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Abstract As new market opportunities, technologies, plat-
forms, and frameworks become available, systems require
large-scale and systematic architectural restructuring to ac-
commodate them. Today’s architects have few techniques
to help them plan this architecture evolution. In particular,
they have little assistance in planning alternative evolution
paths, trading off various aspects of the different paths, or
knowing best practices for particular domains. In this paper
we describe an approach for planning and reasoning about
architecture evolution. Our approach focuses on providing
architects with the means to model prospective evolution
paths and supporting analysis to select among these candi-
date paths. To demonstrate the usefulness of our approach,
we show how it can be applied to an actual architecture evo-
lution. In addition, we present some theoretical results about
our evolution path constraint specification language.

1 Introduction

Architecture evolution is a central feature of virtually all soft-
ware systems. As new market opportunities, technologies,
platforms, and frameworks become available, systems must
be redesigned to accommodate them, and often this entails
large-scale and systematic restructuring. In most cases such
changes cannot be made overnight, so the architect must
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develop an evolution plan to change the architecture and im-
plementation of a system through a series of phased releases,
ultimately leading to the new target system.

Unfortunately, architects have little support to help them
plan and execute such evolutionary paths. While consider-
able research has gone into software maintenance and evo-
lution, dating from the beginning of software engineering,
there has been relatively little work focusing specifically on
foundations and techniques to support architecture evolu-
tion. Architecture evolution is an essential complement to
software evolution because it permits planning and system
restructuring at a high level of abstraction where quality and
business trade-offs can be understood and analyzed.

In particular, architects have almost no assistance in rea-
soning about questions such as: How should we stage the
evolution to achieve business goals in the presence of limited
development resources? How can we assure ourselves that in-
termediate releases do not break existing functionality? How
can we reduce risk in incorporating new technologies and in-
frastructure required by the target architecture? How can we
make principled trade-offs between time and development
effort? What kinds of changes can be made independently,
and which require coordinated system-wide modifications?
How can we represent and communicate an evolution plan
within an organization?

This paper describes our approach to software architec-
ture evolution planning. It is organized as follows. Section 2
describes the basic concepts underlying our approach. Sec-
tion 3 describes more formally how we model evolution
plans and how we define analyses of evolution plans. Sec-
tion 4 proves some theoretical results about our language
for specifying architecture evolution constraints. Section 5
presents a case study illustrating how these ideas can be ap-
plied to an actual software architecture evolution. Section 6
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discusses related work. Finally section 7 discusses future
work, and section 8 concludes.

2 Our approach to architecture evolution

The basis for our approach to architecture evolution centers
on the concept of evolution paths:

– Evolution paths can be represented and analyzed as first-
class entities;

– Classes of domain-specific evolution paths can be for-
mally specified, thereby supporting reuse, correctness
checking, and quality analysis;

– Trade-off analyses can be performed over alternative evo-
lution paths to optimize expected value under uncertainty;
and

– The evolution path concept is amenable to support by
tools that architects can use to describe, analyze, track,
and modify plans for architecture evolution.

A central idea behind our approach is the concept of an
evolution style. An evolution style describes a family of
domain-specific architecture evolution paths that share com-
mon properties and satisfy a common set of constraints. The
key insight is that by capturing evolution paths for special-
ized families we can define constraints that each path in that
family must obey, thereby providing correctness criteria and
guidance (based on past experience in the domain) for an
architect developing an evolution plan in that family. More-
over, we can support reasoning about the extent to which
a specific path satisfies the quality and cost objectives in a
particular business context.

To illustrate what we mean by an evolution style, consider
the following typical scenarios: evolving an architecture
from an ad hoc peer-to-peer assemblage of legacy subsys-
tems to a hub-and-spoke architecture that leverages com-
mercial middleware for coordinating the subsystems; from a
traditional thin-client/mainframe system to a four-tiered web
services architecture; from a web services architecture based
on J2EE to a service-oriented architecture based on BEA’s
WebLogic product family; from a control system based on
CAN-bus integration to one that supports a more reliable
protocol (e.g., FlexRay [56]).

Each of these examples describes a class of evolutions
that addresses a recurring, domain-specific architectural evo-
lution problem. (Indeed, such evolutions are the core concern
of an important business segment represented by well-paid
consultants who specialize in assisting companies with such
evolutions.) Each of them has identifiable starting and end-
ing conditions (namely, that the initial and final system con-
tain certain architectural structures). Each embodies certain
constraints—for example, that the set of essential services

should not become unavailable during the evolution. Finally,
although they share many commonalities, the specific details
of how those evolutions should be carried out may well be
influenced by concerns such as the time it takes to do the
transformation, the available resources to carry it out, etc.
We can take advantage of these characteristics of system
evolution.

Summarized briefly, we can model a planned evolution
formally as a set of finite evolution paths, where each path
defines a sequence of architectures in which the first element
in the path is the architecture of the current system, and the
final element is a desired target architecture. Links between
successive nodes in a path are described in terms of architec-
tural transformations that are selected from a predefined set
of evolution operators. In this respect an evolution model is
like a state machine for which an execution trace defines an
evolution path.

An evolution style, then, provides the vocabulary of con-
cepts necessary to define and analyze such an evolution
model: the set of operators that are available to define the
evolution transitions (which represent the evolution opera-
tions that can be carried out in the domain at hand), a set of
evolution path constraints that define which paths are per-
missible in the evolution style (which capture things like or-
dering constraints or invariants that must hold for all nodes),
and a set of evaluation functions that can be used to com-
pare different evolution paths with respect to quality metrics
(which are used to facilitate selection of an optimal path).

