
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

R E S E A R C H A R T I C L E

A Declarative Approach and Benchmark Tool for Controlled
Evaluation of Microservice Resiliency Patterns

Carlos M. Aderaldo1 Thiago M. Costa1 Davi M. Vasconcelos1 Nabor C. Mendonça1

Javier Cámara2 David Garlan3

1Center for Technological Sciences, University of
Fortaleza, Ceará, Brazil

2ITIS Software, University of Málaga, Málaga,
Spain

3Institute for Software Research, Carnegie Mellon
University, Pittsburgh, USA

Correspondence
Corresponding author Nabor C. Mendonça Post

Graduate Program in Applied Informatics,

University of Fortaleza, Av. Washington Soares,

1321, Edson Queiroz, 60811-905 Fortaleza, Ceará,

Brazil.

Email: nabor@unifor.br

Abstract
Microservice developers increasingly use resiliency patterns such as Retry and Circuit Breaker to cope

with remote services that are likely to fail. However, there is still little research on how the invocation
delays typically introduced by those resiliency patterns may impact application performance under varying
workloads and failure scenarios. This paper presents a novel approach and benchmark tool for experimentally
evaluating the performance impact of existing resiliency patterns in a controlled setting. The main novelty
of this approach resides in the ability to declaratively specify and automatically generate multiple testing
scenarios involving different resiliency patterns, which one can implement using any programming language
and resilience library. The paper illustrates the benefits of the proposed approach and tool by reporting
on an experimental study of the performance impact of the Retry and Circuit Breaker resiliency patterns
in two mainstream programming languages (C# and Java) using two popular resilience libraries (Polly
and Resilience4j), under multiple service workloads and failure rates. Our results show that, under low to
moderate failure rates, both resiliency patterns effectively reduce the load over the application’s target service
with barely any impact on the application’s performance. However, as the failure rate increases, both patterns
significantly degrade the application’s performance, with their effect varying depending on the service’s
workload and the patterns’ programming language and resilience library.

K E Y W O R D S

Microservices, Resiliency patterns, Benchmarking

1 INTRODUCTION

Microservice-based applications are typically fragile like many distributed systems. Multiple types of failures, such as network
delays, hardware defects, or server overloads, might render any microservice temporarily inaccessible to its clients.1 Anticipating
and dealing with different types of failures is part of a fundamental design paradigm commonly referred to as design for failure,2

which is one of the tenets of the microservice architectural style.3 To mitigate the impact of partial service outages, microservice-
based application developers must build resilient services that can gracefully respond to failures.2 One common way to do this is
by implementing service-to-service interactions using well-known resiliency patterns, such as Retry, Circuit Breaker, and Fail
Fast.4,5

In the context of microservices, resilience refers to the system’s ability to maintain an acceptable level of service in the face of
faults and failures. This involves not just handling faults but also ensuring that failures do not propagate, thereby preventing
cascading failures throughout the system.6 Effective resilience strategies, therefore, must be able to anticipate and mitigate the
impact of service outages or degradation on the overall application. Resiliency patterns, such as Retry and Circuit Breaker, play
a key role in achieving this resilience.5 The Retry pattern allows a microservice to attempt failed operations multiple times,
accommodating temporary network glitches or service unavailability.7 The Circuit Breaker pattern, on the other hand, prevents a
microservice from repeatedly calling a failing service, thus avoiding unnecessary load and allowing the failing service time to

Software: Practice and Experience 2023;00:1–21 wileyonlinelibrary.com/journal/ © 2023 Copyright Holder Name 1

2 ADERALDO ET AL.

recover.8 These patterns, when properly implemented and configured, help maintain the overall health and performance of a
microservices-based system, even when individual services experience issues.9

Despite the popularity of resiliency patterns amongst practitioners, thus far, there has been relatively little interest from the
research community in studying how their use, particularly the invocation delays they typically introduce under failure, may
affect application performance. A few notable exceptions are the works of Mendonça et al.,9 Jagadeesan and Mendiratta,10

and Sedghpour et al.11 Mendonça et al. and Jagadeesan and Mendiratta have formally modeled and analyzed the behavior of
the Retry and Circuit Breaker patterns and their expected impact on application performance using the PRISM probabilistic
model-checker.12 Sedghpour et al.,11 in turn, have evaluated the performance impact of these two patterns in the context of
the Istio service mesh middleware.13 However, none of these works have experimentally evaluated the performance impact of
resiliency patterns implemented using popular resilience libraries, e.g., Java’s Resilience4j14 and C#’s Polly.15 Evaluating the
performance impact of existing resiliency pattern implementations is critical because the back-off mechanism used by those
resiliency patterns to avoid overloading an unresponsive service may have the undesirable side effect of significantly degrading
the application’s performance.9

A systematic evaluation of the resiliency patterns solutions provided by existing resilience libraries requires planning and
executing many performance tests to account for all possible ways application developers can configure those patterns. In
addition, the evaluation must consider other external factors that may affect the patterns’ impact on the application’s performance,
such as the target service’s workload and failure rate.9 In that regard, we are unaware of any current work that has focused
on facilitating the specification and execution of multiple performance tests involving resiliency patterns implemented using
different programming languages and resilience libraries under varying workloads and failure conditions.

This paper presents a novel approach to support the experimental evaluation of resiliency patterns. The main novelty of this
approach resides in the ability to declaratively specify and automatically generate multiple testing scenarios involving multiple
resiliency pattern libraries, configurations, workloads, and failure rates. These parameters are crucial for a comprehensive testing
approach: resiliency pattern libraries provide multiple implementations of several resiliency patterns in different programming
languages; configurations allow for adjusting pattern behavior; workloads simulate various levels of system stress; and failure
rates represent different scenarios of service unreliability. By varying these test parameters, we can assess the performance
impact of typical microservice resiliency patterns across a wide range of realistic operational scenarios.

The declarative nature of our approach is instrumental in facilitating the task of specifying a potentially large variety of
test scenarios in a compact, high-level manner. We have embodied our approach into an open-source benchmark tool, called
ResilienceBench,16 which automatically executes a given test scenario specification in a controlled containerized environment.
ResilienceBench also collects and consolidates several performance metrics during scenario execution and reports them after
completing the evaluation. Beyond our declarative approach and support tool, this paper further contributes with an experimental
study of the performance impact of the Retry and Circuit Breaker resiliency patterns in two mainstream programming languages
(C# and Java) using two popular resilience libraries (Polly and Resilience4j). The study used ResilienceBench to evaluate
the performance impact of different configurations of Retry and Circuit Breaker across multiple workloads and failure rates.
To conduct the study, we implemented a simple client application to continuously invoke a target HTTP service using each
resiliency pattern implementation until it reached a certain number of successful invocations. Overall, our results show that,
under low to moderate failure rates, both resiliency patterns can effectively reduce the load over the HTTP service with barely
any impact on the application’s execution time. However, as the failure rate increases, both patterns can significantly degrade the
application’s performance, with their effect varying depending on the application’s programming language/resilience library.

While our approach supports the evaluation of multiple resiliency patterns, this paper focuses primarily on the Retry and
Circuit Breaker patterns. We chose these patterns for several reasons:

Ubiquity Retry and Circuit Breaker are among the most commonly used resiliency patterns in microservice architec-
tures.17,18,19,20

Complementary nature These patterns often work in tandem, with Retry attempting to recover from transient failures and
Circuit Breaker preventing cascading failures during prolonged outages.

Performance impact Both patterns can significantly affect system performance, making their evaluation crucial for optimizing
microservice applications.

Configurability Retry and Circuit Breaker offer various configuration options, allowing us to demonstrate the flexibility of our
approach in handling diverse pattern behaviors.

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 3

By conducting an in-depth evaluation of these two patterns, we aim to provide insights that can be generalized to other
resiliency patterns. The lessons learned from this study—such as the impact of different configurations on performance, the
interplay between patterns and failure rates, and the variations across programming languages and libraries—can guide developers
in implementing and configuring other resiliency patterns effectively. Moreover, our approach and tool can be readily applied to
evaluate additional patterns, enabling researchers and practitioners to extend this work to other aspects of microservice resilience.

In summary, this paper makes three significant contributions. First, it introduces a novel declarative approach for experimentally
evaluating resiliency patterns, implemented using any programming language and resilience library, in a controlled setting.
Second, it presents an open-source benchmark tool, ResilienceBench, which has been developed as a proof-of-concept of the
proposed approach. Finally, it offers a practical demonstration of the proposed approach and benchmark tool for the systematic
evaluation of the Retry and Circuit Breaker patterns in both C# and Java, using the Polly and Resilience4j libraries, under
multiple environmental conditions. ResilienceBench is already being applied to investigate how to best configure the Retry
pattern under a wider range of operating scenarios and pattern configurations.21 By making our benchmark tool freely available,
we hope the microservice research and development communities can leverage our work to experimentally investigate a more
diverse set of resiliency pattern implementations and test scenarios, thus further extending our collective knowledge of how to
develop more reliable and efficient microservice applications.

