software and
as an open-source ecosystem of reusable components.

Systems in ROS are built as a collection of independent pro-
cesses, known as nodes or components, that are each responsible

for providing certain functions (e.g., perception, planning, control,
driver interfacing). At its core, ROS’s responsibility is to provide
the “plumbing” that facilitates communication between distributed
components. The bulk of communication within ROS follows an
anonymous publish/subscribe pattern [43]. At one end, compo-
nents (e.g., a camera driver) publish messages to named topics (e.g.,
/camera/color/image_raw). On the other hand, components (e.g., ob-
ject detection) subscribe to those same topics to receive messages.
Neither the publishers nor the subscribers are directly aware of one
another’s identities (i.e., they are spatially decoupled [15]). More-
over, communications are defined at run-time via calls to the ROS
API (e.g., strings are used to state topics by name).

One of ROS’s biggest strengths is its rich ecosystem of generic
open-source components that can be reused for common robot func-
tions [30, 35]. For example, MoveIt! [8] provides motion planning
and execution for manipulation, ros_control [7] provides im-
plementations of low-level controllers (e.g., velocity, joints, effort),
and ros_localization [37] provides filters for state estima-
tion (e.g., by fusing GPS and IMU data). By reusing off-the-shelf
components, developers can, in theory, reduce the cost and complex-
ity of building robot software. However, because these components
are generic, they must be configured to work in specific contexts.

ROS uses configuration files to customize and compose those
components into a functioning ensemble. These include Launch
XML (or Python) files, which launch and compose each component
within the system and ROS Parameter YAML files are used by com-
ponents at run-time to customize their behavior (e.g., specifying a
color format and topic name for camera images). General-purpose
components use these configuration files to tailor their behavior to
a particular robot, application, or environment. Particularly com-
plex and variable components and subsystems (e.g., Nav2, MoveIt!,
ros_control) go beyond providing a fixed set of parameters and em-
bed a limited domain-specific language within the ROS parameter
system.

Together, these aspects of ROS are designed to enable rapid pro-
totyping, encourage component reuse (e.g., components can be
swapped without modifying the rest of the system), and reduce
the cost and complexity of building robots. However, due to ROS’s
dynamic, spatially decoupled architecture, developers must follow
assumptions and conventions when integrating components into
their system, which are neither enforced nor documented [1, 14].
Failing to do so leads to misconfigurations. Often, such misconfigu-
rations do not produce meaningful errors and are only uncovered
via manual and laborious debugging of erroneous behaviors at run
time.

3 Study of Misconfigurations
To understand which misconfigurations current tools can address,
we first need to know the different types that exist. Therefore, we
ask the following research question:

RQ1:What kinds ofmisconfigurations do developersmake
when building robot software systems with ROS?

To answer this question, we perform an empirical study of ROS
Answers, the, until recently, primary Q&A forum for ROS [14].4

4In August 2023, Open Robotics decided to move to the Robotics Stack Exchange
(robotics.stackexchange.com).

https://anonymous.4open.science/r/artifact-study-misconfigurations-5D6A
https://anonymous.4open.science/r/artifact-study-misconfigurations-5D6A
https://robotics.stackexchange.com

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA 2024, 16-20 September, 2024, Vienna, Austria

ROS Answers
Snapshot

Accepted Answers Filter

ROS and Architecture Concepts Filter

CODE

Category

Category

Category

Description

Compilation and Build Errors Filter
Description

Description

CODE

CODE

Check
Relevancy

Validation
& Coding

Data Collection & Filtering Open Coding

A1

A2
A3

A4

67 1789

27 547

13 740

228

relevantnot relevant

2 614

+

Manual Filtering

10 898

not analyzed

analyzed

Figure 1: Three-step methodology for analyzing ROS Answers questions. Step 1 collects a snapshot of 67 189 questions. Step
2 selects questions with accepted answers containing ROS or software architecture concepts and filters questions about
compilation or building issues. Step 3 produces a sample of 228 questions filtered based on their relevance. Questions are
divided into stages, where their codings are iteratively improved.

Q&A platforms are designed for users to post their problems, in-
cluding explaining the scenario where the problem occurs. While
only some of the questions pertain to misconfiguration, we found
many such instances in a prospective search. Q&A websites pro-
vide more detailed misconfiguration examples than social coding
platforms (e.g., GitHub) since commit messages often lack impor-
tant context, making it difficult or impossible to reliably identify
misconfigurations. Furthermore, issue trackers often describe bugs
in individual components rather than the difficulties of integrating
those components into a working system. To that end, we perform
a thematic analysis of questions posted to ROS Answers.

In the rest of this section, we describe our methodology (Sec-
tion 3.1) and its associated threats to validity (Section 3.2) before
presenting our taxonomy of ROS misconfigurations (Section 3.3).

3.1 Methodology
Figure 1 outlines our high-level methodology, which takes inspi-
ration from studies of similar Q&A platforms [2, 46]. Below, we
describe each step of our methodology.

Data Collection & Filtering. We first gathered all 67 189 ques-
tions posted to ROS Answers between January 1st, 2011, and No-
vember 20th, 2022. Figure 2 presents an example5 of a question and
its accepted answer. We then filtered these questions to a set of
27 547 by selecting only those with an accepted answer as they offer
an alternative perspective and accepted solution from the user.

During the second step, we narrowed the accepted questions
to those referring to ROS and architectural concepts, expecting to
obtain misconfiguration questions. Reducing the set of questions
is a common practice in the literature [2, 4, 46]. We used com-
mon ROS concepts as defined in the ROS Wiki:6 node, subscribe
topic, message, parameter, service, action, launch, publish, and sub-
scribe. Since developers indirectly define their system’s architecture
when changing configurations, we also identify questions related to
software architecture errors [20]: architecture, mismatch, assump-
tion, incompatibility, inconsistency, integration, and configuration.
Subsequently, the set was further refined by removing questions
containing keywords related to installation and build errors (e.g.,
build error or compil*). Build errors are comparatively easy

5https://answers.ros.org/question/231458
6http://wiki.ros.org/ROS/Concepts

ROS Resources: Documentation | Support | Discussion Forum | Index | Service Status | Q&A answers.ros.org

tags users badges

Hi there! Please sign in help

ASK YOUR QUESTIONALL UNANSWERED

Apr 8 '16
960 times
Jul 06 '16

Question Tools

FollowFollow
2 followers

subscribe to rss feed

Stats

Asked:
Seen:
Last updated:

Related questions

RGBDSLAM alternatives for Indigo

The detail of RGBDSLAMv2

How do I !nd out a topics data type?

RGBDSLAMv2 remote online mapping
visualization problems in RViz

rgvdslam v2 roslaunch error in
ubuntu 14.04 ros indigo

rgbdslam v2 process has died

How to use a saved Octomap for
Path Planning with Kinect

load ocTree !le to octomap_server
[closed]

RGBDSLAM+IMU

rgbdslam error: gsl/gsl_linalg.h not
found [closed]

asked Apr 8 '16
archit
3 ●1 ●2 ●3

updated Apr 8 '16

RGBDSLAM rgbdslam_v2 rgbdslamv2 realsense realsense_camera

Comments

answered Apr 10 '16
al-dev
873 ●7 ●14 ●20

linkadd a comment

answered Jul 6 '16
Ziwen Qin
136 ●8 ●10 ●17

linkadd a comment

2 Answers

0
rgbdslam_v2 not receiving any video stream from Realsense
R200

I'm trying to use a Realsense R200 camera to generate 3-D maps. For this purpose,
I have the realsense_r200_nodelet running on $ROS_MASTER_URI like so

roslaunch realsense_camera realsense_r200_nodelet_standalone_manual.launch color_fps:=30
color_height:=480 color_width:=640 depth_fps:=30 depth_height:=480 depth_width:=640

I have rgbdslam running on a separate machine. I run it like so

roslaunch rgbdslam rgbdslam.launch

Unfortunately, I don't see any video being captured on the GUI that comes up. I have updated the
rgbdslam.launch file to have the right values for the config parameters. The relevant ones are as shown below

<param name="config/topic_image_mono" value="/camera/color/image_raw"/>
<param name="config/topic_image_depth" value="/camera/depth/image_raw"/>
<param name="config/topic_points" value="/camera/depth/points"/>
<param name="config/base_frame_name" value="/camera_link"/>
<param name="config/camera_info_topic" value="/camera/color/camera_info"/>

I have confirmed using rviz that my machine does receive video stream from the Realsense camera. Does
anyone have any pointers on what I might be doing wrong to not receive anything on the rgbdslam GUI.

 al-dev (Apr 8 '16)

Yeah, I'm receiving both the rgb and depth streams (checked with rviz). I changed the topic to
/camera/color/image_raw because that it is the one on which Realsense sends the rgb stream (it
works when used with rviz).

 archit (Apr 9 '16)

Ok. Which versions of rgbdslam and of the realsense ROS driver are you using ? I would try
setting config/topic_points to "" . As specified in the launch file : "if empty, poincloud will be
reconstructed from image and depth"

 al-dev (Apr 9 '16)

I'm using rgbdslamv2 (repo) and Intel's package for Realsense (repo). I'm trying what you
suggested and it does seem to work. It is just too slow right now.

 archit (Apr 10 '16)

The performance can be linked to a number of different factors, you might want to create another
ticket for it. If this works I will post it as an answer.

 al-dev (Apr 10 '16)

add a comment

0
Set config/topic_points to "" . As specified in the launch file : "if empty,
poincloud will be reconstructed from image and depth"

0
I have same question. But I use kinect2, so I installed libfreenect2 and iai_kinect.
Using iai_kinect2 bridge translate in kinect2 and ros. But RGBDSLAM GUI seem
show point cloud result of fusion of single frame .