2.1 Example

To illustrate the concepts and benefits of our approach, con-
sider the following fictitious, but representative, scenario:
Company C runs an algorithmic-trading platform with an
aging software architecture. Its clients, mostly fund man-
agers, use the platform to research, develop, and execute
high-frequency trading algorithms. Currently, these various
features are accessed via separate web interfaces, which are
showing their age. Input of trading algorithms to be exe-
cuted is accomplished via one interface, retrieval and analy-
sis of market data through another. A third interface allows
clients to download a desktop analysis toolkit that they can
use to backtest candidate trading algorithms. The interfaces
are separated in this way for historical reasons, and while
the separation makes maintenance easy, clients hate it; they
would rather be able to research market history, backtest
possible trading strategies, define algorithms, and activate
algorithms for execution on one site. The current architec-
ture has other problems too. First, while software mainte-
nance is easy, maintaining the hardware is quite expensive.
Indeed, many of the components of the system are hardware-



Evolution styles

intensive. Running the trading algorithms, for example, is
quite processor-intensive, while storing the company’s vast
archive of market data requires a great deal of disk space.
The hardware requires frequent upgrades; the company must
have top-of-the-line computing hardware to keep up with its
competitors. In addition, there are significant demand spikes,
and the hardware the company has cannot always keep up.
Recently, a hardware failure brought down one of the web
dashboards for two full business days, enraging clients.

To address these concerns, Company C is considering mi-
grating to a cloud-based architecture. In the cloud-computing
model, computing resources are sold over the Internet as
services. For example, rather than maintaining its own in-
frastructure, a company can pay a cloud service to provide
the infrastructure for them. Concretely, what this means is
that a cloud platform like Amazon Web Services will host
Company C’s software systems on its own infrastructure, pro-
viding whatever resources Company C needs (and is willing
to pay for): data storage, computing capacity, bandwidth, and
so on. But unlike a traditional hosting environment, cloud-
computing resources are sold on demand (e.g., computing
capacity is sold by the hour; storage is sold by the gigabyte-
month) and are provisioned elastically (so a customer can
have as much or as little of a service as needed).

By making use of such a platform, Company C could
host its software in the cloud rather than maintaining infras-
tructure in-house—effectively outsourcing their hardware
maintenance while retaining control of their software. Such a
migration could solve many of the company’s problems. Reli-
ability would be assured by the cloud provider’s service-level
agreements. Hardware upgrades could be effected immedi-
ately on request. Resources could be increased on demand
in response to usage spikes. Specialized hardware suitable
for specific applications, such as high-CPU hardware for
trading-algorithm execution or high-memory hardware for
backtesting, is easy to provision. If the company’s needs
change in the future, its infrastructure can change with them;
the company is not locked into the infrastructure that it owns.
Finally, Company C could focus on its business of devel-
oping a great trading platform rather than the day-to-day
problems of managing infrastructure. Also as part of the
migration, the company plans to merge its multiple separate
user interfaces to create one unified client experience.

The particulars of this example are contrived, but the
scenario is a common one. Cloud computing is a hot topic
in the electronic-trading community, and trading platforms
are increasingly asking how they can use cloud architec-
tures to improve reliability, increase scalability, and allow
themselves to focus on their core expertise rather than the
business of keeping hardware running [40]. Moreover, al-
though we chose the algorithmic-trading domain for this
example, largely the same concerns apply to a much broader

category of systems. A great many organizations are migrat-
ing to the cloud, or contemplating migrations to the cloud,
to address these same concerns.

Because of the system’s complexity, the chief architect at
C needs to develop a plan to carry out the evolution in a set of
staged releases. Let us see how this might be accomplished
using the concept of evolution styles.

The evolution style for this problem is one that is spe-
cialized to the problem of migrating in-house ad hoc web
applications to cloud-computing environments. Capitalizing
on past experience in this area, the evolution style would
identify the essential characteristics of the initial and target
architecture families. It would also characterize the family
of architectures for intermediate releases: in this case, a mix-
ture of the initial and target structures, allowing some of the
existing connections of the web application to continue to be
present alongside the newly added connections to and within
the cloud environment. Additionally, the style would identify
a set of structure- and behavior-changing operations. Exam-
ples include the migration of data from an in-house database
to a cloud data store, introduction of adapters as necessary
to allow legacy subsystems to exist in the cloud, and reprovi-
sioning of hardware within the hub as the company ramps
up the nascent cloud architecture to full production capac-
ity. Finally, the style would specify a set of path constraints.
These would capture the correctness conditions for a valid
evolution path. Specifically they would express things like:
in every release all existing functionality must continue to
be available; data should be migrated before applications; all
the old componentry should continue to exist for at least a
week after the new cloud environment becomes accessible
to users, so that fallback to the old system is possible.

How would this be used by the chief architect at C? Using
his tools for architecture evolution, the architect would first
select the appropriate evolution style (namely the one just
described). He would then start to define an evolution path.
Likely the starting point for this would be characterization
of the initial and target architectures. Existing tools make it
relatively easy to specify these using standard architecture
modeling and visualization techniques. Figure 1 illustrates a
simplified version of the initial and target states. At this point
the evolution tools would check that these two architectures
satisfy the pre- and postconditions required by the style,
perhaps noting situations in which the target architecture is
missing certain required structures or is otherwise malformed
with respect to the target family.

The architect now starts filling in intermediate stages.
Again using the tools, he applies a series of style-defined
operators to the architecture to produce a first release—for
example, by building a skeletal cloud application as an initial
release. The tools would check that the release is well formed
and that the path satisfies the constraints of the style, warning
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the architect when it identifies divergences. This process
repeats until the architect has fully specified a set of releases
and transitions to arrive at the target architecture.

Along the way, however, the architect also needs to make
decisions about various trade-offs, for example, reconciling
available resources (e.g., programmers) with the effort and
time needed to create each release. To do this the architect
uses one of several parameterized evaluation functions for
this evolution style. The evaluation functions require the
architect to select dimensions of concern, define weighted
utilities, and provide estimates of costs and durations (includ-
ing uncertainties). With these annotations in hand, the tools
calculate costs and utility, allowing the architect to explore
alternative scenarios. Over time, as the evolution proceeds,
the architect will update the values and perform recalcula-
tions, perhaps leading to revisions of the remaining releases
on the path.