The rest of the paper has the following organization: The next section gives an overview of the Retry and Circuit Breaker
patterns and illustrates how they can be implemented and configured in C# and Java using Polly and Resilience4J. Section 3
introduces our proposed approach. Section 4 describes the ResilienceBench tool. Section 5 presents the research questions,
method, and results of our experimental study of the Retry and Circuit Breaker patterns using ResilienceBench. Section 6
compares and contrasts our contributions with related work. Finally, Section 7 offers our conclusions and directions for future
research.

2 RESILIENCY PATTERNS

Some of the most well-known resiliency patterns used today, e.g., Retry, Fail Fast, Bulkhead, and Circuit Breaker, were
introduced over a decade ago in the seminal book Release It! by Michael Nygard.4 Since then, those patterns have grown in
popularity, especially in cloud-native microservice applications.

This section briefly describes the purpose, context, solution, and implementation of the Retry and Circuit Breaker resiliency
patterns. Apart from being very popular amongst practitioners,19,17,18 we have selected these two resiliency patterns because they
both use a time-based back-off mechanism that makes it easier to compare their performance impact across multiple test scenarios.
Our pattern description draws mainly from the documentation provided on Microsoft Azure’s resiliency patterns website.5 While
this pattern documentation is sufficient for the scope of this paper, future work could explore more comprehensive resiliency
pattern languages22 to cover a wider range of resiliency strategies.

This section also illustrates the behavior of each pattern in an example scenario, followed by an illustrative description of the
patterns’ implementation and configuration parameters using Polly and Resilience4J.

2.1 Retry

Purpose Enable an application to handle transient failures when it tries to invoke a remote service by transparently retrying a
failed operation.

Context A distributed application must be resilient to the transient faults that can occur in a distributed environment. These faults,
(e.g., momentary loss of network connectivity, temporary unavailability of a service, and timeouts that occur when a service
is busy) are typically self-correcting. If an application repeats a failed request after a suitable delay, it will likely succeed.

Solution The Retry pattern is based on the premise that if a client application detects a transient failure when sending a request
to a remote service, it should wait a suitable amount of time (“back off”) before retrying the request.7 The application
repeats this process until the request succeeds or reaches a certain failure threshold. In that case, the application considers
that the operation has failed.

Implementation One should define the period between retries to spread the requests from multiple application instances as
evenly as possible. This strategy reduces the chance of the target service becoming more overloaded. If necessary, the Retry
mechanism can increase the delays between retry attempts until it reaches some maximum number of retries. To this end, the

4 ADERALDO ET AL.

Retry mechanism can use either linear or exponential delay increments, depending on the type of failure and the probability
that the remote service will restore its normal state during this time. If a request still fails after a significant number of
retries, the Retry mechanism should prevent further requests from going to the same resource and simply report a failure.

2.2 Circuit Breaker

Purpose Enable an application to handle faults that might take a variable amount of time to recover when invoking a remote
service or resource.

Context In a distributed environment, calls to remote resources and services can fail due to unanticipated events (e.g., loss
of connectivity, service failure) and might take much longer to fix than typically self-correcting transient faults. In these
situations, it might be pointless for an application to continue to retry an operation that is unlikely to succeed. Instead, the
application should quickly accept that the operation has failed and handle this failure accordingly, thus preventing the target
service from overloading with failing requests.

Solution The Circuit Breaker pattern, inspired by electrical circuit breakers, typically operates in three states: Closed, Open,
and Half-Open.23 In the Closed state, requests are forwarded to the target service normally. When a predetermined failure
threshold is reached, the circuit transitions to the Open state, blocking further requests and returning an error to the client
application. After a specified timeout period, the circuit enters the Half-Open state where only a limited number of requests
are allowed through. If these succeed, the circuit goes back to the Closed state; if failures persist, it returns to the Open
state. This mechanism allows the system to self-heal and prevent further damage during periods of high failure rates.

Implementation The Circuit Breaker pattern is customizable and can be adapted according to the type and expected duration of
the possible failure. For example, one could initially place the circuit breaker in the Open state for a few seconds, then if
the failure persists, increase the timeout to a few minutes, and so on. In some cases, rather than the Open state returning
failure and raising an exception, it could be helpful to return a meaningful default value to the application. Essentially, this
strategy would turn the circuit breaker into a temporary surrogate for the failed service.24

2.3 Example scenario

We illustrate the behavior of each pattern using an example service invocation scenario where a single client service sequentially
invokes an operation provided by a target remote service (see Fig. 1a). In this scenario, the target service serves requests made
by the client service with a given fail rate, representing the probability of the target service failing to send a correct response
to the client service. This probabilistic behavior means that each request may either succeed (“OK” response) or fail (“error”
response) due to the target service being either unavailable or too slow.

In this scenario, an important challenge related to implementing the client service is dealing with a failed target service. Two
undesirable cases to avoid under such circumstances are:

1. If the client service continually retries each failed request, it will increase the load over the target service, thus contributing to
further degrading its response time;

2. If, in contrast, the client service backs off for a certain amount of time before retrying every failed request, as a way to
alleviate the load over the target service, it will increase its own execution time.

The Retry and Circuit Breaker patterns offer different solutions to cope with the two undesirable cases described above.
Fig. 1b and Fig. 1c illustrate the possible behavior of a client service using either of the Retry and the Circuit Breaker patterns,
respectively, in the context of the example scenario shown in Fig. 1a. In Fig. 1b, we can see that the Retry mechanism attempts
to invoke the target service twice before receiving a successful response. Note that the Retry mechanism increases the retry delay
after the first attempt, allowing more time for the target service to recover. In contrast, Fig. 1c shows that the Circuit Breaker
transitions from Closed to Open after two failed requests; and transitions from Half-Open back to Closed after one successful
request.

In principle, application developers can combine the Retry and Circuit Breaker patterns, e.g., by using a Retry mechanism to
invoke a remote operation through a circuit breaker. However, the retry logic should be sensitive to any exceptions returned
by the circuit breaker and abandon retry attempts if the circuit breaker indicates that a fault is not transient.23 Although some

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 5

process
request

process
request

:ClientService :TargetService

request

OK

request

error

request

error

request

OK

(a)

process
request

:ClientService :Retry :TargetService

request

error

request

OKOK

increase retry
delay

request

(b)

process
request

open

:ClientService :CircuitBreaker :TargetService

request
request

OK

request

error

OK

request

error

request

error

request

error

request

error

start circuit
timeout

failure threshold
reached

process
request

half-open

close

request

OK

request

OK

circuit timeout
expires

success threshold
reached

Half Open

Open

Closed

(c)

F I G U R E 1 An example invocation scenario (a) and possible behavior of the Retry (b) and Circuit Breaker (c) patterns in that scenario.

resilience libraries support the combination of multiple resiliency patterns, hybrid pattern implementations are out of the scope
of our current work.

2.4 Resilience libraries

Several open-source libraries implement Retry, Circuit Breaker, and other resiliency patterns in various programming languages.
Well-known examples include Java’s Hystrix25 and Resilience4j;14 Scala’s Finagle;26 JavaScript’s Cockatiel;27 and C#’s Polly.15

Some functionalities of the Retry and Circuit Breaker patterns, in particular, are also provided as part of the resilience features of
existing service mesh middleware, e.g., Istio.13

In our work, we have used Polly and Resilience4j, two of the most popular resilience libraries amongst Java and C#
microservice developers.†

† At the time of writing, Polly and Resilience4j have over 12,000 and 8,000 stars on GitHub, respectively.

6 ADERALDO ET AL.

Listing 1 Retry and Circuit Breaker in C# with Polly.
1 // Retry configuration
2 RetryPolicy retry = Policy
3 .Handle<HttpRequestException>()
4 .WaitAndRetry(
5 int retryCount,
6 Func<int, TimeSpan> sleepDurationProvider,
7 Action<Exception, int> onRetry
8);
9
10 // Circuit Breaker configuration
11 var circuitBreaker = Policy
12 .Handle<HttpRequestException>()
13 .CircuitBreaker(
14 double exceptionsAllowedBeforeBreaking,
15 TimeSpan durationOfBreak
16);

2.4.1 Polly

Polly15 is an open-source resilience and transient-fault handling library for the C#/.NET platform. Polly was first released in
January 2013 with support for the Retry and Circuit Breaker patterns. Subsequent versions supported other resiliency patterns,
including Bulkhead and Fall Back. We used Polly version 7.2.2+9 in our work, released on April 11, 2021.

Listing 1 shows examples of how the Retry and Circuit Breaker patterns can be configured in C# using Polly. In the Retry
example (lines 2–8), the Retry mechanism will wait for the time interval returned by the function sleepDurationProvider (line 6)
before retrying a failed HTTP request up to retryCount times (line 5), with the action onRetry (line 7) being executed on every
retry. In the Circuit Breaker example (lines 11–16), the circuit will wait in the Open state for a fixed interval given in parameter
durationOfBreak (line 15) after a certain number of failures given in parameter exceptionsAllowedBeforeBreaking (line 14). By
adjusting the values of the configuration parameters of each pattern, developers can exert more fine-grained control over each
pattern’s behavior upon failure. For instance, developers can provide a customized version of the Retry’s sleepDurationProvider
function to implement a linear or exponential back-off delay strategy. Similarly, they can increase or decrease the value of the
Circuit Breaker’s exceptionsAllowedBeforeBreaking parameter to make the circuit less or more prone to break upon failures.