Did you check that you are receiving both rgb and depth stream ? Are you sure that your rgb topic is
/camera/color/image_raw ? It seems to me that the default was /camera/rgb/image_color .

Sort by » oldest newest most voted

Search or ask your question

1

2

ROS Resources: Documentation | Support | Discussion Forum | Index | Service Status | Q&A answers.ros.org

tags users badges

Hi there! Please sign in help

ASK YOUR QUESTIONALL UNANSWERED

Apr 8 '16
960 times
Jul 06 '16

Question Tools

FollowFollow
2 followers

subscribe to rss feed

Stats

Asked:
Seen:
Last updated:

Related questions

RGBDSLAM alternatives for Indigo

The detail of RGBDSLAMv2

How do I !nd out a topics data type?

RGBDSLAMv2 remote online mapping
visualization problems in RViz

rgvdslam v2 roslaunch error in
ubuntu 14.04 ros indigo

rgbdslam v2 process has died

How to use a saved Octomap for
Path Planning with Kinect

load ocTree !le to octomap_server
[closed]

RGBDSLAM+IMU

rgbdslam error: gsl/gsl_linalg.h not
found [closed]

asked Apr 8 '16
archit
3 ●1 ●2 ●3

updated Apr 8 '16

RGBDSLAM rgbdslam_v2 rgbdslamv2 realsense realsense_camera

Comments

answered Apr 10 '16
al-dev
873 ●7 ●14 ●20

linkadd a comment

answered Jul 6 '16
Ziwen Qin
136 ●8 ●10 ●17

linkadd a comment

2 Answers

0
rgbdslam_v2 not receiving any video stream from Realsense
R200

I'm trying to use a Realsense R200 camera to generate 3-D maps. For this purpose,
I have the realsense_r200_nodelet running on $ROS_MASTER_URI like so

roslaunch realsense_camera realsense_r200_nodelet_standalone_manual.launch color_fps:=30
color_height:=480 color_width:=640 depth_fps:=30 depth_height:=480 depth_width:=640

I have rgbdslam running on a separate machine. I run it like so

roslaunch rgbdslam rgbdslam.launch

Unfortunately, I don't see any video being captured on the GUI that comes up. I have updated the
rgbdslam.launch file to have the right values for the config parameters. The relevant ones are as shown below

<param name="config/topic_image_mono" value="/camera/color/image_raw"/>
<param name="config/topic_image_depth" value="/camera/depth/image_raw"/>
<param name="config/topic_points" value="/camera/depth/points"/>
<param name="config/base_frame_name" value="/camera_link"/>
<param name="config/camera_info_topic" value="/camera/color/camera_info"/>

I have confirmed using rviz that my machine does receive video stream from the Realsense camera. Does
anyone have any pointers on what I might be doing wrong to not receive anything on the rgbdslam GUI.

 al-dev (Apr 8 '16)

Yeah, I'm receiving both the rgb and depth streams (checked with rviz). I changed the topic to
/camera/color/image_raw because that it is the one on which Realsense sends the rgb stream (it
works when used with rviz).

 archit (Apr 9 '16)

Ok. Which versions of rgbdslam and of the realsense ROS driver are you using ? I would try
setting config/topic_points to "" . As specified in the launch file : "if empty, poincloud will be
reconstructed from image and depth"

 al-dev (Apr 9 '16)

I'm using rgbdslamv2 (repo) and Intel's package for Realsense (repo). I'm trying what you
suggested and it does seem to work. It is just too slow right now.

 archit (Apr 10 '16)

The performance can be linked to a number of different factors, you might want to create another
ticket for it. If this works I will post it as an answer.

 al-dev (Apr 10 '16)

add a comment

0
Set config/topic_points to "" . As specified in the launch file : "if empty,
poincloud will be reconstructed from image and depth"

0
I have same question. But I use kinect2, so I installed libfreenect2 and iai_kinect.
Using iai_kinect2 bridge translate in kinect2 and ros. But RGBDSLAM GUI seem
show point cloud result of fusion of single frame .

Did you check that you are receiving both rgb and depth stream ? Are you sure that your rgb topic is
/camera/color/image_raw ? It seems to me that the default was /camera/rgb/image_color .

Sort by » oldest newest most voted

Search or ask your question

3

Figure 2: Example of a ROS Answers question corresponding
to a misconfiguration where the developer incorrectly de-
fined a parameter value. Each question contains a title (1),
content with text and source code (2), and metadata about
the author, date, and number of votes. Questionsmay include
comments, answers, and an accepted answer (3).

to determine and diagnose, as developers can examine the error
messages generated. This work focuses on undetected misconfig-
urations during the deployment process, subsequently impacting
robots behaviors. These errors are significantly more challenging
to detect and trace back to their source. This final filtering step
provided a total of 13 740 accepted questions considered suitable
for sampling.

Manual Filtering. The first author (A1) randomly selected ques-
tions from the 13 740 questions and labeled them as relevant or
irrelevant by analyzing their content to determine if it described

https://answers.ros.org/question/231458
http://wiki.ros.org/ROS/Concepts

ISSTA 2024, 16-20 September, 2024, Vienna, Austria Canelas et al.

5

TF
39

Taxonomy of Misconfigurations

Embedded DSL
MoveIt
Navigation Stack
ROS Control
Robot Localization
URDF

Incorrect
Missing

Nodes

Contextual
Application-Environment
Simulation vs Real
Hardware
 Actuators
 Compute
 Mechanical
 Sensors

Messages
14

Names
49

Timeliness
21

Calibration
Camera
PID
Odometry

Parameters
Dead-Write
Defaults
Dependency
Incorrect
Missing

Semantic Types
Color Format
Constraints
Physical Units
Transformations

Launch
Arguments
Duplication
Environment Variable
Includes
Race Condition

Mismatches
Namespaces
Remapping

Conflicting Publishers
Format
Filters
No Publisher
Periodic

Queues
Frequency
Stale Data
Synchronization

Duplication
Incorrect-Transform
Missing-Transform

84
19

58

18

20

11

66

27

Other
Documentation
Simulation
BUG:Component
BUG:Infrastructure

Figure 3: Mindmap of the misconfigurations identified from the study presenting the 12 high-level categories of misconfigura-
tions, and their 50 sub-categories level. Each misconfiguration contains the number of questions annotated with the code. Each
question may refer to more than one misconfiguration.

a failed attempt to configure the system (i.e., interacting with the
configurations or source code files).

Open Coding. The first author (A1) iteratively provided sets
of relevant questions to three other authors (A2, A3, A4) who ap-
plied an open coding [16] approach to construct a taxonomy of
misconfigurations. At each step, the authors individually proposed
an updated set of codes for their sub-set of questions before dis-
cussing those codes and merging them into a revised taxonomy.
The subsets were constructed such that each question was analyzed
by three different authors, allowing a diversity of perspectives to be
captured and reducing the error rate. This process continued until
reaching the saturation point [21] (i.e., no further changes were
made to the taxonomy after reaching the end of a step) after ana-
lyzing 228 questions, resulting in a final taxonomy of 12 categories
and 50 subcategories of ROS misconfiguration.

Labeling. Finally, we labeled each of the 228 questions using
the final taxonomy. Half of the questions were labeled by one pair
of authors (A1, A2) and the other half by a different pair (A3, A4).
We calculated the agreement by dividing the number of codes both
authors agreed on by the total number of codes used. This first
step led to an agreement of 84.12% and 85.5% for each pair of au-
thors. Then, each pair compared the codes that differed by one code
and adjusted their code if in agreement. Furthermore, to determine
documentation-related questions, the authors collected all ques-
tions annotated with documentation, discussed random instances
of these, and re-annotated all questions until they reached an agree-
ment on using this code. Finally, the authors discussed 26 questions
with initial disagreements. The authors who did not analyze a given
question were arbiters during the discussion.