3 Modeling an evolution style

In the previous sections we outlined what we mean by evo-
lution paths and evolution styles and provided an informal
example illustrating how these concepts are useful in plan-
ning evolution in a particular domain. In this section, we
describe the technical basis of our approach.

3.1 Specifying architectures

Our approach presumes that software architectures are doc-
umented in some formal modeling language, such as an
architecture description language (ADL). Such languages
provide a rigorous way of representing the structure of a
software system. Different languages capture different con-
cepts, but in general an architecture is represented as a graph,
where the vertices represent the pieces of a software system
(such as modules or components) and the edges describe
how these pieces relate (e.g., edges may represent uses or
attachments) [16,45,54,59]. In addition, there may be aux-
iliary elements like ports and roles, as well as properties
that describe the characteristics of the architectural elements
(often used to express things like reliability and protocols of
interaction), and they may support expression of constraints
on and analyses over architectures.

Our approach admits multiple views of an architecture at
each stage of evolution. An architectural view is a particular
representation of, or perspective on, a software architec-
ture. Clements et al. [16] identify three basic types of views:
module views (which document code structure), component-
and-connector views (which document the structure of the
running system), and allocation views (which document the

deployment and execution context of the software). Docu-
menting a software architecture completely requires the use
of multiple views. Different projects require different views;
the choice of views used for a software project should be
guided by the kinds of analysis that are needed. Our approach
allows architects to plan the evolution of a software archi-
tecture from multiple perspectives by representing multiple
views of intermediate architectures. This makes possible con-
straints and analyses that make reference to multiple views.
For example, “Component A shall not communicate with
component B until database replicas are deployed to three
separate geographic locations” is a constraint that requires
examination of both a component-and-connector view and
an allocation view. Architects should carefully select the
views to include in the evolution plan based on the analyses
they anticipate; representing additional views can add sig-
nificant cost to the planning process, since each view must
be documented for each candidate intermediate architecture.
(Future work may reduce this burden; see section 7.)

Our approach is not tied to any particular modeling lan-
guage (although any tool that implements our approach will
be). In previous work [26,28], we have focused on Acme
[27]. Many of the examples of architectural description in
the present paper, including the examples in the case study
in section 5, are based on UML 2 [49]. While UML lacks
some of the more sophisticated architectural analysis fea-
tures of Acme, it has the advantage of providing diagram
types that support multiple views of an architecture, which
allows us to demonstrate the aforementioned multiple-view
feature of our approach. (Acme focuses on providing rich
component-and-connector descriptions of architectures.)

3.2 Specifying families of architectures

To represent families of architectures we use the established
notion of architectural styles. An architectural style is de-
fined by specifying a vocabulary of architectural element
types, together with a set of constraints that determine how
instances of those types can be composed into systems [16,
59]. Some ADLs, such as Acme, provide native support for
architectural styles. UML does not have any explicit notion
of architectural styles, but they can be expressed in UML
either through the use of UML profiles or in a makeshift
fashion by defining a set of element types accompanied by
constraints in UML’s constraint language, OCL. (Clements et
al. [16] discuss in greater detail the use of UML for software
architecture modeling.)
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3.3 Specifying evolution path properties

We allow nodes and transitions in an evolution path to be
annotated with an extensible list of properties. These proper-
ties provide information that can be used by constraints and
analyses. An evolution style specifies the list of properties
that are expected to be given values on the nodes and transi-
tion. For example, each node may need to specify whether
it is intended to be a public release, or what the expected
impact of the node on the market should be; transitions may
provide information about the expected amount of time the
transition will take, how many developers are required, or
whether training will be needed. Each path may require dif-
ferent values for the same properties on a node. For example,
the expected time to take one step of an evolution may be dif-
ferent in a path where a previous step involved programmer
training than in a path that has not yet involved training.

3.4 Relating architectures in a path

The nodes in an evolution path do not exist in isolation. The
architectural snapshots that make up a path are, of course,
closely related to each other. One way of understanding these
relations is by means of the evolution operators that make up
the transitions, as described in section 3.6. But sometimes
it is also useful for constraints and analyses that operate
over intermediate architectural representations to have direct
access to the way those intermediate architectures relate.
Given a node Ni and its successor Ni+1, typically most of the
architectural elements in Ni and Ni+1 will be identical. For
almost every element in Ni, there is an identical counterpart
in Ni+1, because most of the architecture did not change
between steps i and i + 1. In analyzing the evolution, it is
often helpful to know which component in Ni corresponds
to which component in Ni+1. Of course, this information
is normally self-evident from a glance at the architectural
diagrams of the two nodes, but as we will see in examples
later, it is often helpful to have easy analytical access to this
information.

Therefore, we introduce a notion of evolutionary identity.
Two model elements in different nodes along an evolution
path are evolutionarily identical if they refer to the same
architectural element at different stages of evolution. Label-
ing evolutionarily identical elements is not only useful, as it
enriches our ability to express constraints and analyses over
evolution paths, but also easy; a tool could automatically
label evolutionarily identical elements by inferring the evolu-
tionary identity relations from evolution transition metadata,
so there need be no extra burden on the architect.

There are various ways in which we could model evo-
lutionary identity, but the particular modeling mechanism

<<metaclass>>
Element

evId : Integer

<<stereotype>>
EvolutionNodeElement

Fig. 2 UML profile view showing how an evolutionary-identity
property can be defined so it can be set on any model element. In
the UML metamodel, all diagram elements are specializations of
Element, so it suffices to stereotype this single metaclass.

makes little difference. One simple option is to define an
evId (evolutionary identity) property on every architectural
element of every intermediate architecture. Evolutionarily
identical elements would be assigned the same evId (which
could be as simple as a random numeric identifier). In UML,
to add such a property to every element, we would define a
profile such as the one in figure 2, which extends the UML
metamodel by allowing an evId property to be set on any
element.1

The same basic approach can be used to support other
notions of relations among nodes. For example, if during
an evolution a component c is split into two components c1

and c2, then neither c1 nor c2 can be said to be evolutionarily
identical to c. But we still might be interested in noting that c1

and c2 derive from c. To support analyses that need to make
use of this information, we would introduce an evolutionary
relation indicating whether one architectural element derives
from another.