2.4.2 Resilience4j

Resilience4j14 is an open-source lightweight fault tolerance library for Java. Resilience4j was first released in January 2016,
inspired by Netflix’s Hystrix,25 but designed for Java 8’s functional programming features. Resilience4j provides higher-order
functions (decorators) to enhance any available interface, lambda expression, or method reference with support for implementing
multiple resiliency patterns, including Retry, Circuit Breaker, Rate Limiter, and Bulkhead. With Resilience4j, developers can
stack more than one resiliency patterns decorator, thus creating hybrid versions of the supported resiliency patterns. We used
Resilience4j version 1.7.1 in our work, released on June 25, 2021.

Listing 2 shows examples of how the Retry and Circuit Breaker patterns can be configured in Java using Resilience4j. In
the Retry example (lines 2–8), the Retry configuration includes the following parameters: the maximum number of retries per
call (line 3); the wait time between retries (line 4); the call result, and the exception types that trigger a retry (lines 5–6); and
a parameter to indicate whether the Retry must fail after the given maximum number of retries (line 7). In addition to those
parameters, Resilience4j also provides an intervalFunction parameter through which developers can customize the Retry behavior
when calculating the wait time between retries, e.g., by providing a function to increase the wait time linearly or exponentially
before each subsequent retry. In the Circuit Breaker example (lines 11–20), in turn, the Circuit Breaker mechanism configuration
includes the following parameters: the percentages of failures (line 12) and slow calls (line 13) necessary to open the circuit; the
wait time in the open state (line 14); the minimum threshold for call response times to be considered slow (line 15); the minimum
number of calls to close the circuit when in the Half-Open state (line 16); the minimum number of calls to start calculating the
Circuit Breaker metrics (line 17); the sliding window size (number of calls) within which to calculate the Circuit Breaker metrics
(line 18); and the call exception types to be considered as failures (line 19). As with Polly, Resilience4j users can also adjust the
values of the Retry and Circuit Breaker configuration parameters to control how each pattern will behave upon failure.

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 7

Listing 2 Retry and Circuit Breaker in Java with Resilience4j.
1 // Retry configuration
2 RetryConfig retryConfig = RetryConfig.custom()
3 .maxAttempts(3)
4 .waitDuration(Duration.ofMillis(1000))
5 .retryOnResult(response -> response.getStatus() == 500)
6 .retryOnException(e -> e instanceof WebServiceException)
7 .failAfterMaxAttempts(true)
8 .build();
9
10 // Circuit Breaker configuration
11 CircuitBreakerConfig circuitBreakerConfig = CircuitBreakerConfig.custom()
12 .failureRateThreshold(100)
13 .slowCallRateThreshold(100)
14 .waitDurationInOpenState(Duration.ofMillis(1000))
15 .slowCallDurationThreshold(Duration.ofSeconds(6))
16 .permittedNumberOfCallsInHalfOpenState(2)
17 .minimumNumberOfCalls(10)
18 .slidingWindowSize(2)
19 .recordException(e -> e instanceof WebServiceException)
20 .build();

T A B L E 1 Some of the Retry and Circuit Breaker configuration parameters provided by Polly and Resilience4j.

Library Pattern Parameter Description

Polly Retry retryCount Maximum number of invocation attempts (excluding the first one)
sleepDuration Initial back-off delay
sleepDurationType Back-off delay increment policy (e.g., linear, exponential, etc.)
exponentialBackoffPow Multiplication factor for the exponential policy

Circuit
Breaker

exceptionsAllowedBeforeBreaking Required number of invocation failures to open the circuit
durationOfBreaking Amount of time the the circuit remains open

Resilience4j Retry maxAttempts Maximum number of invocation attempts (including the first one)
initialIntervalMillis Initial back-off delay
intervalFunction Back-off delay increment policy (e.g., linear, exponential, etc.)
multiplier Multiplication factor for the exponential policy

Circuit
Breaker

slowCallDurationThreshold The duration threshold above which invocations are considered slow
slowCallRateThreshold Percentage of slow invocations (per sliding window) upon or above which the circuit

is open
failureRateThreshold Percentage of failed invocations (per sliding window) upon or above which the circuit

is open
minimumNumberOfCalls Minimum number of invocations required (per sliding window) before the Circuit

Breaker can calculate the failed or slow invocation rate
slidingWindowSize Size of the sliding window (in number of invocations) used to record the outcome of

invocations when the circuit is closed
permittedNumberOfCallsInHalfOpenState Number of permitted invocations when the circuit is half open
waitDurationInOpenState Amount of time the the circuit remains open

Table 1 summarizes the Retry and Circuit Breaker configuration parameters provided by Polly and Resilience4j used in our
work. We will refer to those parameters in Section 5 when describing our empirical evaluation method.

3 APPROACH

Our approach facilitates the resiliency pattern testing cycle by providing a high-level declarative notation for engineers to specify
and execute a variety of resiliency pattern-based test scenarios. The approach consists of four steps, as Fig. 2 shows: first, an
engineer specifies a test space using our test specification notation (described in Section 4.2); second, a scenario generation
tool expands that test space specification into a set of test scenarios; third, a scenario execution tool executes each test scenario
and collects a set of performance metrics during the scenarios’ execution; finally, the scenario execution tool consolidates the
collected metrics and reports them to the engineer as the test results.

8 ADERALDO ET AL.

Test
Space

Scenario
Execution

Scenario
Generation

Engineer

Test
Scenarios

Test
Results

1 2

4 3

F I G U R E 2 The proposed resiliency pattern evaluation approach.

We now describe and formally define the concepts of a test scenario and a test space, along with an algorithmic description of
the test scenario generation process. The formalization is meant to make our definitions clear, rigorous, and unambiguous. This
is critical when introducing new concepts as it avoids misinterpretation and facilitates understanding across diverse audiences.

3.1 Scenario specification

In our approach, a test scenario describes a particular resiliency pattern testing session in which a client service creates a certain
number of virtual users to concurrently invoke a target service until they reach a required number of successful invocations.
Moreover, during the test scenario execution, the target service may fail according to a certain failure rate. Upon failure of the
target service, the client service’s virtual users may behave differently, depending on the resiliency strategy they use to invoke
the target service and the values of their resiliency strategy’s configuration parameters.

Formally, we define a test scenario as follows.

Definition 1 (Test Scenario). Let p be a development platform, let RES(p) be the set of resiliency strategies supported by
p, and let CONF(rs) be the set of all possible configurations of a resiliency strategy rs ∈ RES(p). A test scenario is a tuple
T = (ts, f , cs, rs, conf , u, n) where

• ts is a target service;
• f (0 ≤ f < 1) is the failure rate of ts;
• cs is a client service instance developed in p;
• rs ∈ RES(p) is a resiliency strategy used by cs;
• conf ∈ CONF(rs) is a unique configuration of rs;
• u ∈ Z+ is the number of virtual users cs creates to invoke ts using rs configured with conf ; and
• n ∈ Z+ is the minimum number of successful invocations of ts each cs virtual user is required to perform during a test.

A test space is a generalized test scenario specification where one or more of the following scenario elements can have
multiple definitions: the target service’s failure rate, the client service’s number of virtual users, the client service instance, and
the client service instances’ resiliency strategy configuration.

Formally, we define a test space as follows.

Definition 2 (Test Space). Let P be a set of development platforms, let p ∈ P be a development platform, let RES(p) be the set
of resiliency strategies supported by p, let CONF(rs) be the set of all possible configurations of a resiliency strategy rs ∈ RES(p),
and let Plat(cs) ∈ P be the development platform of a client service cs. A test space is a tuple S = (ts, F, CS, RS, CONFS, U, n)
where

• ts is a target service;
• F = {fi|0 ≤ fi < 1, i ∈ Z+} is an ordered set of failure rates of ts;
• CS = {csi|Plat(csi) ∈ P, i ∈ Z+} is an ordered set of client service instances;
• RS = {rsi|rsi ∈ RES(Plat(csi)), csi ∈ CS, 1 ≤ i ≤ |CS|} is an ordered set of resiliency strategies used by each client service

instance in CS;

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 9

Algorithm 1 Scenario generation process
Require: a test space S = (ts, F, CS, RS, CONFS, U, n)
Ensure: |TS| = Size(S), where TS is a set of generated test scenarios

TS← ∅
for all f ∈ F do

for all u ∈ U do
for all cs, rs, CONF ∈ CS, RS, CONFS do

for all conf ∈ CONF do
T ← (ts, f , cs, rs, conf , u, n)
TS← TS ∪ {T}

end for
end for

end for
end for
return TS

• CONFS = {CONFi|CONFi ⊆ CONF(rsi), rsi ∈ RS, 1 ≤ i ≤ |RS|} is an ordered set containing subsets of all possible
configurations of each resiliency strategy in RS;

• U = {ui|u, i ∈ Z+} is an ordered set of numbers of virtual users each client service in CS creates to invoke ts; and
• n ∈ Z+ is the minimum number of successful invocations of ts each client service virtual user is required to perform during a

test.

We denote the size of a test space as the total number of test scenarios one can derive by expanding the test space’s multi-value
elements.

Definition 3 (Test Space Size). Let S = (ts, F, CS, RS, CONFS, U, n) be a test space. Then, the size of S, denoted Size(S), is
given by Equation 1.