3.2 Threats to Validity
External Validity.We identify two primary external validity threats:
the generality of our results to (a) different ROS versions and dis-
tributions and (b) expert users. The first threat relates to the possi-
ble predominance of ROS 1 over ROS 2 questions and the impact
of ROS distributions. Given the relatively recent release of ROS
2 [34] in 2018, we expected more questions related to ROS 1. We
found that the analyzed questions rarely specified ROS or distri-
bution versions (37 out of 228), making it infeasible to determine
version-specific misconfigurations. Furthermore, as there are few
architectural differences between ROS versions, we believe that our
findings generalize to both versions. The second threat concerns
the applicability of our findings to real-world scenarios. By sam-
pling data from a popular ROS Q&A platform, we are addressing
real-world developer issues. Nevertheless, we recognize that indus-
trial settings may present unique, undisclosed misconfigurations.
Our taxonomy provides a basis for further studies in such contexts.

Internal Validity. We identify four main threats to internal
validity: the initial samping method, the generalizability of the
sampled data, biases in question analysis, and potential misrepre-
sentation of misconfiguration types in the sampled ROS Answers
questions. The first threat regards the initial sampling and valida-
tion step with only one author, possibly introducing personal biases
in the selection. To mitigate this step, we performed a preliminary
study similar to the current one, in which all authors looked at a
sample of questions and validated them as relevant or not relevant.
To address the second threat to validity, we sampled relevant ROS
Answers questions, inspecting, validating, and categorizing them
until reaching theoretical saturation. This approach avoids introduc-
ing unaddressed categories of misconfigurations when analyzing
new questions. We addressed the third by iteratively analyzing

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA 2024, 16-20 September, 2024, Vienna, Austria

questions, validating their relevance and the misconfiguration cat-
egories with at least two authors of the paper. The forth threat
relates to the sample’s representativeness. We focus on questions
only related to ROS concepts and software architecture, which are
more likely to contain misconfigurations. However, we acknowl-
edge that other categories of misconfigurations may be overlooked
in this study due to this restriction, but that does not invalidate the
categories that we find.

3.3 Results
In this section, we describe each high-level category and sub–
category ofmisconfigurations in detail. Figure 3 presents themindmap
of the taxonomy of misconfigurations. Below, we present examples
of questions related to each Misconfiguration .

Messages. Most ROS communication occurs via messages ex-
changed between components over named topics. Through our
analysis, we identified five misconfigurations related to messaging.

Format misconfigurations arise due to a mismatch between two
or more components in the message format that are exchanged
on a shared topic. For instance, the initialpose topic, representing
the initial position and orientation of the robot in the map, accepts
geometry_msgs/Pose messages. Both publishers and subscribers
must respect the message format when exchanging messages on
this topic. However, a misconfiguration occurs when either end
breaks the “contract” and expects a different message.

Components may expect a specific number of publishers to
the topics to which they subscribe. This assumption eases com-
ponents’ expectations of the frequency of messages they receive.
No Publisher misconfigurations occurwhen a component subscribes
to a topic no publisher sends messages to. The subscriber waits
indefinitely for messages that never arrive. Figure 4 presents an
example where the subscriber never receives messages due to a
topic name mismatch. Conflicting Publishers misconfigurations ap-
pear when there is more than one simultaneous publisher to a topic
that should only be accessed by a single publisher. This leads to
messages that may provide opposite, conflicting instructions.

The message_filters API is used to filter incoming messages on
a given topic (i.e., a callback is only triggered for messages that
satisfy a given condition) and synchronize messages across multiple
topics (e.g., invoke a callback once data has been received from mul-
tiple sensors). In particular, we observed difficulties in using this
API (Filters) to synchronize two topics without losing messages.
Finally, Periodic misconfigurations occur when the correct system
execution relies on messages being periodically published at a spe-
cific frequency (e.g., camera, lidar, IMU data). Misconfigurations
occur when a component stops publishing data continuously and
other parts of the system continue to wait, indefinitely, to receive
that data. For instance, a pedestrian detection node must consis-
tently publish images regarding the pedestrian’s position estimates
to function correctly.

Launch. Launch files are the primary means of orchestration
within ROS, used to launch and glue together individual compo-
nents with specific configurations into the system.

Developers often use the ability to import other launch files
recursively to improve modularity and simplify reuse by writing
individual launch files for separate sub-systems (i.e., a collection of

subscriberpublisher /cmd_vel

jack_velocity_controller

/data

Node Topic
Publish

port

Subscribe

port

Legend

imu

/imu_data

Not Subscribed

port

Figure 4: Example of a Name Mismatch from ROS Answers,
where the developer mistyped the subscriber’s topic name.
The subscriber expects data from imu/data, but due to the
wrong connection to imu_data, no data is received.

components that work together to perform tasks such as percep-
tion, planning, or control). When writing a launch file for an entire
system, developers introduce a layer of abstraction, requiring them
to only reason about what launch files to include rather than wor-
rying about configuring every individual node and subsystem. We
observed cases where the developer either Includes inappropriate
launch files for the given context or fails to include crucial launch
files necessary for the robotic system’s functioning.

We also observe node Duplication errors in launch files, where
two or more nodes are instantiated with the same name (e.g., by
accidentally launching the same node with the same name). In this
case, ROS complains at run-time that the name is taken, and the
second node crashes upon launch.

Since ROS architectures are defined at run-time, launch files are
susceptible to Race Conditions . For instance, nodes may publish
messages to topics before the subscriber finishes launching, causing
thosemessages to be lost. Nodes can also be sensitive to the ordering
of <node> and <param> tags within launch files: In ROS 1, a
<node>may launch before the parameters are stored on the global
parameter server, leading to parameter misconfigurations.

To allow components to be customized to a particular system,
launch files support Arguments , whose values may be provided
by the command line, a parent launch file, or a specified default
value. Those values can be accessed via string interpolation (e.g.,
via $(arg name-of-arg)) within the launch file or through
the command line, and are typically used to specify ROS parameter
values, rename nodes, control the inclusion of particular nodes, or
to set the system time. Arguments are prone to many of the same
issues as parameters (e.g., dead writes and unintentional use of
default values).

Environment variables are also used to customize the behavior
of individual components in launch files. Misconfigurations can
occur when necessary environmental variables for nodes are not
specified or when incorrect values are assigned to those variables.

Parameters. In ROS, parameters are used to adjust the behavior
of components to their intended deployment. Parameter values are
typically provided by launch files, which are used to compose mul-
tiple components into a functioning ensemble. Listing 1 presents
an example of a launch file with two parameter-related misconfigu-
rations where the developer forgets to include a tf_prefix. This

ISSTA 2024, 16-20 September, 2024, Vienna, Austria Canelas et al.

1 < ! −− r o b o t u r d f model −−>
2 <param name= " r o b o t _ d e s c r i p t i o n " command= " c a t ␣ $ (

f i n d ␣ urdf_pkg) / u r d f / my_robot . u r d f " / >
3

4 < ! −− r o b o t s t a t e p u b l i s h e r node −−>
5 <node pkg= " r o b o t _ s t a t e _ p u b l i s h e r "
6 type= " s t a t e _ p u b l i s h e r "
7 name= " r o b o t _ s t a t e _ p u b l i s h e r " >
8

9 <param name= " ~ t f _ p r e f i x "
10 value= " robot_name "
11 type= " s t r " / >
12 < / node >

Listing 1: Example where tf_prefix parameter required
for operating with multiple robots is Missing, leading the
system to use the Default Parameter value.

parameter is critical when working with multi-robot systems, to
create separate transform trees for each robot. Since the parameter
is not defined, the system, by omission, uses the default value, and
a single transform tree is used for all the robot systems.

Since parameters are defined and used at run-time within ROS,
components may unexpectedly crash when a required parameter is
Missing , or behave in an unintended manner when the component
falls back on a Default value for a missing parameter. Both of
these types of parameter misconfiguration can also be caused by
Dead Writes where the wrong name is used to specify a parameter
(e.g., due to a typographical error or a name change refactoring).
These cases can be hard to debug as there is no static checking
and warnings may not be produced for missing or unused (i.e.,
dead-write) values.

Misconfigurations can occur when using Incorrect parameter
values. Those values may be universally incorrect (e.g., out of
bounds) or contextually incorrect for the given robot, environ-
ment, and application. When defining parameter values, developers
also need to be cautious of potential Dependency issues, where the
behavior of a given parameter is changed by the value of another
parameter (e.g., a parameter that enables or disables a feature).

Semantic Types. Even when components correctly make as-
sumptions about the message format shared on a given topic, they
can still make incorrect assumptions about the message content (i.e.,
their semantic types). For instance, two components may correctly
exchange a sensor_msgs/Image, but the publisher sends color
images while the subscriber expects grayscale images.