3.5 Specifying and using path constraints

Path constraints are used to identify which evolution paths
are permissible in an evolution style (or in a specific evolu-
tion). They can be used, for instance, to restrict releases to
being in a particular family, define evolution dependencies
(e.g., require certain architectural structures to be in place
before other operations are performed), or preserve invari-
ants across releases. For example, in the above scenario, path
constraints might require that no connections to third-party
services are disrupted in any release.

We use an augmented version of linear temporal logic
(LTL) to specify these path constraints. Temporal logic is a

1 In section 3.2, we mentioned that architectural styles can be captured
by means of UML profiles. In this case, these architectural-style profiles
should extend the profile of figure 2.
Incidentally, UML profiles could be used much more extensively than the
way we present here. We could use them to define a much more elaborate
base style that serves as a specialization of UML to formal software archi-
tecture modeling. That is, we could define a general profile for representing
software architectures (or perhaps several profiles for different architectural
views). However, the problem of defining a UML profile for software ar-
chitecture is not particularly relevant to the topic at hand, is not necessary
for the case study we present in section 5, and has already been explored in
previous work, so we do not do so here.
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natural choice, since our underlying model of architectural
styles is an augmented state machine. In particular, evolution
spaces give rise to standard Kripke structures [7] in a direct
way, where the node labels represent architectural properties
expressed as predicates that hold for a given architecture in a
behavioral path. Therefore, temporal formulas over evolution
spaces can be interpreted in a straightforward manner.

We begin with the usual LTL operators, including:

– �, always, to represent invariant properties of paths;
– ♦, eventually, to represent the existence in a path of an

architecture with certain properties;
– U, until, to represent properties that must remain true of

a path until some other property becomes true; and
– ©, next, to represent properties that must be true in the

next step of the path.

Ordinary LTL is sufficient to express many interesting prop-
erties. For example, suppose we want to specify (in the ex-
ample in section 2.1) that the analysis software file store
will not be removed until the analysis software download
interface is removed first. We can represent this constraint as
follows:

softwareFileStorePresent(system)

U ¬softwareDownloadUiPresent(system)

Here, softwareFileStorePresent and softwareDownloadUi-
Present are predicates over systems, defined by the evolution
style; system is a keyword that refers to the system associ-
ated with the current state. Note that each of the predicates
is expressible with respect to a single state. For example,
softwareFileStorePresent can be defined with an OCL con-
straint:

DataStore.allInstances()->exists(s | s.name =

"AnalysisSoftwareFileStore")

Now consider a richer constraint. Suppose we want to
specify that all the functionality that is present at a release
point remains present throughout the evolution (where “func-
tionality” is formalized in some way appropriate to the do-
main at hand). If we try to express the constraint in LTL, we
quickly encounter a problem.

�(release→ �hasAllFunc(system, ?)) (1)

The problem is that to express this constraint, we need to
refer back to a previous state, namely the previous release.
That is, we want to replace the question mark in equation (1)
with a reference to the previous release state. We thus in-
troduce the rigid-variable operator, which allows us to refer
directly to states that we have already “seen.” In our notation,
equation (1) would be correctly rendered as

�({s} release→ �hasAllFunc(system, s.system))

The braces are our rigid-variable operator. When we en-
counter them, they “save” the current state to the rigid vari-
able s so that we can refer back to it as such in a subsequent
step. Because of the finite nature of paths, it is possible to
check whether a given evolution path satisfies a given set of
evolution constraints. Thus verification of path constraints
can be automated. In section 4, we will treat the path con-
straint language in detail, discussing a number of related
logics and proving results about the language’s tractability.

3.6 Specifying evolution operators

An evolution style comes with a set of operators that are
specific to that style. For example, the evolution style for
the example in section 2.1 included operators to migrate a
component to a cloud, to introduce a wrapper for a legacy
component, and so on. These operators form the steps in an
evolution path.

Concretely, an evolution operator comprises the follow-
ing parts: (1) a description of the structural changes that the
operator effects; (2) preconditions describing the conditions
under which the operator may be applied; and (3) additional
information used to support analyses—for example, infor-
mation on the cost of carrying out the evolution step or the
amount of time required. Thus, the definition of an evolution
operator takes the form

operator operatorName(parameters) {
transformations {

// A description of the structural changes that
// the operator effects

}
preconditions {

// The conditions under which the operator
// may be applied

}
analysis {

// Additional information to support analysis
}

}

We now describe each of these parts in turn.
The structural changes of the operator are defined by

means of elementary transformations. An elementary trans-
formation represents a basic structural change to an archi-
tectural model. Thus, elementary transformations are things
like adding a component, deleting a port, renaming a con-
nector, and modifying a property. For example, an evolution
operator might be something like “Wrap a legacy compo-
nent as a web service,” which is a single operator from an
architectural standpoint but actually requires a number of
elementary transformations: introduce a new wrapper ser-
vice, put the legacy component inside it, reconnect the ports
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appropriately, and so on. Since elementary transformations
are basic changes to architectural models, the elementary
transformations available depend on the modeling language
in use. In the case of Acme, the elementary transformations
will be things like adding a component, deleting a port, re-
naming a connector, and modifying a property. In the case
of a UML deployment diagram, they will include deploying
an artifact to a node and adding a communication path.

These examples are abstract elementary transformations.
To make an abstract transformation like “delete a port” con-
crete, we have to specify which port we want to delete.
“Delete port foo” is thus a concrete elementary transforma-
tion. Other transformations are more complex. For example,
component creation requires us to specify not only the name
of the component to be created, but also its type and proper-
ties. Formally, a concrete elementary transformation maps
architectures to architectures; a concrete elementary trans-
formation is a partial function over architectures.