Size(S) = |F|× |U|×
|CS|∑
i=1

|CONFi|, CONFi ∈ CONFS (1)

Note that Equation 1 calculates the cartesian product of all combinations of a test space’s multi-value elements.

3.2 Scenario generation

The scenario generation process expands a given test space specification by instantiating multiple test scenarios containing all
possible combinations of the test space’s multi-value elements. To facilitate understanding and reproducibility of our approach,
we provide an algorithmic description of the scenario generation process in Algorithm 1. From that algorithm, we can see that this
process produces new test scenarios grouped by failure rate, the number of virtual users, client service instance/resiliency strategy,
and resiliency strategy configuration. At execution time, the scenario execution tool executes and collects the performance
metrics from each generated test scenario in that order, optionally multiple times per scenario, as we will explain next.

4 RESILIENCEBENCH

We have implemented ResilienceBench,‡ a resiliency pattern benchmarking tool, as a proof-of-concept for our approach. Below
we describe ResilienceBench’s run-time architecture and test space notation.

‡ https://github.com/ppgia-unifor/resilience-bench

https://github.com/ppgia-unifor/resilience-bench

10 ADERALDO ET AL.

:TargetService:ClientService :ProxyService

request

response

error

:Scheduler

metrics

response

calculate
metrics

process
request

request
request

Engineer

CSV

Test Results

JSON

Test Space
Specification

Legend:

Input/outputService
instance HTTP call Local callFile

TYPE

request

loop

F I G U R E 3 ResilienceBench’s run-time architecture.

T A B L E 2 ResilienceBench’s collected performance metrics.

Metrics Description

SuccessfulCalls
UnsuccessfulCalls
TotalCalls

Number of successful/unsuccessful/total invocations of the target service by the client service (excluding pattern-level re-invocations)

SuccessfulRequests
UnsuccessfulRequests
TotalRequests

Number of successful/unsuccessful/total invocations of the target service by the client service (including pattern-level re-invocations)

TotalSuccessTime
AverageSuccessTime

Total/average time the client service spends waiting for successful responses from the target service (in seconds)

TotalErrorTime
AverageErrorTime

Total/average time the client service spends waiting for failed responses from the target service (in seconds)

Throughput Average number of (either successful or unsuccessful) invocations of the target service by the client service per second

TotalExecutionTime Total time the client service takes to complete the required number of successful invocations of the target service (in seconds)

TotalContentionTime Total accumulated time the client service spends invoking or waiting for a response from the target service (in seconds)

ContentionRate Rate between the client service’s TotalContentionTime and TotalExecutionTime

4.1 Architecture

ResilienceBench’s run-time architecture comprises four main services, as depicted in Fig. 3: a scheduler, a client service, a proxy
service, and a target service. The scheduler plays the role of both the scenario generation and the scenario execution tools in our
approach. It (i) parses and expands the test space specification provided by the engineer as a JSON file; (ii) invokes each of the
client service instances at a time, passing them the required test parameters (e.g., the target service’s URL and failure rate, the
client service’s number of virtual users and resiliency strategy configuration, etc.); (iii) collects and consolidates the performance
metrics received from each client service instance; and (iv) returns the consolidated performance metrics to the engineer as a set of
CSV files. Each client service instance, in turn, (i) continuously invokes the target service, using the provided resilience strategy
configuration, until they reach the required number of successful invocations; (ii) collects and calculates a set of pre-defined
performance metrics after each target service invocation; and (iii) returns the collected performance metrics to the scheduler.
Table 2 describes the set of performance metrics ResilienceBench currently collects during the execution of a test scenario.

The proxy service is responsible for injecting faults of a certain type (e.g., an abort failure) into the target service’s request
stream according to the specified failure rate. For instance, a 25% failure rate means that the proxy service will inject one failure
for every three requests the target service receives from the client application. Finally, the target service serves the client service’s
requests and is entirely oblivious of ResilienceBench’ other services. The decision to use a separate proxy service for fault

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 11

Listing 3 A ResilienceBench test space specified in JSON.
1 {
2 "rounds": 10,
3 "users": [50, 100, 150],
4 "succRequests": 10,
5 "maxRequests": 500,
6 "targetUrl": "http://server:9211/bytes/1000",
7 "fault": {
8 "type": "abort",
9 "percentage": [0, 20, 40, 60, 80],
10 "status": 503
11 },
12 "clientSpecs": [
13 {
14 "platform": "Java",
15 "strategy": "Retry",
16 "lib": "Resilience4j",
17 "url": "http://resilience4j:8080/retry",
18 "patternConfig": {
19 "maxAttempts": 6,
20 "multiplier": 1.5,
21 "intervalFunction": "EXPONENTIAL_BACKOFF",
22 "initialIntervalMillis": [20, 40, 60]
23 }
24 },
25 {
26 "platform": ".NET",
27 "strategy": "Circuit Breaker",
28 "lib": "Polly",
29 "url": "http://polly/circuitbreaker",
30 "patternConfig": {
31 "exceptionsAllowedBeforeBreaking": 2,
32 "durationOfBreaking": [20, 40, 60]
33 }
34 }
35]
36 }

injection is justified since this allows ResilienceBench users to change the target service’s failure rate independently of the actual
target service used.

The scheduler is a native service implemented in Python. In contrast, developers can implement new client service instances
on any platform using any available resilience library. Currently, ResilienceBench includes two versions of the client service,
implemented in C# and Java, using the Polly and Resilience4j resilience libraries, respectively. Both versions implement three
resiliency strategies for invoking the target service during scenario execution: (i) using the Retry pattern; (ii) using the Circuit
Breaker pattern; and (iii) using no resiliency pattern at all, which we refer to as the Baseline strategy. For the proxy service,
ResilienceBench uses Envoy,28 a well-known proxy service and sidecar for microservice applications. However, any other proxy
service capable of transparently injecting faults into an HTTP request stream would also fit the bill. Finally, for the target service,
ResilienceBench uses httpbin,29 a simple HTTP service commonly used to test client-side web applications. Again, due to the
loosely coupled nature of ResilienceBench’ architecture, any other HTTP service could fill that role.

We deploy the scheduler and the client service instances in two separate Docker containers and the proxy and the target
services in a single Docker container. The reasoning behind the decision to deploy the two backend services in a single container
is three-folded: (i) to minimize the impact of potential communication delays between those two services; (ii) to make the
existence of the proxy service fully transparent to the client service; and (iii) to avoid having the proxy service artificially
reducing the load over the target service during fault injection. The latter reasoning is justified as the proxy service injects
failures by filtering out requests from the target service request stream. This means that during failure injection the proxy service
effectively reduces the load on the target service. By deploying the proxy service and the target service in the same container, we
counter this effect by having both services share the container’s resources.

4.2 Test space notation

ResilienceBench uses the JSON data format as the notation for the specification of test spaces. Listing 3 shows an example
of a JSON specification for a test space. That test space contains two parts: the first part (lines 2–11) defines the test control
parameters; the second part (lines 12–35), in turn, defines two client service instances with their respective resiliency pattern

12 ADERALDO ET AL.

configurations. The test control parameters are the number of executions (rounds) of each scenario (line 2); the number of
client service virtual users that will currently invoke the target service (line 3); the required number of successful target service
invocations (line 4); the maximum number of target service invocations allowed (line 5); the target service’s URL (line 6);
and the target service’s composite fault parameter, which includes the fault’s type (line 8), percentage (line 9), and status code
(line 10). The two client service instances contain the following attributes: development platform (lines 14 and 26); resilience
strategy (lines 15 and 27); resiliency library (lines 16 and 28); access URL (lines 17 and 29); and resiliency pattern configuration
(lines 18–23 and 30–33), which is an optional composite element that may contain a set of pattern-specific resiliency parameters.

Note that the test space specification in Listing 3 defines several parameters as a list of primitive values. These list-like
parameters correspond to the multi-value elements of a test space (see Definition 2), including the number of client service
virtual users (line 3), with three values, and the target service’s fault percentage (line 9), with five values. In addition, that test
space specification also assigns multiple values to some of the client services’ pattern-specific configuration parameters, namely,
Resilience4j’s initialIntervalMillis Retry parameter (line 22) and Polly’s durationOfBreaking Circuit Breaker parameter (line 32),
both with three values. At scenario execution time, the scheduler service of ResilienceBench will follow the process described
in Algorithm 1 to generate multiple test scenarios containing all possible combinations of the test space’s list-like parameters.
Applying Algorithm 1 to the test space specification shown in Listing 3 will produce a total of 90 (3 × 5 × (3 + 3)), as per
Equation 1, unique test scenarios after expansion of all its list-like parameters.

5 EXPERIMENTAL EVALUATION

We have conducted an experimental evaluation of the Retry and Circuit Breaker patterns to highlight the benefits of our approach.
Below we describe our research questions, method, and experimental results. We also discuss the implications and limitations of
our findings.

We should emphasize that our experimental setting and test scenarios are not exhaustive and are meant to illustrate the current
features and capabilities of our benchmark tool.

5.1 Research questions

Our evaluation aims to shed light on the following two research questions:

RQ1 What is the performance impact experienced by a client service that continuously invokes a failure-prone target service
using different configurations of the Retry and Circuit Breaker resiliency patterns?