Components implicitly assume that messages satisfy specific
Constraints over their contents. For example, values are within
certain bounds (e.g., positions, velocities, motor values), specific co-
ordinate frames are used, or the range of laser scan measurements
is respected. Type-related misconfigurations may stem from the im-
proper use of images and point clouds, such as mismatched assump-
tions between components about the Color Format of the image or
point cloud (e.g., grayscale vs. color images) or an incorrect assump-
tion that all of the images and point clouds that are shared on a given
topic have been subject to specific Pointcloud Transformations (e.g.,
resizing, compression, or color conversion) or Image Transformations .

Finally, misconfigurations can occur due to mismatched assump-
tions on the Physical Units of data that are exchanged between
components. As robots interact with the real world, ensuring that
the component’s physical units match is critical. For instance, a
publisher describes rotational velocity using radians per second,
but the subscriber expects the same quantity in degrees per second.

Names. Every node, topic, service, action server, and parameter
within ROS has an associated name specified at run-time either as
a field or property within a Launch XML file or as a string in the
source code of a component.7 Since names are resolved at run-time,
it is easy to introduce Mismatches between two or more compo-
nents in the name of a resource (e.g., topic, parameter, service, or
embedded DSL configurations). Figure 4 illustrates an example of
one of these errors from our dataset, where the developer incor-
rectly defined the topic’s name in the subscriber. Since the name
is incorrectly configured, the subscriber receives no messages as
there are no publishers for that topic. Detecting this misconfigu-
ration is challenging, as the topic names only differ by a specific
character and are usually only detected during execution when the
system does not behave as intended. Another instance of a name
mismatch relates to typos when writing the configurations for the
robot localization. For instance, the developer incorrectly defines
the name of the world_map, a parameter specifying the frame
treated as a fixed reference frame.

ROS implements a hierarchical naming structure to promote
encapsulation. By convention, this system groups related resources
and allows multiple instances of the same node to be used simulta-
neously (e.g., one node for each camera). ROS’s hierarchical nam-
ing structure is implemented via namespaces: Every resource be-
longs to a namespace, denoted by a forward slash in the name
of that resource (e.g.,/right_camera/raw_image belongs to
/right_camera). Furthermore, namespaces may be stacked (e.g.,
/vehicle_a/right_camera/raw_image) where / denotes
the root of the hierarchy, known as the global namespace. We ob-
serve that Namespaces misconfigurations occur most commonly
when developers forget to use namespaces or otherwise use the
wrong namespace, leading to naming collisions and causing the
system to have an unintended architecture.

In addition to namespaces, ROS also relies on name Remapping
to help encapsulation and reuse: ROS launch files allow the map-
ping of the name of a certain resource (e.g., topic, service) onto
a different name within the context of a particular component.
This ability is used to wire a general-purpose component into the
necessary configuration for a specific system. For instance, when us-
ing the image_proc/resize component8 to resize camera im-
ages, users must remap the subscribed image topic (i.e., incoming
camera images) and published ∼image topic (i.e., resized image)
onto appropriate source and destination topics (e.g., /right_-
camera/image_color and the topic target named /right_-
camera/image_color_resized). Incorrect ormissing remap-
pings can lead to message loss and unintended behavior.

Nodes. Nodes (i.e., components) are the processes within ROS
that collectively form a working robot by performing computation,
exchanging information, and interacting with the robot hardware.

7http://wiki.ros.org/Names
8http://wiki.ros.org/image_proc

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA 2024, 16-20 September, 2024, Vienna, Austria

...

...

stereo_viewstereo_image_proc

Prosilica
Instance 1

Prosilica
Instance 2

Queue
Size: 5

/stereo/disparity

2 Hz

2 Hz

/stereo/right/image_rect

/stereo/left/image_rect
Queue

Size: 5

Queue
Size: 5

Node Topic Publish
port

Subscribe
port

Legend

Figure 5: Example of a misconfiguration where the developer
gets images from stereo_image_proc at 2Hz, converting them
to disparity images. The stereo_view needs matching left,
right, and disparity images, but the slow processing speed of
disparity images causes left and right images to arrive faster
and fill the queue, dropping messages. The stereo_view skips
these until a matching of images is available.

In our study, we observe cases where either crucial components
are Missing or an Incorrect component is used for the particular
robot, environment, or intended application. For example, the devel-
oper incorrectly uses a planner, which leads the robot to navigate
erroneously, possibly against walls. A special case for missing a
component is a missing nodelet manager. In this case, developers
do not define the qualified manager name, allowing all nodelets to
be assigned to that manager.

Timeliness. Robots are real-time systems: messages must be
sent between components (e.g., control signals, state estimates) by
a certain deadline to prevent unintended and dangerous behavior.
Timeliness misconfigurations occur when the timing assumptions
of interacting components are mismatched.

Both publishers and subscribers within ROS 1 have associated
Queues , which are used to buffer either outgoing or incoming mes-
sages. Determining an appropriate size for this queue is crucial to
ensure both timely and correct behavior: A queue size that is too
small can lead to message loss, whereas an overly long queue can
lead to excessive compute resource usage and message delays. For
instance, Figure 5 presents a queue misconfiguration within a robot
with stereo vision. The stereo_view node requires three images: left,
right, and the disparity image (i.e., the difference between left and
right). In the proposed architecture,9 the disparity image is com-
puted using the other images. However, computing the disparity
image takes time and computational resources. Due to the desyn-
chronization of the sensors, when the disparity image is ready, the
original left and right images have already been overwritten in their
corresponding queues. To fix this misconfiguration, the developer
can increase the queue size to avoid overwriting or throttle the
publishing rate of the cameras to account for time taken to produce
the disparity image.

This example is an instance of Frequency misconfiguration be-
tween publishers and subscribers, where subscribers expect to re-
ceive messages at a given frequency to operate correctly.

To function safely, certain components rely on an uninterrupted
stream of data that accurately describes the state of the robot and

9https://answers.ros.org/question/9108

its environment. For example, motion planning in a dynamic envi-
ronment requires timely and accurate estimates of the position of
both the robot and potential obstacles in the scene. Unintended and
unsafe behavior can occur when Stale Data no longer accurately
represent the current state of the robot and its environment, as
messages are not published at a high enough frequency.

Finally, Synchronization of certain messages is essential for cor-
rect system operation. For instance, in example to showing the
queue misconfiguration, Figure 5 presents an example where the
sensors used are sources of multiple misconfigurations. One source
of misconfiguration is the lack of synchronization between camera
frequencies. There is a mismatch when the stereo_view processor
receives the information from each camera. Synchronization of
the receiving data is required to ensure that all images are con-
sumed simultaneously, keeping the original images available before
consuming the corresponding disparity image.

TF. Robot systems typically rely on a large number of 3D coor-
dinate frames to reason about the relative position and orientation
of the robot, its physical parts, and its environment. tf10 is a core
ROS library that uses a special tree structure to allow users to trans-
form between coordinate frames (e.g., to determine the position
and orientation of the robot’s gripper relative to the robot’s base).

We observe three major types of TF-related misconfigurations:
Incorrect Transform , either due to a typo, a misunderstanding of
the transform tree semantics, or a mistake about the geometry
of the robot. Missing Transform , where the developer forgets to
provide a transformation between a parent and child frame. Finally,
Duplication of transforms, where the developer publishes the same
TF transform from multiple conflicting sources. (i.e., there should
be a single source of truth).

Embedded DSL. ROS, its associated toolchain, and some of its
most popular (and general purpose) packages rely on their own
custom configuration formats. Some ROS packages embed their
configuration formats inside of ROS’s parameter system, effectively
forming an embedded DSL. In other cases, a standalone file is used
(e.g., URDF).We observed issues related to the use and configuration
of the Navigation Stack, ros_control, robot_localization, MoveIt!,
and URDF. These misconfigurations contain more specific types
of issues (e.g., parameter issues). This high-level category presents
the types of configuration files related to these misconfigurations.

Navigation Stack provides mobile robots with the ability to use
odometry and sensor values to localize their position and navigate
within a 2D plane by sending velocity commands to the mobile
base.11 Specifically, we saw issues concerning the correct definition
of motion planning parameters. For instance, developers may select
an inappropriate planner or fail to adapt the parameters of that
planner to the robot and environment.

URDF (Universal Robot Description Format) files describe robots
in terms of their links, joints, transmissions, sensing capabilities,
collision geometry, and physical properties (e.g., inertia, contact
coefficients, joint dynamics).12 URDF files are used for visualization,
simulation, and motion planning. For instance, when developers

10http://wiki.ros.org/tf
11https://wiki.ros.org/navigation
12https://wiki.ros.org/urdf

ISSTA 2024, 16-20 September, 2024, Vienna, Austria Canelas et al.
20

18

20
22

IROS

ASE FSE TSE

ICRA

ICSE

TROB ICSA

A1

Title Refinement
18.729

Misconfigurations
Refinement

296

... ...