Our operator specification language provides a simple
means of expressing elementary transformations, which we
illustrate by example:

create Device lb1:BladeServer

This is a concrete elementary transformation (based on the
abstract transformation create node) for a UML deployment
diagram. It creates a device node of type BladeServer whose
name is lb1. The name Device refers to the UML metamodel.
Any concept in the UML metamodel can be referenced simi-
larly, and we likewise have syntax for establishing attributes,
associations, and so on. Thus, UML models can be trans-
formed in arbitrarily sophisticated ways.

Elementary transformations are composed to describe
the structural changes that are effected by the operator. In
addition to sequential composition of elementary transforma-
tions, our operator description language provides for simple
control flow mechanisms such as loops. Here is an exam-
ple of an operator that wraps a legacy component in a web
service, this time in Acme rather than UML. It illustrates
several of these concepts.

// This operator takes a legacy component, c, and
// wraps it in a new component of type WrapperService.
// The legacy component is moved inside a
// representation of the new wrapper component.
operator wrapLegacyComponent(c) {

transformations {
Component wrapper = create Component

: WrapperService;
for (Port p : c.ports) {

Port pw = copy p to wrapper;
for (Role r : p.attachments) {

detach p from r;

attach pw to r;
}

}
Representation rep

= create Representation of wrapper;
move wrapper to rep;
for (Port p : c.ports) {

bind p to wrapper.ports[p.name];
}

}
...

}

UML has its own standard transformation language, QVT
[48], which we could use to specify operators. Acme, how-
ever, like many ADLs, has no standard transformation lan-
guage. While using QVT would be a perfectly workable
approach for specifying operators when using UML, here we
have consistently used the language described above, which
has the advantage of being easily applicable to arbitrary mod-
eling languages. In a pure UML context, QVT would be a
reasonable choice. However, as these examples illustrate, our
approach is not tied to a particular modeling language, so
here we have opted for a modeling-language-neutral means
of specifying operators.

As we pointed out in section 3.1, sometimes we want
to describe evolution from multiple views, using more than
one diagram type. In this case, an operator must include the
structural changes for each view that is under consideration.
The above example includes only one view; we will see an
example with multiple views later.

In addition to transformations, an operator can include
preconditions and analysis information. Preconditions are
expressed as constraints over an architecture. An operator
can be applied to an intermediate architecture only when
that architecture meets the preconditions. Preconditions are
expressed in the constraint language of the diagram language.
When multiple views are under consideration, different pre-
conditions can be specified for each view.

Analysis information is less structured than the transfor-
mations and preconditions section. The kinds of analysis
information included with an operator are dependent on the
analyses that the evolution style supports. To accommodate
as much flexibility as possible, we allow the analysis block
to contain arbitrary information in JavaScript Object Nota-
tion [17], which can be freely referenced in the evaluation
functions described below.

3.7 Specifying and using evaluation functions

With the facets of evolution styles just described, an architect
can define paths that are technically correct, taking into con-
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sideration operators and checking path constraints. However,
the real benefit of defining paths for architecture evolution
is to be able to compare them and decide which path is the
best to take—where the meaning of best is dependent on the
domain and the goals of the specific evolution at hand.

To enable this kind of optimization, we introduce evalua-
tion functions, which provide a way of analyzing the utility
of each evolution path under consideration. Conceptually,
evaluation functions are similar to path constraints, but while
a path constraint provides a hard, yes-or-no judgment about
the validity of a path, an evaluation function provides a quan-
titative characterization of its goodness.

An evaluation function works by examining the proper-
ties assigned to the nodes and transitions in an evolution
path (as described in section 3.3), as well as (possibly) the
architectural content of the nodes; quantifying, weighting,
and combining this information in some way; and producing
a number that represents some quality of the path. Thus,
there could be an evaluation function that estimates the total
cost of an evolution path by analyzing relevant properties
of the transitions that make up an evolution path. Another
evaluation function could evaluate the architectural risk of
a plan of evolution by analyzing the architectural changes
between nodes in the evolution path.

Because evaluation functions are specific to an evolution
style, they can take advantage of the specifics of the domain.
Thus, a cost analysis for the service-oriented architecture
domain could take advantage of expert knowledge about the
costs of different service-oriented architecture operations,
such as wrapping a legacy component in a service or intro-
ducing an enterprise service bus.

Ultimately, the goal of modeling paths of architecture
evolution is path selection. To that end, a utility evaluation
function is defined to assess the overall utility of each evo-
lution path. Such a utility function will typically combine
results of other, simpler utility functions to produce a mea-
sure of the overall goodness of an evolution path based on
the evolution goals. In an evolution with stringent deadlines
but ample resources, for example, a utility function would
give great weight to estimated evolution duration and little
weight to estimated cost. (Cost and time are just examples;
there may be many other concerns, such as minimizing down-
time during evolution or minimizing the number of releases.)
Evaluation functions allow software architects to trade off

various concerns intelligently.

4 Theoretical properties of our model

In section 5, we will present a case study of the approach
we have just described, demonstrating its application to an
example evolution. First, however, it is useful to conduct a

theoretical analysis of some of the properties of our modeling
apparatus. In this section, therefore, we evaluate our path
constraint language by establishing a theoretical foundation
for it and then using this foundation to evaluate its tractability
(more precisely, the computational complexity of evaluating
a path constraint).

We focus on our path constraint language in particular
because it is the most theoretically interesting part of our
modeling apparatus. Other parts are either trivial and unin-
teresting (e.g., operator preconditions and local judgments
about architectural styles) or too general to say anything
about (e.g., evaluation functions, which provide the evolution
planner with what is essentially a general-purpose program-
ming language, so the complexity of evaluation is entirely
dependent on the complexity of the evaluation function that
the planner chooses to write).