RQ2 How is that impact influenced by factors such as the client service’s programming language/resilience library and the
target service’s workload and failure rate?

In principle, each client service virtual user should immediately re-invoke a failed or unresponsive target service to complete
the required number of successful invocations as quickly as possible. However, if all virtual users follow this naive strategy, they
would also increase the risk of overloading the target service with far too many unnecessary requests, which could inadvertently
degrade the client service’s execution time. The Retry and Circuit Breaker resiliency patterns aim to strike a balance between
these two performance constraints by deliberately deciding when to re-invoke or back off from re-invoking an unresponsive
target service. Our experimental evaluation shows how well and under what conditions the Retry and Circuit Breaker patterns
strike that balance in a controlled test environment.

5.2 Method

We have used ResilienceBench to specify and execute multiple test scenarios to answer the above questions. To answer RQ1, we
have analyzed two of the performance metrics ResilienceBench collects during the tests: the target service’s average success
time and the client application’s total execution time. The target service’s response time measures the average response time
of the target service, as measured by the virtual users of the client application. A lower response time indicates a lower load
exerted on the target service by the client application. The client application’s execution time measures the average time taken by

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 13

Listing 4 Test space specification used in the experimental evaluation.
1 {
2 "rounds": 10,
3 "users": [50, 100, 150],
4 "succRequests": 10,
5 "maxRequests": 500,
6 "targetUrl": "http://server:9211/bytes/1000",
7 "fault": {
8 "type": "abort",
9 "percentage": [0, 20, 40, 60, 80],
10 "status": 503
11 },
12 "clientSpecs": [
13 {
14 "platform": ".NET",
15 "strategy": "Baseline",
16 "lib": "",
17 "url": "http://polly/baseline",
18 "patternConfig": {}
19 },
20 {
21 "platform": ".NET",
22 "strategy": "Retry",
23 "lib": "Polly",
24 "url": "http://polly/retry",
25 "patternConfig": {
26 "retryCount": 5,
27 "sleepDurationType":

"EXPONENTIAL_BACKOFF",↪→
28 "exponentialBackoffPow": 1.5,
29 "sleepDuration": [20, 40, 60]
30 }
31 },
32 {
33 "platform": ".NET",
34 "strategy": "Circuit Breaker",
35 "lib": "Polly",
36 "url": "http://polly/circuitbreaker",
37 "patternConfig": {
38 "exceptionsAllowedBeforeBreaking": 2,
39 "durationOfBreaking": [20, 40, 60]

40 }
41 },
42 {
43 "platform": "Java",,
44 "strategy": "Baseline",
45 "lib": "",
46 "url":

"http://resilience4j:8080/baseline",↪→
47 "configTemplate": {}
48 },
49 {
50 "platform": "Java",
51 "strategy": "Retry",
52 "lib": "Resilience4j",
53 "url": "http://resilience4j:8080/retry",
54 "patternConfig": {
55 "maxAttempts": 6,
56 "multiplier": 1.5,
57 "intervalFunction":

"EXPONENTIAL_BACKOFF",↪→
58 "initialIntervalMillis": [20, 40, 60]
59 }
60 },
61 {
62 "platform": "Java",
63 "strategy": "Circuit Breaker",
64 "lib": "Resilience4j",
65 "url": "http://resilience4j:8080/cb",
66 "patternConfig": {
67 "slowCallRateThreshold": 100,
68 "slowCallDurationThreshold": 1000,
69 "slidingWindowSize": 2,
70 "failureRateThreshold": 100,
71 "minimumNumberOfCalls": 2,
72 "permittedNumberOfCallsInHalfOpenState ⌋

": 1,↪→
73 "waitDurationInOpenState": [20, 40, 60]
74 }
75 }
76]
77 }

each virtual user of the application to complete the required number of successful invocations of the target service. A lower
execution time indicates higher efficiency of the client application. In addition, we have evaluated multiple configurations of each
pattern by varying the value of their back-off delay parameter. Finally, we have compared the performance of each resiliency
pattern against the performance of a Baseline strategy which does not use any resiliency pattern. This Baseline strategy has no
consideration for the load exerted on the target service and immediately re-invokes every failed invocation with no back-off
delay until it reaches the required number of successful invocations.

To answer RQ2, we have evaluated the three resiliency strategies (using the two patterns plus the Baseline strategy) imple-
mented in two programming languages (C# and Java) using different resilience libraries (Polly and Resilience4j, respectively).
Moreover, during the tests, we varied the target service’s failure rate and workload by providing multiple values to the fault
percentage and number of virtual users parameters.

5.2.1 Test space

Listing 4 shows the test space specification we have created in our experimental evaluation. In that test space, we have
defined the main control parameters with the following values: 10 rounds per scenario (line 2); 50, 100, and 150 client service
virtual users (line 3); 10 required successful invocations of the target service per virtual user (line 4); and 0, 20, 40, 60, and
80 percentages of abort faults injected into the target service invocation stream with 503 status code (lines 7–11). Moreover,
to investigate how the three resiliency strategies perform across the two development platforms, we have defined six client
service instances (lines 13–19, 20–1, 32–41, 42–48, 49–60, and 61–75), each involving a different programming language and a
different resilience strategy. Finally, to experiment with multiple resiliency pattern configurations, we have defined the different
Retry and Circuit Breaker back-off delay parameters provided by Polly and Resilience4j with the same set of values, namely, 20,
40, and 60 ms (lines 29, 39, 58, and 73).

14 ADERALDO ET AL.

T A B L E 3 Test parameters used in the experiment.

Library Pattern Parameter Value(s)

All All No. executions per test 10
No. virtual users 50, 100, 150
No. successful invocations per virtual user 10
Failure rate (%) 0, 20, 40, 60, 80

Polly Retry retryCount 5
sleepDuration 20ms, 40ms, 60ms
sleepDurationType exponential
exponentialBackoffPow 1.5

Circuit
Breaker

exceptionsAllowedBeforeBreaking 2
durationOfBreaking 20ms, 40ms, 60ms

Resilience4j Retry maxAttempts 6
initialIntervalMillis 20ms, 40ms, 60ms
intervalFunction exponential
multiplier 1.5

Circuit
Breaker

slowCallDurationThreshold 1000
slowCallRateThreshold 100%
failureRateThreshold 100%
minimumNumberOfCalls 2
slidingWindowSize 2
permittedNumberOfCallsInHalfOpenState 1
waitDurationInOpenState 20ms, 40ms, 60ms

Table 3 lists all test parameters utilized in our experiment, along with their respective context and values. The parameter
values were carefully selected to encompass a representative range of Retry configurations and test profiles. For instance, we
distributed the values of the backoff delay multiplier and maximum number of retries parameters around 1.5 and 5, respectively,
which are either equal or close to the default values of those parameters in Resilience4j. Additionally, we conducted preliminary
tests to determine values for the initial backoff delay parameter that would have a significant impact on the client application’s
execution time as the target service’s failure rate increases. Finally, we intentionally limited the number of values assigned to the
number of virtual users and failure rate parameters to ensure a clear presentation and to keep the number of plots shown in the
paper manageable.

We have defined all other configuration parameters with fixed values. For example, for the Retry pattern, we have limited the
maximum number of re-invocations to 5 (lines 26 and 55). For the Circuit Breaker pattern, we have defined the number of failed
requests necessary to open the circuit to 2 (lines 38 and 69–70) and the number of successful requests needed to close the circuit
to 1 (lines 71–72).§

Applying Algorithm 1 to the test space specification shown in Listing 4 will produce a total of 210 (3×5×(1+3+3+1+3+3)), as
per Equation 1, unique test scenarios. This number shows the power of using a declarative approach to easily specify a significant
number of resiliency pattern-based test scenarios, under various operational conditions, in a compact machine-readable format.

5.3 Results

Fig. 4 and Fig. 5 show the impact of the target service’s fault percentage on the two performance metrics evaluated, respectively,
for the three resiliency strategies the client service uses to invoke the target service. Both figures display a 2× 3 grid with six
plots, where the grid columns show the plots for the three workloads, and the grid rows show the plots for the two development
platforms/resilience libraries. Each plot depicts the median of one of the two performance metrics for each resiliency strategy
computed over the results of all client services’ virtual users and all scenario executions, with a 95% confidence interval. The
plots also depict the results for each resiliency strategy with a different color, marker, and line style. The increasing widths of
each resiliency strategy’s line represent that strategy’s increasing back-off delays. For visual consistency, we assume that the
Baseline strategy has a single back-off delay value of 0 ms.

§ Note in Table 1 that Polly does not provide a parameter to configure the number of successful requests needed to close the circuit, which is always one.

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 15

0

50

100

150

200

250

300

A
ve

ra
ge

 s
uc

ce
ss

 ti
m

e
(m

s)
C#/Polly | 50 users C#/Polly | 100 users C#/Polly | 150 users

0% 20% 40% 60% 80%
Fault percentage

0

50

100

150

200

250

300

A
ve

ra
ge

 s
uc

ce
ss

 ti
m

e
(m

s)

Java/Resilience4j | 50 users

0% 20% 40% 60% 80%
Fault percentage

Java/Resilience4j | 100 users

0% 20% 40% 60% 80%
Fault percentage

Java/Resilience4j | 150 users

Resiliency strategy
Retry
Circuit Breaker
Baseline

Back-off delay
0 ms
20 ms
40 ms
60 ms

F I G U R E 4 Impact of fault percentage, number of virtual users, and development platform/resilience library on the target service’s average success time.