Tool1 Misc1

Tool2 Misc2

A2
Internal

Validation

... ...

Tool1 Misc1

Tool2 Misc2,3

Paper
Authors

... ...

Tool1 Misc1

Tool2 Misc2,3

Author
Validation

23

A3
A4 18

†

ECSA ISSTA ICST

Figure 6: Methodology of the literature review. We collected prior work from 2018 to 2022 from top conferences and journals in
software engineering, robotics, architecture, and testing. We refined the search by looking at the paper titles, then reading the
papers and matching them to misconfigurations. We perform an internal validation with three authors and author validation
with the authors of each technique to validate the proposed tool for misconfiguration matching.

forget to specify the joints between two links or incorrectly provide
the robot description of two systems in the same file.

MoveIt is a platform for building manipulators using ROS that
incorporates algorithms for motion planning, manipulation, kine-
matics, control, and navigation [8]. Successfully configuring it for a
robot in a particular environment relies on careful configuration of
numerous parameters (e.g., planner density, and padding offsets).

ROS Control allows developers to integrate and compose mul-
tiple off-the-shelf control algorithms into their system. To behave
safely and operate as intended, each controller needs to be adapted
to the specifics of each robot, which, when done incorrectly, can
result in a misconfiguration.

Finally, Robot Localization provides a node collection for per-
forming state estimation (i.e., Kalman filters) and integrating GPS
data: they fuse data from multiple sensor sources (e.g., IMUs, GPSs,
odometry) to obtain a robust estimate of the robot’s state (i.e., posi-
tion, rotation, velocity). We observe issues that stem from missing
or incorrect transforms, incorrect units, and sensor mismatches
(e.g., attempting sensor fusion without wheel or visual odometry).

Calibration. Robots rely on a suite of sensors to perceive their
environment. To ensure that the robot’s understanding of its envi-
ronment is and remains accurate, those sensors must be calibrated.
In our study, we observed misconfigurations due to the miscali-
bration of Cameras , Odometry , and PID controller parameters,
all of which required a manual change. In all of these cases, the
mistake was either (a) forgetting to calibrate entirely (e.g., camera
intrinsics and extrinsics), (b) relying on default parameters that
were inappropriate for the robot (e.g., PID defaults), or (c) using
incorrect values (e.g., wheel radius).

Contextual. Misconfigurations can also occur when the sys-
tem’s configuration is tweaked according to a specific context.
A simple example is developing the robot’s software within a
simulation context and deploying it to a physical robot or vice
versa. Some configurations and parameters need to be different

when changing contexts, leading to Simulation vs. Real misconfig-
urations when the behavior does not match (typically by not ad-
justing the necessary configurations). Furthermore, we encoun-
tered Application-Environment misconfigurations where the com-
ponent’s configuration depends on the type of application of the
system and the surrounding environment. For instance, the config-
urations of the components inside and outside a warehouse can be
different due to weather, lighting conditions, and surface grip.

The robot’s physical configuration (i.e., its sensors, actuators,
mechanical components) naturally imposes restrictions over the
set of plausibly correct software configurations; configuring the
robot’s software therefore requires an understanding of the robot’s
physical configuration. We identified four sub-categories where
Hardware components require careful software configuration: (1)
Actuators , where the configuration of the parameters for a com-
ponent in the system depends upon the exact actuators that are
used, (2) Sensors , where the type of sensors and their positioning
on the system restricts parameter configuration, (3) Mechanical ,
where the robot’s mechanical hardware imposes restrictions of the
space of meaningful and safe parameters, and (4) Compute where
the configuration impacts resource usage. Furthermore, robots may
have specific hardware limitations that must be addressed via soft-
ware configuration. For instance, one source of misconfiguration
in Figure 5 is resource-related, where components take longer to
process overly large camera images.

Other Challenges. During the analysis, we encountered ques-
tions not related to misconfigurations. Documentation questions
occur due to missing or outdated documentation in ROS. This cate-
gory is not considered a misconfiguration as the developer could
not progress with the configuration and reach a misconfiguration
due to the lack of documentation. We highlight this category as
part of our taxonomy since outdated or lack of documentation may
cause developers to introduce misconfigurations. Developers may
not know what components to use or how to use them correctly
in their systems. We also encountered instances where the issues
were related to the component having a BUG:Component rather
than being a configuration issue, or the BUG:Infrastructure in which
the system is running contained an error (e.g., RViz). Finally, we

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA 2024, 16-20 September, 2024, Vienna, Austria

identified cases where the misuse of Simulation prevents the cor-
rect functioning of the system. Developers can use simulation time
to playback previously recorded data (e.g., sensor readings) in a
time-synchronized manner (e.g., during testing and debugging).
However, developers unfamiliar with the concept of simulation
time may forget to define it, resulting in incorrect system behavior
(e.g., different times in the receiving of data).

4 Study of Existing Tools
After categorizing the different types of misconfigurations in ROS-
based systems, it is essential to identify which categories are over-
looked when using existing state-of-the-art analysis techniques. To
that end, we address the following question:

RQ2: To what extent do current techniques address these
categories of misconfiguration?

Answering this question reveals the gaps in current tooling and
helps guide the development of new tools to increase the coverage
of misconfigurations that can be detected earlier in the development
process, avoiding errors in deployment. To address this objective,
we conducted a literature review following best practices outlined
by Snyder et al. [44]. Our search strategy, influenced by Albonico et
al. [3], focused on sourcing works from the software engineering,
software architecture, software testing, and robotics communities,
which are the likely places for such techniques to have been re-
ported. Figure 6 illustrates our methodology for performing the
literature review, which we describe below.

4.1 Methodology
Our literature review methodology consists of three stages:

Stage 1. Collection: Using DBLP,13 we collected all papers of
journals and conferences and associated co-located events between
2018–2022 inclusive from the major software engineering (ICSE,
FSE, ASE, TSE), software testing (ICST, ISSTA), software architec-
ture (ICSA, ECSA), and robotics (ICRA, IROS, TROB) venues. We
gathered 18 729 paper links, titles, venues, and respective years.

Stage 2. Refinement & Collection: The first author started by
manually inspecting paper titles and searching for keywords that
describe any of the subcategories of misconfigurations. Further-
more, for non-robotics venues, we searched in the titles for robotics-
related topics. In contrast, in the robotics venues, we searched for
concepts related to verification, testing, and repairing misconfig-
urations. Whenever a prior work seemed relevant, we manually
inspected it by looking at the abstract, followed by the introduction,
approach, and conclusion.

Then, we annotated the relevant papers with the misconfigura-
tions they cover and their type of analysis (static or dynamic). We
consider a technique static if it performs verificationwithout execut-
ing the system and dynamic otherwise. Although general-purpose
testing techniques potentially cover all the identified misconfigura-
tions in theory, we only considered those that explicitly cover them
in their problem statement or examples provided in their evaluation.
This refinement considered 18 relevant papers.

Stage 3. Internal & Authors Validation: We performed a
two-step validation of the matching each technique and the mis-
configuration. We first validated our findings internally with the
13https://dblp.org

other authors of this study (A2, A3, A4), experts in software ar-
chitecture, software engineering, and robotics, to mitigate against
missing or incorrect categorizations. We then asked the authors
of each technique to validate our findings externally. Since ROS
Answers questions do not contain executable examples to test each
technique’s ability to detect a particular kind of misconfiguration,
the external author validation helps us validate our assumptions
of each tool’s ability. To perform an external author validation, we
gathered the contact details for the authors of each technique and
emailed them to asking if our classification is correct and what
other misconfigurations, if any, their technique addresses.14 We
analyzed the answers received by the papers’ authors. When in
disagreement, we compare both mappings and re-analyze the pa-
per. From the proposed misconfiguration mapping, 3 out of the 10
authors of each technique proposed an update by adding only 1
extra category. For all but one of thise addition, we agreed with
the correction and updated our categorization. The sole case where
we disagreed with the authors’ additional categories was Santos et
al. [42], which allows developers to synthesize run-time monitors
and discover bugs by writing properties using the HAROS Property
Language (HPL) [41]. Similar to general-purpose test cases, these
properties act as tests that may detect specific instances of miscon-
figuration but do not cover the overall category of misconfiguration.
While this extensibility is essential, as is writing integration tests
in general, we consider this and other similar general-purpose test-
ing techniques outside the scope of this literature review as, with
the appropriate instrumentation and scaffolding (i.e., test inputs),
testing tools can theoretically identify any misconfiguration, even
if it is seldom practical.