Sections 4.1 and 4.2 present a formal syntax and seman-
tics, respectively, for our path constraint language. In sec-
tion 4.3, we place this language in context by discussing
a number of other, similar logics that have likewise been
formed by supplementing LTL with a variable-binding op-
erator, and we identify where the important differences lie.
Section 4.4 contains the complexity result.

4.1 Syntax of our path constraint language

We introduced our path constraint language informally in
section 3.5. As we said there, it is based on LTL, which has
a very simple syntax:

φ := p | false | φ1 → φ2 | ©φ | φ1 U φ2

for propositional symbols p. Other connectives can be de-
fined in terms of these, for example ¬φ := φ → false and
♦φ := trueU φ and �φ := ¬♦¬φ.

Such a simple definition will not work for our path con-
straint language. We need to be concerned not only with
ordinary propositions, but also with predicates and functions.
A condition such as “The software architecture has at least
one component” can be represented as a proposition p. But
a more interesting condition such as “This software architec-
ture has at least the same database components as the one
in the previous state” expresses a relation over two different
architectures. So in defining a syntax, we need to recognize
that there are atomic formulas other than merely proposi-
tional symbols. In this respect, it is similar to first-order
predicate logic (FOL), and so in formalizing the syntax for
our path constraint language, we take a cue from FOL, giving
separate, inductive definitions for terms, atomic formulas,
and finally formulas:

Definition 1 (path constraint syntax) Let V be a set of vari-
ables. For n = 0, 1, 2, . . ., let Fn be a set of n-ary function
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symbols and let Pn be a set of n-ary predicate (relation) sym-
bols. Together these sets form a signature, which we write as
Σ = (V, (Fn)n∈N, (Pn)n∈N). (This is just as in FOL.)

The terms π, atomic formulas α, and formulas φ are de-
fined inductively:

π := x | f (π1, . . . , πn)

α := p(π1, . . . , πn)

φ := α | false | φ1 → φ2 | ©φ | φ1 U φ2 | {x}φ

for x ∈ V, f ∈ Fn, and p ∈ Pn.

To make this discussion more concrete, let us analyze the
example formulas from section 3.5 in terms of this syntax.
In the first example,

softwareFileStorePresent(system)

U ¬softwareDownloadUiPresent(system),

softwareFileStorePresent and softwareDownloadUiPresent
are unary predicates. The keyword system is a nullary func-
tion: it takes no arguments and behaves as a term. (This
might be surprising, since in FOL we often refer to nullary
functions as “constants,” and system does not hold constant—
on the contrary, it refers to something different in every state.
But in a temporal context, constant is not a very good word
for a nullary function, because a nullary function can re-
fer to different states depending on the current state, just
as a nullary predicate—a proposition—can have a differ-
ent truth value from state to state. For a different approach,
see half-order modal logic [35], where functions have a
“rigid”—state-independent—interpretation and predicates
have a “flexible” interpretation.) Similarly, in the formula

�({s} release→ �hasAllFunc(system, s.system))

release is a proposition (nullary predicate) and hasAllFunc
is a binary predicate.

4.2 Semantics of our path constraint language

We will now give a Kripke-style semantics for our path con-
straint language. Again we begin by recalling the semantics
of LTL. There are various ways to formalize the semantics
of LTL. In the following formalization, we identify a state
with an interpretation of the propositional symbols. Alterna-
tively we could externalize an interpretation function as a
map from states to sets of propositions.

The Kripke semantics for LTL is as follows. Let P be a
set of proposition symbols. Let σ be a sequence of states:
σ1, σ2, . . ., where σi ⊆ P for each i. (Thus, each state com-
prises the set of proposition symbols that are interpreted to

hold true in that state.) We write σ, i � φ to say that σ sat-
isfies the LTL(P) formula φ at a time i > 0. We define this
satisfaction relation inductively:

– σ, i � p iff p ∈ σi (i.e., iff the propositional letter p is true
under the interpretation given by σi).

– σ, i � false never holds.
– σ, i � φ→ ψ iff σ, i � φ implies σ, i � ψ.
– σ, i � ©φ iff σ, i + 1 � φ.
– σ, i � φU ψ iff there is some j ≥ i with σ, j � ψ such that
σ, k � φ whenever i ≤ k < j.

There are a number of things we must change to obtain a
semantics for our path constraint language. First, LTL nor-
mally models a sequence of infinitely many states,σ1, σ2, . . ..
We, however, are interested in expressing constraints over
a finite sequence of states: the evolution path, which com-
prises finitely many intermediate software architectures. So
we must restrict ourselves to a finite sequence of states.

The second change we need to make is to account for our
additions to the syntax. Atomic terms are much richer than
they are in LTL. Again we take a cue from FOL. In propo-
sitional logic, an interpretation is simply an assignment of
truth or falsehood to each proposition symbol. But in FOL,
an interpretation is a map that assigns a function to each
function symbol and a relation to each predicate symbol.
Similarly, in our path constraint semantics, a state now needs
to be more than simply an identification of which proposi-
tional letters are true; it should be an interpretation function
that maps the function and predicate symbols of the syntax
to functions and relations. (In FOL, these are functions and
relations on the domain of quantification; for us they are
functions and relations on the temporal states.)

Finally, we need to express the semantics of our new
variable-binding operator, which means we must keep track
of what states the variables are binding to. After making all
these changes, we obtain the following semantics.

Definition 2 (path constraint semantics) Let

Σ = (V, (Fn)n∈N, (Pn)n∈N)

be a signature. Let σ be a sequence of states, σ1, σ2, . . . , σn.
As in LTL, we define a state to be an interpretation, but now
each state σi is a function that maps each function symbol
to a function over states and each predicate symbol to a
relation over states. That is,

– If f : Fn, then σi( f ) : S n → S , where S is the set of
states.

– If p : Pn, then σi(p) ⊆ S n.