5.3.1 Average success time

As we can see in Fig. 4, when the client service uses the Baseline strategy, the target service’s average success time gradually
increases as the target service’s fault percentage and workload increase. These results hold across the two development platforms.
The increase in the target service’s average success time is due to the number of client service’s concurrent requests also
increasing. We observe this behavior under higher failure rates, due to the client service virtual users having to re-invoke the
target service more often, and under higher workloads, as there are more virtual users to invoke the target service.

We can also see in Fig. 4 that both patterns significantly reduce the target service’s average success time compared to the
Baseline strategy in both development platforms. Moreover, the patterns’ impact on the target service’s average success time
increases with the value of their back-off delay parameter and the target service’s fault percentage. The explanation for these
results is that, in contrast to the Baseline strategy, which continuously re-invokes the target service upon failure, the Retry and
Circuit Breaker strategies force the client service virtual users to back off for a certain amount of time before re-invoking a failed
target service. This self-imposed blocking of the client service requests alleviates the load over the target service under higher
failure rates. In addition, since the Retry pattern exponentially increases the back-off delay after successive failed invocations
of the target service, it tends to further impact the target service’s response time compared to the Circuit Breaker pattern. The
results for the C#/Polly platform in Fig. 4 clearly show this trend.

5.3.2 Total execution time

While both Retry and Circuit Breaker strategies can reduce the target service’s average success time compared to the Baseline
strategy, such an impact may not necessarily decrease the client service’s total execution time. The reason is that both resiliency
patterns will inevitably delay the client service’s execution as they force its virtual users to back off before re-invoking the
target service upon failure. In practice, the overall impact of the Retry and Circuit Breaker strategies on the client service’s total
execution time will result from a trade-off between each pattern’s capability to reduce the target service’s response time and the
inevitable delays they impose on the client service’s execution.

16 ADERALDO ET AL.

0

1000

2000

3000

4000

5000

6000

7000

To
ta

l e
xe

cu
tio

n
tim

e
(m

s)
C#/Polly | 50 users C#/Polly | 100 users C#/Polly | 150 users

0% 20% 40% 60% 80%
Fault percentage

0

1000

2000

3000

4000

5000

6000

7000

To
ta

l e
xe

cu
tio

n
tim

e
(m

s)

Java/Resilience4j | 50 users

0% 20% 40% 60% 80%
Fault percentage

Java/Resilience4j | 100 users

0% 20% 40% 60% 80%
Fault percentage

Java/Resilience4j | 150 users

Resiliency strategy
Retry
Circuit Breaker
Baseline

Back-off delay
0 ms
20 ms
40 ms
60 ms

F I G U R E 5 Impact of fault percentage, number of virtual users, and development platform/resilience library on the client service’s total execution time.

As we can see in Fig. 5, compared to the Baseline strategy, the Retry and Circuit Breaker strategies barely have any impact on
the client service’s total execution time up to a 40% failure rate of the target service, in both platforms, across all workloads.
These results mean that, up to that failure rate, the patterns’ reduction of the target service’s response time compensates for
the delays they introduce to the client service’s execution. The Circuit Breaker strategy even shows a slight performance gain
over the Baseline for the 40-60% failure rate range, with the magnitude of that gain being more visible in the Java/Resilience4j
platform. Above that range, the results of the Retry and Circuit Breaker strategies start to outgrow those of the Baseline rapidly.
This behavior means that, under high failure rates, the delays both patterns introduce to the client service’s execution far outweigh
the patterns’ reduction of the target service’s response time.

In both platforms, we observe that the results obtained with the Retry pattern configured with higher back-off delays tend to
be greater than those of the Circuit Breaker pattern configured with the same back-off delays. Again, these differences are more
prominent in the C#/Polly platform. However, as the workload increases, the results of the two patterns under higher failure rates
start to converge. This behavior is evident in the Java/Resilience4j platform with 150 concurrent virtual users, where the Circuit
Breaker results completely outgrow the Retry results as the target service’s failure rate reaches 80%. One possible explanation
for those results is that, under high workloads, the target service’s response time has a more significant impact on the client
service’s total execution time than the back-off strategies each resiliency pattern implements, which remain unchanged across
the three workloads.

5.4 Discussion

Our experimental evaluation of the Retry and Circuit Breaker patterns shows that both resiliency strategies can effectively reduce
the target service’s response time compared to the Baseline strategy across all workloads and development platforms investigated.
However, our evaluation also shows that the patterns’ gain in the target service’s response time only compensates for their loss in
the client service’s total execution time under low to moderate failure rates (up to 40%-60%). Nevertheless, we believe that the
failure rate range where the two patterns are most effective is arguably the most realistic for production-grade microservice

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 17

applications. Thus, based on our experimental results, we recommend using both patterns as a mitigation strategy to invoke a
remote service that is (slightly to moderately) likely to fail.

Another point of discussion is how to define each pattern’s back-off delay parameter. On the one hand, if the patterns’ back-off
delay value is too large, using either strategy will be counterproductive, as both will delay the application’s execution for far
too long. On the other hand, if the patterns’ back-off delay value is too small, their use also will be counterproductive, as both
strategies will essentially behave like the Baseline strategy. Therefore, one has to find a proper balance when configuring the
back-off delay parameters of the Retry and Circuit Breaker patterns.

In our experimental evaluation, we set the back-off delay values of the two patterns as increasing fractions of the target
service’s average response time under low demand. As Fig. 4 shows, the target service’s average response time with 50 concurrent
virtual users (the lowest workload evaluated) is about 60-70 ms; for this reason, we varied the back-off delay of both patterns
in increments of about 1/3 of the target service’s average response time under the lowest workload. As Fig. 4 also shows, the
smallest back-off delay value (20 ms) is enough to make both patterns impose a significant reduction in the target service’s
average response time, with that reduction increasing even further as the target service’s failure rate increases. These results
suggest that using the target service’s average response time under low demand as a reference may be a valuable rule of thumb
to determine the best values for the Retry and Circuit Breaker’s back-off delay parameters.

Regarding the two development platforms/resilience libraries evaluated, we have observed some slight discrepancies in their
experimental results. In particular, in the C#/Polly platform, the Retry pattern outperforms the Circuit Breaker pattern by a
considerable margin in reducing the target service’s average success time (a positive impact) and increasing the client service’s
total execution time (a negative impact). In the Java/Resilience4j platform, the two patterns show a more similar behavior overall,
with the Retry pattern initially outperforming the Circuit Breaker pattern in both metrics under the lowest workload and the
Circuit Breaker pattern subsequently catching up and finally surpassing the Retry pattern as the workload increases. The results
for Java/Resilience4j differ from our expectation, which was somewhat of a surprise since we expected the Retry strategy, which
increments the back-off delay exponentially, to outperform the Circuit Breaker strategy in both platforms, especially under higher
failure rates. One possible explanation for this discrepancy between the results of the two platforms is that their two resilience
libraries might provide slightly different implementations of the two patterns, potentially causing the patterns’ behavior to differ
from one library to another at run time. A subsequent investigation of the impact of the Retry pattern using ResilienceBench,
considering a wider range of pattern configurations, has confirmed this hypothesis.21

5.5 Threats to validity

Some of our methodological decisions may have affected the validity of our results. First, we might have failed to configure
each resiliency pattern to behave similarly using either resilience library. This threat might explain the discrepancies we have
observed when comparing the results obtained with each platform/resilience library. Second, we only varied the value of a
single configuration parameter of each resiliency pattern and experimented with a single fault type. This threat means that other
possible pattern configurations (e.g., with different values for the maximum number of retry attempts or the minimum number
of failed requests required to open the circuit) might have produced different results. Third, we only have investigated two
resiliency patterns implemented in two programming languages using two resilience libraries. This threat means our results
might not generalize to other resiliency patterns, resilience libraries, and development platforms. Fourth, we have conducted
our experiment in a tightly controlled setting, using a benchmark-specific client application with a single target service. This
threat means that our results might not generalize to more realistic microservice applications with multiple downstream services.
Nevertheless, we believe that conducting experimental evaluations in a controlled setting provides distinct advantages that are
particularly welcome before moving on to more complex real-world scenarios. A controlled setting offers precise control over
variables, enabling accurate measurement of their impact, and promoting reproducibility. It also simplifies the system under
investigation, reducing complexity and potential confounding factors. Moreover, data collected in such a setting tends to be of
high quality, free from uncontrolled noise that might distort results. We plan to experiment with more realistic applications and
workloads in future work. Finally, a significant challenge in assessing resilience in microservices is the testing oracle problem,
where it may be difficult to determine the correctness of the system’s behavior under all relevant failure scenarios due to the
absence of an explicit oracle. This can impact the assurance and guarantees provided by the resilience tests. Future work could
explore metamorphic testing approaches30 or the identification of resilience anti-patterns31 to mitigate this issue.