4.2 Threats to Validity
External Validity.We identify the generalizability to other venues
and the time frame selected as external threats. This literature re-
view focused on searching for relevant work at top conferences and
journals in software architecture, software engineering, software
testing, and robotics. However, our findings may miss relevant tools
by focusing on specific conferences and a particular time frame
(2018–2022). Extending the search for further years and conferences
and journals presents a challenging task as the intersection of mul-
tiple research areas quickly increases the prior work required for
manual inspection.

Internal Validity.We identify the manual inspection of prior
work and the subjectivity in categorization as internal threats. The
initial paper refinement was done by only one of the authors, and
there is a threat when selecting relevant prior work based on the
paper titles where the author may overlook relevant papers. By
searching for terms related to misconfigurations and the verifica-
tion, testing, and repair of robotic systems, we expect to mitigate
this threat. There is also a threat when performing the mapping
of each technique to a misconfiguration. To mitigate this mapping,
each technique was analyzed by two authors, and we tried to vali-
date the mapping with the original paper authors.

14At the time of submission, 10 of the 18 techniques were validated by the authors of
those techniques.

https://dblp.org

ISSTA 2024, 16-20 September, 2024, Vienna, Austria Canelas et al.

Table 1: Overview of each technique, the type of analysis (Dynamic or Static), and the sub-categories of misconfigurations each
addresses. The main categories of misconfigurations are as follows: (Ca) Calibration, (Co) Contextual, (M) Messages, (N) Names,
(O) Other, (P) Parameter, (T) Semantic Types, † Author validated, ∗ Authors Disagreement.

Reference Venue Year Analysis Misconfigurations
Kate et al. [28]† FSE 2018 S (T) Physical Units
Burgueno et al. [5]† ICSE-RoSE 2018 S/D (T) Physical Units (T) Constraints
Witte et al. [53] ICSE-RoSE 2018 S/D (N) Mismatches (M) No Publisher
Wuest et al. [54] ICRA 2019 D (P) Missing
Cramariuc et al. [9] ICRA 2020 D (Ca) Camera (Co) Sensors
Carvalho et al. [6]† IROS 2020 D (T) Constraints (M) Format (M) No Publisher
Wigand et al. [52] IROS 2020 S (Co) Actuators (Co) Application-Environment (Co) Mechanical
Kate et al. [27] FSE 2021 S (TF) Incorrect Transform (TF)Missing Transform
Jung et al. [26]† FSE 2021 D (P) Incorrect (P) Dependency (P) Defaults (Co) Application-Environment
Kortik et al. [31] ICRA 2021 S/D (M) Format (M) No Publisher (M) Conflicting Publishers
Santos et al. [42]†∗ ICSE-RoSE 2021 S/D (N) Mismatches (M) No Publisher
DeVries et al. [11]† ICSE-SEAMS 2021 S/D (Co) Application-Environment (Co)Mechanical (Co) Sim-vs-Real
Taylor et al. [45]† ASE 2022 S (T) Physical Units (TF) Incorrect Transform (TF) Missing Transform

Kim et al. [29]† FSE 2022 D (DSL) URDF (P) Incorrect (Co) Sim vs Real
(Co) Sensors (Co) Actuators (BUG) Infrastructure

Das et al. [10] ICRA 2022 D (Co) Sensors (Ca) Camera
Heiden et al. [23]† ICRA 2022 D (O) Simulation

Timperley et al. [48]† ICSA 2022 S (M) Conflicting Publishers (M) No Publisher (M) Format
(N) Mismatches (N) Remapping (P) Dead Write (P) Incorrect

Han et al. [22] ICSE 2022 D (P) Incorrect (P) Dependency

4.3 Results
Table 1 presents the mapping between the techniques and the mis-
configurations. We identify the misconfigurations each technique
addresses, the type of analysis it performs, static or dynamic, and
the venue. We identified techniques that statically or dynamically
detect misconfigurations, although some tools are static techniques
whose verification is optionally extended with dynamic analysis.
For instance, Burgueno et al. [5] statically analyze physical units
described by a modeling language and generate model invariants
checked during the execution of the system.

We also identified techniques that do not detect misconfigu-
rations but rather automatically infer or optimize configuration
parameters. The inference of the configurations helps prevent mis-
configurations, as developers do not configure the system manually.
For example, Wuest et al. [54] automatically infers geometric and
inertia parameters, and Heiden et al. [23] probabilistically infers
simulation parameters.

For each technique, we describe the misconfigurations it ad-
dresses with an important caveat. Although a technique addresses
a specific misconfiguration, it does not mean it is solved. Some
techniques address particular misconfigurations for specific robotic
systems (e.g., Swarmbug) and contain limitations. For instance,
Phys [28] and SA4U [45] both detect physical unit misconfigura-
tions. While Phys performs static analysis, allowing it to detect
physical unit errors before execution, SA4U requires execution
information to detect the misconfigurations.

Overall, we identified 18 related works that address 23 of 50
sub-categories of misconfigurations. Parameters, Messages, and
Contextual are the misconfigurations most addressed by current

techniques. On the other hand, no misconfigurations related to the
Timeliness, Nodes, and Launch categories are currently addressed,
and within the Embedded DSL category, only the URDF dialect is
considered in current techniques.

5 Related Work
In this work, we studied the types of misconfigurations that devel-
opers face and what techniques can address them. As the presented
misconfigurations are not specific to any ROS version or distribu-
tion, we expect our findings to generalize to the many ROS systems.

Prior work studied types of bugs in robotic systems and au-
tonomous vehicles. For instance, 27.25% of the bugs in autonomous
vehicles (AV) software detected are misconfigurations [18]. In-
stances of the misconfigurations we encountered were also found
in Unmanned Aerial Vehicles (UAV) [51]. 19.6% of the bugs encoun-
tered in a study of two UAVs, PX4 and Ardupilot, are misconfig-
urations such as parameter misuse and missing, parameter limits
related to hardware, and inconsistencies related to sensors and
libraries. Our taxonomy of misconfigurations not only addresses
ROS-specific issues but also other types of misconfigurations related
to the cyber-physical nature of these systems.

Similar to the misconfiguration we encountered, the simulation
to real-world transition is challenging in the services robotics do-
main [19]. Missing dependent components are also described in the
literature [17] and presented in our taxonomy through particular
instances of missing nodes and missing nodelet manager. Physical
unit misconfigurations within ROS have also been quantitatively
studied through projects on GitHub [38]. Issues related to URDF

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA 2024, 16-20 September, 2024, Vienna, Austria

files presented in this study, through the scope of Xacro XML lan-
guage, are also a source of misconfigurations in prior work [2].
ROSDiscover [48] and ROSInfer [12] identify misconfigurations
related to the structural composition and behavioral interaction be-
tween components, covering certain misconfigurations within our
Naming, Parameters and Messages, and Timing categories. Finally,
the ROBUST project [47, 49], a large-scale study of bugs in ROS,
evidenced different types of misconfigurations related to missing
runtime dependencies (e.g., nodes and configuration files), danger-
ous defaults (e.g., missing setting a parameter value), namespaces
misconfigurations, and name mismatches. Unlike prior work, we
focus on how developers misconfigure their systems and which
techniques are available to address them.

Configuration errors are not specific to robotic systems, and
prior surveys found these in other configurable systems [56]. For
instance, some open source storage systems are prone to inconsis-
tency errors of parameter values and value inconsistencies [58],
similar to the incorrect parameter and dependent parameter er-
rors we encountered, respectively. Similarly, Android manifests
are also a source of incorrect attribute names and values [25]. Fi-
nally, configuration errors in databases arise according to the data
types used and the ranges of accepted values for the configuration
parameters [55].

6 Discussion
Misconfigurations are a critical concern in robotic systems, as these
lead to unintended and potentially dangerous behavior. Our study
and literature review identified a gap in the ability of state-of-the-
art analysis tools to cover the space of ROS misconfigurations. In
this section, we discuss some of the requirements that future anal-
ysis tools need to satisfy to improve the detection of the different
categories of misconfigurations.

Misconfiguration analysis must work with ROS’s domain-
specific languages and dialects. Building ROS Systems requires
changing configuration elements distributed in multiple differ-
ent configuration formats (e.g., Navigation Stack, MoveIt!, URDF).
Through our study, we observe that these formats are a source
of misconfiguration (Embedded DSL). As manually tracking many
component configurations across different file formats and ensuring
that they are consistent is challenging, automated techniques must
detect misconfigurations spread throughout these files. Through
our literature review, we observe that only one technique explicitly
treats these DSLs as first class entities as part of its verification [29].

One avenue to address this concern is considering the DSL con-
figurations in analysis tools. Current analysis tools do not explicitly
consider the semantics of the configurations embedded within the
different embedded DSLs. A future direction in improving the de-
tection of misconfigurations is to incorporate this knowledge into
analysis tools to enhance their capabilities. Alternatively, these
separate configuration formats and files could be merged into a sin-
gle analysis, verifying that configurations are correctly integrated
across DSLs.