A variable assignment s : V → S is a function that maps
variables to states. (This is needed to keep track of what
free variables stand for.) We write σ, i, s � φ to say that σ
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satisfies the path constraint φ at time i ∈ {1, . . . , n} under
the assignment s. We define the denotation of a term π in the
structure σ at time i under assignment s, written Dσ,i,s(π),
by

– Dσ,i,s(x) := s(x)
– Dσ,i,s( f (π1, . . . , πn)) := (σi( f ))(Dσ,i,s(π1), . . . ,Dσ,i,s(πn))

Finally, we define the satisfaction relation inductively:

– σ, i, s � p(π1, . . . , πn) iff (Dσ,i,s(π1), . . . ,Dσ,i,s(πn)) ∈ σi(p)
– σ, i, s � false never holds.
– σ, i, s � φ→ ψ iff σ, i, s � φ implies σ, i, s � ψ.
– σ, i, s � ©φ iff i = n or σ, i + 1, s � φ.2

– σ, i, s � φU ψ iff there is some j ∈ {i, i + 1, . . . , n} with
σ, j, s � ψ such that σ, k, s � φ whenever i ≤ k < j.

– σ, i, s � {x}φ iff σ, i, s[x 7→ σi] � φ (where s[x 7→ σi] is
the same assignment as s except with x now assigned to
σi)

If φ is a closed sentence (i.e., has no free variables) then the
assignment s is irrelevant and we may simply write σ, i � φ.

In the end, we get something that looks more like the se-
mantics of FOL than that of LTL. Indeed, as we will see in
the next section, some authors who have introduced similar
logics have referred to such a variable-binding construct as a
special kind of quantifier; this formalization shows why this
is appropriate.

4.3 Similar logics

It is important to understand how our path constraint lan-
guage relates to the existing landscape of temporal logics,
both to provide a context of related work and to clarify the
significance of the results in section 4.4. Indeed, there are
several logics that are similar to ours with respect to our
introduction into LTL of variables that retain their values
across states.

A logic that is very similar to ours is one developed by
Richardson [55] to support lists in an object-oriented data
model. Richardson’s logic is essentially LTL with the addi-
tion of “rigid variables,” which are semantically identical to
our extension to LTL. Richardson’s logic does not appear
to have been studied for its theoretical properties; the paper
has not been widely cited outside the database community.
“Rigid variables” appear elsewhere in the literature as well,
most famously Lamport’s temporal logic of actions [39],
although Lamport’s rigid variables are somewhat different.

Another related logic has been developed to model real-
time systems. A natural way to specify real-time systems

2 This is “weak next,” meaning that ©φ is interpreted to be true in the
final state of a sequence. “Strong next” can be defined in terms of the weak
next operator: ©̄φ := ¬©¬φ.

is with LTL, but one problem that arises is the incorpora-
tion of hard real-time requirements. Alur and Henzinger [2]
developed a logic that they called timed propositional tempo-
ral logic (TPTL), whose main feature was the introduction
of freeze quantifiers, which bind a variable to a particular
time so that it can be accessed later. These are similar to our
rigid variables. There are a couple of differences, which we
describe under the next subhead.

Yet another related logic is Goranko’s temporal logic with
reference pointers [33], which differs in a couple of ways.
First, unlike Richardson, Alur and Henzinger, and us, who
were devising specification languages for particular domains
(object-oriented data models, real-time systems, and soft-
ware architecture, respectively), Goranko is philosophically
motivated. He notes that LTL lacks a way to refer to partic-
ular points in time—to express the concept “then.” Unlike
the other logics we have seen, which give explicit names to
states, Goranko’s logic simply uses the symbol ↓ to indicate
a point that we might refer to later, then uses ↑ to refer to it
(to say “then”). Syntactically, ↑ behaves like a propositional
variable; semantically, ↑ is true if the current time is the
same as the time of ↓. Goranko uses this to express things
like “now will not occur again”: ↓�¬↑.

A final related family of logics is hybrid logic [9,10],
where states can be referred to via labels called nominals. A
nominal is an atomic symbol with the special property that
it is true at exactly one state. We can also use a nominal a
to build satisfaction statements, which have the form @aφ,
which means “φ is true relative to the state characterized by
a.” Finally, often hybrid logics are supplemented with a ↓
binder, which binds a label to the current state, much like
our rigid variables (or a named version of Goranko’s ↓). The
result is powerful. For example, we can now define until in
terms of these hybrid logic constructs:

φ until ψ := ↓x(♦↓y(ψ ∧@x�(♦y→ φ)))

Hybrid logics are rather different from our logic, but the
basic idea of named states, and in particular the ↓ binder, are
closely related.

This is not an exhaustive list; Blackburn and Tzakova
[10], for example, cite a few others, observing, “Labeling the
here-and-now seems to be an important operation.” Indeed,
the idea seems to have been reinvented numerous times.

How our path constraint language differs. Our path con-
straint language fits comfortably within this family of re-
lated logics. Operators that bind variables are nothing new.
However, there are some ways in which our path constraint
language distinguishes itself semantically from its cousins.
Although these distinctions are subtle, they turn out to have,
in some cases, major theoretical consequences. Although
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the existing literature is rich, it is also somewhat patchy.
There are interesting problems that have yet to be tackled.
Notably, the question of the complexity of model-checking a
path, which we discuss below and resolve in section 4.4, is a
natural one that has been solved for LTL and a number of ex-
tensions to LTL [44] but not for LTL with a variable-binding
operator. In the remainder of this section, we will discuss the
differences between our path constraint language and other
logics. We will focus on the two related logics that are the
most mature and best-studied: TPTL and hybrid logic.

TPTL was invented by Alur and Henzinger to model real-
time systems, but (likely due to their extensive theoretical
characterization of their new “freeze quantifier” and their
generalization of the idea beyond their domain) their work
became quite influential outside of this field. The semantics
of TPTL differs from our path constraint language in two
important ways. First, TPTL, like LTL, assumes an infinite
sequence of states; our logic assumes a finite sequence. Sec-
ond, the variables that freeze quantifiers capture are times
(natural numbers) rather than architectural models. All they
do with the variables they freeze is compare them to other
times with operators like ≤; we want to do architectural
analysis. At first glance, these seem to be peripheral issues,
but they turn out to be important. Indeed, Alur and Henzinger
themselves showed that small changes to the language can
substantially change its theoretical properties; for example,
supplementing TPTL with addition over time renders the
satisfiability problem highly undecidable.