18 ADERALDO ET AL.

6 RELATED WORK

Our work falls within the broader context of resilient systems.32 There is already an extensive body of research literature in this
area, including topics such as system reliability engineering,33,6 software reliability modeling and prediction,34,35,36,37 and, more
recently, microservice resiliency evaluation and testing.38,39,40,41,42 The need for further research on enhancing the fault tolerance
and resilience of microservice-based systems has also been recognized by recent literature reviews on this topic.43,44 However,
relatively few studies have evaluated the use and impact of resiliency patterns in microservice applications.45,46,47,9,10,11 Below
we discuss the nature and contributions of some of those studies, in addition to another related study on microservice anomaly
detection,48 and how they compare with our work.

Montesi and Weber45 have implemented several resiliency patterns in the context of the Jolie microservice language,49

including three variants of the Circuit Breaker pattern. Preuveneers and Joosen46 have proposed a circuit breaker framework
enhanced with the notion of Quality of Context to improve the resiliency of context-aware distributed applications. Aquino et
al.47 have studied the use of the Circuit Breaker pattern in the context of Internet of Things (IoT) applications and evaluated its
potential benefits in a prototype traffic light system. More recent work9,10 has focused on the formal modeling and analysis of
microservice resiliency patterns. Mendonça et al.9 have proposed a model checking-based approach to analyze the behavior of
the Retry and Circuit Breaker patterns as continuous-time Markov chains (CTMC).50 They have used the PRISM probabilistic
model checker12 to quantify the patterns’ performance impact in a simple client-service interaction scenario with a single client.
Jagadeesan and Mendiratta10 have followed a similar model-based approach to analyze the behavior of the Circuit Breaker pattern
in a more elaborate yet still contrived multi-client microservice interaction scenario, also using PRISM. Finally, Sedghpour et
al.11 have empirically studied the impact of the Retry and Circuit Breaker patterns in the context of an existing service mesh
middleware, Istio,13 where the service mesh administrator is responsible for enabling and configuring both resiliency patterns at
the infrastructure-level.

In contrast to the works described above, we have focused on providing a more general benchmarking approach for empirically
evaluating multiple resiliency patterns, implemented in any development platform and resilience library currently available.
In addition, we have developed and practically demonstrated the use of ResilienceBench, an open-source resiliency pattern
benchmark tool based on our proposed approach. Nevertheless, our work still has some limitations compared to the above. In
particular, ResilienceBench currently only supports running evaluation experiments in an extensible yet restricted containerized
application with a single target service. Moreover, our test space notation lacks the flexibility and richer semantics of a fully-
fledged probabilistic model checker, such as PRISM. Finally, our focus on application-level resiliency patterns makes evaluating
multiple pattern configurations across application services implemented in different development platforms more complex than
other infrastructure-level approaches.

Due to the popularity of resiliency patterns amongst practitioners, Retry, Circuit Breaker and other patterns have recently
been the focus of several industry forums and technology blogs.24,51,17,18,19,20 While those forums and blogs can be a rich source
of technical information on how to use resiliency patterns in production, they mainly offer anecdotal evidence to support their
claims. In that sense, our work can complement those industry-led discussions by supporting a more systematic analysis of the
benefits and risks of using well-known resiliency patterns under varying workloads and failure scenarios.

Another related line of work is the design of self-adaptive resiliency mechanisms.52,53 In that direction, Sedghpour et
al.52 recently proposed a self-adaptive circuit-breaker on top of Istio, which is capable of dynamically adjusting some of its
configuration parameters based on a given set of system metrics. The concept of a self-adaptive service mesh proposed by
Mendonça and Aderaldo53 follows a similar approach. The current version of ResilienceBench does not support dynamic
adaptation of the resilience patterns’ configuration parameters. We plan to add this feature in a future version.

Finally, the increasing complexity of microservice systems has also led to research on anomaly detection and fault diagnosis,
leveraging distributed tracing tools like OpenTracing.54 Khanahmadi et al. proposed a model that utilizes OpenTracing in
combination with machine learning algorithms to detect and categorize software anomalies with high accuracy.48 Their work
emphasizes the dynamic extraction of service dependency graphs from trace data, which contrasts with previous approaches that
often rely on static dependency graphs. Although their focus was on anomaly detection, their work complements our approach by
highlighting the importance of dynamic tracing and dependency graph analysis in understanding the behavior of microservices
under various failure scenarios. Integrating similar dynamic tracing methodologies could enhance the resilience benchmarking
process in our work, especially when dealing with complex failure modes in microservices.

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 19

7 CONCLUSION

Microservice developers are increasingly using resiliency patterns, such as Retry and Circuit Breaker, to improve the reliability
of their applications. However, thus far, few studies have focused on supporting application developers in better understanding
the impact of those patterns on application performance. This paper introduced a novel declarative approach and its supporting
benchmark tool for experimentally evaluating the performance impact of existing resiliency pattern implementations in a con-
trolled setting. An experimental study of the performance impact caused by the Retry and Circuit Breaker patterns implemented
in both C# and Java showed how the proposed approach and tool could significantly facilitate the specification and execution of
a large variety of resiliency pattern-based tests under multiple environmental conditions. We have made our tools and experi-
mental data publicly available16 to stimulate collaboration with other research groups and to facilitate the replication of our
experimental results. In that regard, we invite the microservice development and research communities to try and experiment
with ResilienceBench and to contribute to its development and evolution.

Looking ahead, our main topics for future work include: evaluating the impact of other resiliency pattern configurations
and resilience libraries; extending ResilienceBench to support more realistic microservice applications with multiple upstream
and downstream services; and exploring and understanding the interplay between existing resiliency patterns and other more
advanced resiliency mechanisms, e.g., rate-limiting55 and deadlines.56

FINANCIAL DISCLOSURE
Nabor C. Mendonça is partly supported by Brazil’s National Council for Scientific and Technological Development (CNPq)
under grant no. 313558/2023-0.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

References

1. Jamshidi P, Pahl C, Mendonça NC, Lewis J, Tilkov S. Microservices: The Journey So Far and Challenges Ahead. IEEE Software. 2018;35(3):24–35.

2. Lindsay B. Designing for failure may be the key to success—interview by Steve Bourne. ACM Queue. 2004;2(8).

3. Lewis J, Fowler M. Microservices: a definition of this new architectural term. https://martinfowler.com/articles/microservices.html; 2014. [Last
access on August 12, 2024].

4. Nygard M. Release It! Design and Deploy Production-Ready Software. Pragmatic Bookshelf, 2007.

5. Microsoft Azure . Resiliency patterns. https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency; 2017. [Last accessed on
August 12, 2024].

6. Beyer B, Jones C, Petoff J, Murphy NR. Site Reliability Engineering: How Google Runs Production Systems. O’Reilly, 2016.

7. Microsoft Azure . Retry Pattern. https://docs.microsoft.com/en-us/azure/architecture/patterns/retry; 2017. [Last accessed on August 12, 2024].

8. Fowler M. CircuitBreaker. https://martinfowler.com/bliki/CircuitBreaker.html; 2014. [Last access on August 12, 2024].

9. Mendonça NC, Aderaldo CM, Cámara J, Garlan D. Model-based analysis of microservice resiliency patterns. In: IEEE International Conference
on Software Architecture (ICSA). IEEE. 2020:114–124.

10. Jagadeesan LJ, Mendiratta VB. When Failure is (Not) an Option: Reliability Models for Microservices Architectures. In: 2020 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE. 2020:19–24.

11. Saleh Sedghpour MR, Klein C, Tordsson J. An Empirical Study of Service Mesh Traffic Management Policies for Microservices. In: ACM/SPEC
Int. Conf. Performance Engineering (ICPE). ACM. 2022:17–27.

12. Kwiatkowska M, Norman G, Parker D. PRISM 4.0: Verification of Probabilistic Real-time Systems. In: Proc. 23rd International Conference on
Computer Aided Verification (CAV’11). Springer 2011:585–591.

13. Istio.io . Istio: Connect, secure, control, and observe services. https://istio.io/; 2023. [Last accessed on August 12, 2024].

14. Resilience4j . Resilience4j: A Fault tolerance library designed for functional programming. https://github.com/resilience4j/resilience4j; 2022.
[Last accessed on August 12, 2024].

15. Microsoft . The Polly Project. http://www.thepollyproject.org; 2023. [Last accessed on August 12, 2024].

https://martinfowler.com/articles/microservices.html
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://martinfowler.com/bliki/CircuitBreaker.html
https://istio.io/
https://github.com/resilience4j/resilience4j
http://www.thepollyproject.org

20 ADERALDO ET AL.

16. ResiliecenBench. https://github.com/ppgia-unifor/resilience-bench; 2022. [Last accessed on August 12, 2024].

17. Scott C. Designing Resilient Systems: Circuit Breakers or Retries? (Part 1). Grab Tech Blog, https://engineering.grab.com/
designing-resilient-systems-part-1; 2018. [Last accessed on August 12, 2024].

18. Scott C. Designing Resilient Systems: Circuit Breakers or Retries? (Part 2). Grab Tech Blog, https://engineering.grab.com/
designing-resilient-systems-part-2; 2019. [Last accessed on August 12, 2024].

19. Tran D. Circuit Breaker and Retry. https://dantt.medium.com/circuit-breaker-and-retry-64830e71d0f6; 2018. [Last accessed on August 12, 2024].