Misconfiguration analysis require information about the
robot’s physical environment, hardware, and intended appli-
cation to reliably detect misconfigurations. As cyber-physical

systems that interact with the real world, correctly defining ro-
bot configurations depends on the context in which the system
is used. For instance, in Section 3.3: Contextual , we identified mis-
configurations arising from the lack of knowledge when changing
configurations that depend on the environment, hardware, and type
of application. For instance, the positioning of sensors in the hard-
ware, indoor and outdoor environments, the frequency, quality, and
size of images provided by the sensors, and the type of robotic sys-
tem are all factors found in this work that impact the configuration
of software components. If analysis tools intend to improve upon
their verification, they must consider this contextual information.
However, as the physical environment and hardware information is
often missing, our literature review found that only 6 of 18 consider
this information to optimize the configuration values.

Future work can provide application, physical environment, and
system hardware information to analysis tools to improve their
verification through two possible approaches: domain-specific lan-
guages and artifact mining. Introducing a domain-specific language
allows developers to specify properties regarding the context in
which the system is executed (e.g., whether it is executed indoors or
outdoors). When existing, contextual information can be obtained
by analyzing existing artifacts (e.g., Phys [28], ROSDiscover [48],
SA4U [45]), and inspecting the information these dialects provide.

Static analysis is not sufficient to detect all misconfigu-
rations. Tools must be able to analyze run-time behavior. As
executing the system is expensive, time-consuming, and possibly
dangerous, it is ideal to detect these misconfigurations prior to
system execution using static analysis tools. While static analysis
techniques perform great work in reducing the cost of detecting
misconfigurations, these are still bounded by the limited context
understanding, which is not provided in ROS-based systems, and
have scalability issues, being challenging to analyze large code-
bases [32]. Detecting some misconfigurations requires complex
runtime behavior information not available to static analysis tools.
For instance, a set of parameter values may need to be corrected
according to the system’s execution (Incorrect Parameters),15 the
incorrect calibration of the system is only detectable when execut-
ing the cameras (Calibration),16 or compute issues may arise when
hardware actively interacts with the real world (Contextual).17

Future analysis tools can improve their detection of misconfigu-
rations by augmenting the static checking with properties. Future
analysis tools for robotics could use runtime behavior information
to generate test cases, monitor runtime configurations, or use ma-
chine learning techniques to predict potential misconfigurations
based on contextual information and system’s execution. These
different approaches for analysis are currently used in techniques
observed in our literature review and present a promising research
direction. For instance, HAROS [41] generates monitors to track
properties during runtime, SA4U [45] instruments the source code
to obtain runtime information to help detect physical unit miscon-
figurations and Swarmbug [26] which performs multiple executions
of the system while removing environment configuration variables
to detect configurations responsible for the buggy behaviors.
15https://answers.ros.org/question/30235/
16https://answers.ros.org/question/10975/
17https://answers.ros.org/question/195186/

https://answers.ros.org/question/30235/
https://answers.ros.org/question/10975/
https://answers.ros.org/question/195186/

ISSTA 2024, 16-20 September, 2024, Vienna, Austria Canelas et al.

Furthermore, future research can also focus on system properties
defined using specification languages. Properties defined in these
domain-specific languages can help monitor misconfigurations only
detectable dynamically while interacting with the real world.

7 Concluding Remarks
In this work, we conduct an empirical study to categorize the types
of misconfigurations that occur within ROS and to determine the
extent to which those misconfigurations are covered by existing
analysis tools. We find 50 categories of misconfiguration, of which
27 are found not to be addressed and 23 are partially addressed
by existing tools. Through this study, we identify promising areas
for future research, discuss some of the requirements for future
analysis tools, and, through our taxonomy, identify where detailed
specific datasets are needed to drive the development of tools to
tackle particular kinds of misconfiguration.

Acknowledgments
This work was supported by Fundação para a Ciência e Tecnologia
(FCT) in the LASIGE Research Unit under the ref. (UIDB/00408/2020,
UIDP/00408/2020 and EXPL/CCI-COM/1306/2021), the CMU Por-
tugal Dual PhD program (SFRH/BD/151469/2021), and NSF-USDA-
NIFA #2021-67021-33451. The authors would like to thank Bogdan
Vasilescu and the Squareslab group for their feedback on this work.

References
[1] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven Timper-

ley. 2020. A Study on Challenges of Testing Robotic Systems. In International
Conference on Software Testing, Validation and Verification. 96–107.

[2] Nicholas Albergo, Vivek Rathi, and John-Paul Ore. 2022. Understanding Xacro
Misunderstandings. In International Conference on Robotics and Automation. 6247–
6252.

[3] Michel Albonico, Milica Dordevic, Engel Hamer, and Ivano Malavolta. 2023.
Software engineering research on the Robot Operating System: A systematic
mapping study. Journal of Systems and Software 197 (2023), 111574.

[4] Michel Albonico, Ivano Malavolta, Gustavo Pinto, Emitza Guzman, Katerina
Chinnappan, and Patricia Lago. 2021. Mining energy-related practices in robotics
software. In International Conference on Mining Software Repositories. 483–494.

[5] Loli Burgueño, Tanja Mayerhofer, Manuel Wimmer, and Antonio Vallecillo. 2018.
Using physical quantities in robot software models. In International Workshop on
Robotics Software Engineering. 23–28.

[6] Renato Carvalho, Alcino Cunha, Nuno Macedo, and André Santos. 2020. Veri-
fication of system-wide safety properties of ROS applications. In International
Conference on Intelligent Robots and Systems. 7249–7254.

[7] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep, Adolfo Ro-
dríguez Tsouroukdissian, Jonathan Bohren, David Coleman, Bence Magyar, Gen-
naro Raiola, Mathias Lüdtke, and Enrique Fernández Perdomo. 2017. ros_control:
A generic and simple control framework for ROS. The Journal of Open Source
Software 2 (2017), 456.

[8] David Coleman, Ioan A. S,ucan, Sachin Chitta, and Nikolaus Correll. 2014. Re-
ducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study.
Journal of Software Engineering for Robotics 5, 1 (May 2014), 3–16.

[9] Andrei Cramariuc, Aleksandar Petrov, Rohit Suri, Mayank Mittal, Roland Sieg-
wart, and Cesar Cadena. 2020. Learning Camera Miscalibration Detection. In
International Conference on Robotics and Automation. 4997–5003.

[10] Sandipan Das, Navid Mahabadi, Addi Djikic, Cesar Nassir, Saikat Chatterjee,
and Maurice F. Fallon. 2022. Extrinsic Calibration and Verification of Multiple
Non-overlapping Field of View Lidar Sensors. In International Conference on
Robotics and Automation. 919–925.

[11] Byron DeVries, Erik M. Fredericks, and Betty H. C. Cheng. 2021. Analysis and
Monitoring of Cyber-Physical Systems via Environmental Domain Knowledge &
Modeling. In International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. 11–17.

[12] Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues.
2024. ROSInfer: Statically Inferring Behavioral Component Models for ROS-based
Robotics Systems. In International Conference on Software Engineering.

[13] Birhanu Eshete, Adolfo Villafiorita, and Komminist Weldemariam. 2011. Early
Detection of Security Misconfiguration Vulnerabilities in Web Applications. In
International Conference on Availability, Reliability and Security. 169–174.

[14] Pablo Estefo, Jocelyn Simmonds, Romain Robbes, and Johan Fabry. 2019. The
Robot Operating System: Package reuse and community dynamics. Journal of
Systems and Software (2019), 226–242.

[15] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. 2003. The many faces of publish/subscribe. Computing Surveys 35, 2 (jun
2003), 114–131.

[16] Douglas Ezzy. 2013. Qualitative Analysis. Routledge.
[17] Anders Fischer-Nielsen, Zhoulai Fu, Ting Su, and Andrzej Wasowski. 2020. The

forgotten case of the dependency bugs: on the example of the robot operating
system. In International Conference on Software Engineering, Software Engineering
in Practice. 21–30.

[18] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred
Chen. 2020. A comprehensive study of autonomous vehicle bugs. In International
Conference on Software Engineering. 385–396.

[19] Sergio García, Daniel Strüber, Davide Brugali, Thorsten Berger, and Patrizio
Pelliccione. 2020. Robotics software engineering: a perspective from the service
robotics domain. In European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 593–604.

[20] David Garlan, Robert Allen, and John Ockerbloom. 2009. Architectural Mismatch:
Why Reuse Is Still So Hard. IEEE Software 26, 4 (2009), 66–69.

[21] Barney G Glaser and Anselm L Strauss. 2017. Discovery of grounded theory:
Strategies for qualitative research. Aldine.

[22] Ruidong Han, Chao Yang, Siqi Ma, Jianfeng Ma, Cong Sun, Juanru Li, and Elisa
Bertino. 2022. Control Parameters Considered Harmful: Detecting Range Speci-
fication Bugs in Drone Configuration Modules via Learning-Guided Search. In
International Conference on Software Engineering. 462–473.

[23] Eric Heiden, Christopher E. Denniston, DavidMillard, Fabio Ramos, and Gaurav S.
Sukhatme. 2022. Probabilistic Inference of Simulation Parameters via Parallel
Differentiable Simulation. In International Conference on Robotics and Automation.
3638–3645.

[24] Peng Huang, William J. Bolosky, Abhishek Singh, and Yuanyuan Zhou. 2015.
ConfValley: a systematic configuration validation framework for cloud services.
In European Conference on Computer Systems. 19:1–19:16.

[25] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. 2017. Developer mistakes
in writing Android manifests: an empirical study of configuration errors. In
International Conference on Mining Software Repositories. 25–36.

[26] Chijung Jung, Ali Ahad, Jinho Jung, Sebastian G. Elbaum, and Yonghwi Kwon.
2021. Swarmbug: debugging configuration bugs in swarm robotics. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 868–880.

[27] Sayali Kate, Michael Chinn, Hongjun Choi, Xiangyu Zhang, and Sebastian G.
Elbaum. 2021. PHYSFRAME: type checking physical frames of reference for
robotic systems. In European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 45–56.

[28] Sayali Kate, John-Paul Ore, Xiangyu Zhang, Sebastian G. Elbaum, and Zhaogui Xu.
2018. Phys: probabilistic physical unit assignment and inconsistency detection.
In European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 563–573.

[29] Seulbae Kim and Taesoo Kim. 2022. RoboFuzz: fuzzing robotic systems over
robot operating system (ROS) for finding correctness bugs. In European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
447–458.

[30] Sophia Kolak, Afsoon Afzal, Michael Hilton, Claire Le Goues, and Christopher
S Timperley. 2020. It Takes a Village To Build a Robot: An Empirical Study of
the ROS Ecosystem. In International Conference on Software Maintenance and
Evolution. 430–440.

[31] Sitar Kortik and Tejas Kumar Shastha. 2021. Formal Verification of ROS Based
Systems Using a Linear Logic Theorem Prover. In International Conference on
Robotics and Automation. 9368–9374.

[32] William Landi. 1992. Undecidability of static analysis. Letters Programming
Language Systems 1, 4 (dec 1992), 323–337.

[33] Xiangke Liao, Shulin Zhou, Shanshan Li, Zhouyang Jia, Xiaodong Liu, and
Haochen He. 2018. Do You Really Know How to Configure Your Software?
Configuration Constraints in Source Code May Help. Transactions on Reliability
67, 3 (2018), 832–846.

[34] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. 2022. Robot Operating System 2: Design, architecture, and uses in
the wild. Science Robotics 7, 66 (2022), eabm6074.

[35] Steve Macenski, Tom Moore, David V. Lu, Alexey Merzlyakov, and Michael
Ferguson. 2023. From the desks of ROS maintainers: A survey of modern &
capable mobile robotics algorithms in the robot operating system 2. Robotics
Autonomous Systems 168 (2023), 104493.

[36] Ratul Mahajan, David Wetherall, and Thomas E. Anderson. 2002. Understanding
BGP misconfiguration. In Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication. 3–16.

Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches ISSTA 2024, 16-20 September, 2024, Vienna, Austria

[37] T. Moore and D. Stouch. 2014. A Generalized Extended Kalman Filter Implemen-
tation for the Robot Operating System. In International Conference on Intelligent
Autonomous Systems. 335–348.

[38] John-Paul Ore, Sebastian G. Elbaum, and Carrick Detweiler. 2017. Dimensional
inconsistencies in code and ROS messages: A study of 5.9M lines of code. In
International Conference on Intelligent Robots and Systems. 712–718.

[39] Morgan Quigley, Ken Conle, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Ng. 2009. ROS: an open-source Robot Operating
System. ICRA Workshop on Open Source Software 3, 3.2 (01 2009), 1–6.

[40] Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pan-
dita. 2023. Security Misconfigurations in Open Source Kubernetes Manifests: An
Empirical Study. Transactions on Software Engineering and Methodology 32, 4
(2023), 99:1–99:36.

[41] André Santos, Alcino Cunha, and Nuno Macedo. 2018. Property-based testing
for the robot operating system. In International Workshop on Automating TEST
Case Design, Selection, and Evaluation. 56–62.

[42] André Santos, Alcino Cunha, and Nuno Macedo. 2021. The High-Assurance ROS
Framework. In International Workshop on Robotics Software Engineering. 37–40.

[43] André Santos, Alcino Cunha, Nuno Macedo, Rafael Arrais, and Filipe Neves
dos Santos. 2017. Mining the usage patterns of ROS primitives. In International
Conference on Intelligent Robots and Systems. 3855–3860.

[44] Hannah Snyder. 2019. Literature review as a research methodology: An overview
and guidelines. Journal of Business Research 104 (2019), 333–339.

[45] Max Taylor, Johnathon Aurand, Feng Qin, Xiaorui Wang, Brandon Henry, and Xi-
angyu Zhang. 2023. SA4U: Practical Static Analysis for Unit Type Error Detection.
In International Conference on Automated Software Engineering.

[46] Fangchao Tian, Peng Liang, and Muhammad Ali Babar. 2019. How Develop-
ers Discuss Architecture Smells? An Exploratory Study on Stack Overflow. In
International Conference on Software Architecture. 91–100.

[47] Christopher Timperley and A Wąsowski. 2019. 188 ROS bugs later: Where do we
go from here? ROSCON’ 19 (2019). https://roscon.ros.org/2019/talks/roscon2019_
188_bugs_later.pdf

[48] Christopher Steven Timperley, Tobias Dürschmid, Bradley R. Schmerl, David
Garlan, and Claire Le Goues. 2022. ROSDiscover: Statically Detecting Run-Time
Architecture Misconfigurations in Robotics Systems. In International Conference
on Software Architecture. 112–123.

[49] Christopher S. Timperley, Gijs van der Hoorn, André Santos, Harshavardhan
Deshpande, and Andrzej Wąsowski. 2024. ROBUST: 221 bugs in the Robot
Operating System. Empirical Software Engineering 29, 3 (2024), 57.

[50] Tetsuya Uchiumi, Shinji Kikuchi, and Yasuhide Matsumoto. 2012. Misconfigura-
tion detection for cloud datacenters using decision tree analysis. In Asia-Pacific
Network Operations and Management Symposium. 1–4.

[51] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021. An
exploratory study of autopilot software bugs in unmanned aerial vehicles. In
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 20–31.

[52] Dennis Leroy Wigand, Niels Dehio, and Sebastian Wrede. 2020. Model-Based
Specification of Control Architectures for Compliant Interaction with the Envi-
ronment. In International Conference on Intelligent Robots and Systems. 7241–7248.

[53] Thomas Witte and Matthias Tichy. 2018. Checking consistency of robot software
architectures in ROS. In Workshop on Robotics Software Engineering. 1–8.

[54] Valentin Wüest, Vijay Kumar, and Giuseppe Loianno. 2019. Online Estimation of
Geometric and Inertia Parameters for Multirotor Aerial Vehicles. In International
Conference on Robotics and Automation. 1884–1890.

[55] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng and† Tianwei Sheng, Ding
Yuan, Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do not blame users for
misconfigurations. In Symposium on Operating Systems Principles. 244–259.

[56] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Config-
uration Errors: A Survey. Computing Surveys 47, 4 (2015), 70:1–70:41.

[57] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. 2011. An empirical study on configuration errors
in commercial and open source systems. In Symposium on Operating Systems
Principles. 159–172.

[58] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. 2011. An empirical study on configuration errors
in commercial and open source systems. In Symposium on Operating Systems
Principles. 159–172.

[59] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-
anth Bala, Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: exploiting system
environment and correlation information for misconfiguration detection. In Ar-
chitectural Support for Programming Languages and Operating Systems. 687–700.

https://roscon.ros.org/2019/talks/roscon2019_188_bugs_later.pdf
https://roscon.ros.org/2019/talks/roscon2019_188_bugs_later.pdf

	Abstract
	1 Introduction
	2 Background
	3 Study of Misconfigurations
	3.1 Methodology
	3.2 Threats to Validity
	3.3 Results

	4 Study of Existing Tools
	4.1 Methodology
	4.2 Threats to Validity
	4.3 Results

	5 Related Work
	6 Discussion
	7 Concluding Remarks
	Acknowledgments
	References