20. Minkowski P. Circuit breaker and retries on Kubernetes with Istio and Spring Boot. Piotr’s TechBlog, https://piotrminkowski.com/2020/06/03/
circuit-breaker-and-retries-on-kubernetes-with-istio-and-spring-boot/; 2020. [Last accessed on August 12, 2024].

21. Aderaldo CM, Mendonça NC. How The Retry Pattern Impacts Application Performance: A Controlled Experiment. In: Proceedings of the XXXVII
Brazilian Symposium on Software Engineering (SBES). ACM. 2023:47–56.

22. Khwaja S, Alshayeb M. Survey On Software Design-Pattern Specification Languages. ACM Computing Surveys (CSUR). 2016;49(1):1–35.

23. Microsoft Azure . Circuit Breaker pattern. https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker; 2017. [Last accessed on
August 12, 2024].

24. Ibryam B. It takes more than a Circuit Breaker to create a resilient application. https://developers.redhat.com/blog/2017/05/16/
it-takes-more-than-a-circuit-breaker-to-create-a-resilient-application/; 2017. [Last accessed on August 12, 2024].

25. Netflix . Hystrix: Latency and Fault Tolerance for Distributed Systems. https://github.com/Netflix/Hystrix; 2018. [Last accessed on August 12,
2024].

26. Twitter . Finagle: A fault tolerant, protocol-agnostic RPC system. https://github.com/twitter/finagle; 2022. [Last accessed on August 12, 2024].

27. Cockatiel . Cockatiel. https://npm.io/package/cockatiel; 2023. [Last accessed on August 12, 2024].

28. Envoy . Envoy Proxy. https://www.envoyproxy.io; 2023. [Last accessed on August 12, 2024].

29. HttpBin. https://github.com/postmanlabs/httpbin; 2011. [Last accessed on August 12, 2024].

30. Luo G, Zheng X, Liu H, et al. Verification of Microservices Using Metamorphic Testing. In: Proceedings of the 19th International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP). Springer. 2020:138–152.

31. Taibi D, Lenarduzzi V, Pahl C. Microservices Anti-patterns: A Taxonomy. Microservices: Science and Engineering. 2020:111–128.

32. Systems Engineering Body of Knowledge . System Resilience. https://www.sebokwiki.org/wiki/System_Resilience; 2020. [Last access on August
12, 2024].

33. Birolini A. Reliability Engineering: Theory and Practice. Springer Science & Business Media, 2013.

34. Sharma VS, Trivedi KS. Reliability and Performance of Component Based Software Systems with Restarts, Retries, Reboots and Repairs. In: 2006
17th International Symposium on Software Reliability Engineering (ISSRE). IEEE. 2006:299–310.

35. Brosch F, Buhnova B, Koziolek H, Reussner R. Reliability Prediction for Fault-Tolerant Software Architectures. In: Joint ACM SIGSOFT
Conference and ACM SIGSOFT Symposium on Quality of Software Architectures (QoSA) and Architecting Critical Systems (ISARCS). ACM.
2011:75–84.

36. Brosch F, Koziolek H, Buhnova B, Reussner R. Architecture-Based Reliability Prediction with the Palladio Component Model. IEEE Transactions
on Software Engineering. 2011;38(6):1319–1339.

37. Mirandola R, Potena P, Riccobene E, Scandurra P. A Reliability Model for Service Component Architectures. Journal of Systems and Software.
2014;89:109–127.

38. Düllmann TF, Hoorn vA. Model-driven generation of microservice architectures for benchmarking performance and resilience engineering
approaches. In: 8th ACM/SPEC on International Conference on Performance Engineering Companion. ACM. 2017:171–172.

39. Long Z, Wu G, Chen X, Cui C, Chen W, Wei J. Fitness-guided Resilience Testing of Microservice-based Applications. In: 2020 IEEE International
Conference on Web Services (ICWS). IEEE. 2020:151–158.

40. Pietrantuono R, Russo S, Guerriero A. Testing microservice architectures for operational reliability. Software Testing, Verification and Reliability.
2020;30(2):e1725.

41. Yin K, Du Q, Wang W, Qiu J, Xu J. On representing and eliciting resilience requirements of microservice architecture systems. arXiv preprint
arXiv:1909.13096. 2019.

42. Heorhiadi V, Rajagopalan S, Jamjoom H, Reiter MK, Sekar V. Gremlin: Systematic Resilience Testing of Microservices. In: 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS). IEEE. 2016:57–66.

https://github.com/ppgia-unifor/resilience-bench
https://engineering.grab.com/designing-resilient-systems-part-1
https://engineering.grab.com/designing-resilient-systems-part-1
https://engineering.grab.com/designing-resilient-systems-part-2
https://engineering.grab.com/designing-resilient-systems-part-2
https://dantt.medium.com/circuit-breaker-and-retry-64830e71d0f6
https://piotrminkowski.com/2020/06/03/circuit-breaker-and-retries-on-kubernetes-with-istio-and-spring-boot/
https://piotrminkowski.com/2020/06/03/circuit-breaker-and-retries-on-kubernetes-with-istio-and-spring-boot/
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://developers.redhat.com/blog/2017/05/16/it-takes-more-than-a-circuit-breaker-to-create-a-resilient-application/
https://developers.redhat.com/blog/2017/05/16/it-takes-more-than-a-circuit-breaker-to-create-a-resilient-application/
https://github.com/Netflix/Hystrix
https://github.com/twitter/finagle
https://npm.io/package/cockatiel
https://www.envoyproxy.io
https://github.com/postmanlabs/httpbin
https://www.sebokwiki.org/wiki/System_Resilience

A DECLARATIVE APPROACH AND BENCHMARK TOOL FOR CONTROLLED EVALUATION OF MICROSERVICE RESILIENCY PATTERNS 21

43. Joseph CT, Chandrasekaran K. Straddling the crevasse: A review of microservice software architecture foundations and recent advancements.
Software: Practice and Experience. 2019;49(10):1448–1484.

44. Li S, Zhang H, Jia Z, et al. Understanding and addressing quality attributes of microservices architecture: A Systematic literature review.
Information and Software Technology. 2021;131:106449.

45. Montesi F, Weber J. Circuit breakers, discovery, and API gateways in microservices. arXiv preprint arXiv:1609.05830. 2016.

46. Preuveneers D, Joosen W. QoC2 Breaker: intelligent software circuit breakers for fault-tolerant distributed context-aware applications. Journal of
Reliable Intelligent Environments. 2017;3(1):5–20.

47. Aquino G, Queiroz R, Merrett G, Al-Hashimi B. The circuit breaker pattern targeted to future iot applications. In: International Conference on
Service-Oriented Computing. Springer. 2019:390–396.

48. Khanahmadi M, Shameli-Sendi A, Jabbarifar M, Fournier Q, Dagenais M. Detection of microservice-based software anomalies based on
OpenTracing in cloud. Software: Practice and Experience. 2023;53(8):1681–1699.

49. Jolie Language . Jolie: The first language for Microservices. https://www.jolie-lang.org/; 2020. [Last accessed on August 12, 2024].

50. Kwiatkowska M, Norman G, Parker D. Stochastic Model Checking. In: Formal Methods for the Design of Computer, Communication and Software
Systems: Performance Evaluation (SFM’07). Springer. 2007:220–270.

51. Brooker M. Exponential Backoff And Jitter. AWS Architecture Blog, https://aws.amazon.com/pt/blogs/architecture/exponential-backoff-and-jitter/;
2015. [Last accessed on August 12, 2024].

52. Sedghpour MRS, Klein C, Tordsson J. Service mesh circuit breaker: From panic button to performance management tool. In: 1st Workshop on
High Availability and Observability of Cloud Systems (HAOC). ACM. 2021:4–10.

53. Mendonça NC, Aderaldo CM. Towards First-Class Architectural Connectors: The Case for Self-Adaptive Service Meshes. In: 35th Brazilian
Symposium on Software Engineering (SBES). ACM. 2021:404–409.

54. OpenTracing: Vendor-neutral APIs and instrumentation for distributed tracing. https://opentracing.io/; 2022. [Last accessed on August 12, 2024].

55. Google Cloud . Rate-limiting strategies and techniques. https://cloud.google.com/architecture/rate-limiting-strategies-techniques; 2019. [Last
accessed on August 12, 2024].

56. Sheerin G. gRPC and Deadlines. https://grpc.io/blog/deadlines/; 2018. [Last accessed on August 12, 2024].

https://www.jolie-lang.org/
https://aws.amazon.com/pt/blogs/architecture/exponential-backoff-and-jitter/
https://opentracing.io/
https://cloud.google.com/architecture/rate-limiting-strategies-techniques
https://grpc.io/blog/deadlines/

	A Declarative Approach and Benchmark Tool for Controlled Evaluation of Microservice Resiliency Patterns
	Abstract
	Introduction
	Resiliency patterns
	Retry
	Circuit Breaker
	Example scenario
	Resilience libraries
	Polly
	Resilience4j

	Approach
	Scenario specification
	Scenario generation

	ResilienceBench
	Architecture
	Test space notation

	Experimental evaluation
	Research questions
	Method
	Test space

	Results
	Average success time
	Total execution time

	Discussion
	Threats to validity

	Related work
	Conclusion
	Financial disclosure
	Conflict of interest
	References