Our results agree with this generalization. These seem-
ingly subtle semantic changes have substantial ramifications
on the theoretical properties of the language, and not always
in the way that one would expect. For example, consider
the problem of model-checking a path: evaluating whether
a formula holds for a single path. Alur and Henzinger show
that this problem is EXPSPACE-complete for TPTL, further
noting that it would be undecidable if TPTL were modi-
fied to allow more powerful atomic propositions, such as
addition over terms. Our path constraint language, on the
other hand, goes so far as to allow atomic propositions made
up of arbitrary predicates over arbitrary terms (just like
FOL), but then we regain decidability by studying finite se-
quences rather than infinite sequences. Unsurprisingly, this
completely changes the problem of model-checking a path.
What is perhaps surprising is that the problem is still hard and
interesting. The problem of model-checking a single, finite
path might be naively thought to be rather trivial, but Markey
and Schnoebelen [44] suggest that in fact the problem is
of substantial theoretical interest. Our results support their
contention. As we show in section 4.4, the problem of model-
checking an evolution path constraint on a finite path is hard
(PSPACE-complete). Not only that, but this complexity re-

sult does not lend itself to easy proof; a fairly sophisticated
reduction strategy was necessary to prove PSPACE-hardness.

Much the same can be said of hybrid logic. Although
hybrid logic can be used to express constraints over finite,
linear paths, it does not seem to be done often, at least not of-
ten enough that anyone has bothered to study the theoretical
properties of that case. And again, although naively we might
assume this case to be trivial, boring, or a straightforward
specialization of the more general case, in fact interesting
and surprising results emerge from these restrictions.

Hybrid logic is quite different in character and focus from
our constraint logic. In particular, although the general idea
of nominals (propositions that are true in only one state and
hence uniquely identify that state) is quite central to hybrid
logic, the ↓ binder that corresponds to our variable-binding
operator is not. Rather, ↓ was a late-breaking addition, im-
ported into hybrid logic from Goranko’s temporal logic of
reference pointers [33]. This is not to say that the theory of ↓
in hybrid logic is underdeveloped—on the contrary, some re-
markable results about it have been published—but the focus
of hybrid logic is different from ours. More characteristic of
hybrid logic than ↓ is the aforementioned satisfaction oper-
ator; it effectively jumps to a named state. Not having the
satisfaction operator imposes some unexpected challenges.
For example, as we note in section 4.4, having the satisfac-
tion operator would make proving the PSPACE-hardness
result dramatically less challenging.

Of course, nominals themselves are also somewhat dif-
ferent from bound variables in our language. A nominal is
a proposition that is true in exactly one state; a bound vari-
able is a term that directly captures a state object. This is an
important semantic difference, although the effect is similar.

4.4 Computational complexity

The primary thing we want to do with path constraints, of
course, is check whether a given path satisfies a given con-
straint. This can be easily stated as a model-checking prob-
lem. In general, model checking is the problem of checking
whether a specific formula is true of a specific Kripke struc-
ture. More specifically, model checking is usually used to ver-
ify that a state transition system has some property. For some
logics, such as CTL, this is easy. For others, such as LTL, it
is hard—PSPACE-complete, in fact. That is, given a finite
state transition system, determining whether an LTL formula
is valid in that transition system is PSPACE-complete [60].
Moreover, the solution to the model-checking problem for
LTL is intellectually rather challenging too, involving an
intricate tableau construction. There is certainly not much
hope that our variable-binding construct will make things any
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easier, especially in light of the result that model-checking
TPTL is EXPSPACE-hard [2].

Fortunately, we are not terribly interested in this form of
the problem. Instead, we are interested in model-checking
a single, particular path—not verifying a formula over an
entire state transition system. Our primary use case is telling
software architects whether the paths that they have planned
are admissible according to the constraints; we do not need
to check all the paths in some transition system, nor even a
great number of paths—just one, or a few, at a time. Likewise,
all our paths are finite—and in fact rather short, since they
are explicitly defined by humans.

Model-checking a single path is a much easier problem
computationally, but one that has been recognized in re-
cent years as theoretically interesting [44].3 For pure, propo-
sitional LTL, model-checking a formula of length ` on a
path of length m takes O(`m). The algorithm for single-path
model checking for LTL is the same as the familiar algo-
rithm for model-checking CTL, since LTL and CTL coin-
cide over individual paths [44]. This traditional algorithm
[15] uses a dynamic-programming approach. To determine
whether σ, i � φ for some finite temporal sequence σ and
formula φ, we list the subformulas of φ and solve σ, i � φi for
each subformula φi. We begin with the smallest subformulas
(i.e., atomic formulas), which are immediately solvable, then
inductively solve larger subformulas by using the solved
subformulas that compose them.

Things become messier when we add the variable-binding
operator, {x}. This simple dynamic-programming algorithm
is no longer adequate, because we also need to keep track of
variable valuations. For example, in the formula �{x}�p(x),
the truth of p(x) depends not only on the state at which we
are evaluating p(x), but also on the value of x. To determine
whether the formula holds on a path, we ultimately need
to evaluate p(x) at each state and for each value of x. The
subformula p(x) thus needs to be evaluated O(m2) times; in
model-checking finite LTL paths, we never need to evaluate
a subformula more than m times. So it is clear that model-
checking our path constraint language will be harder than
model-checking finite LTL paths. But how hard?

Consider a formula of the form

�{x1}�{x2} · · ·�{xk}�p(x1, . . . , xk)

The only apparent way to check this formula is to evaluate
p(x1, . . . , xk) at each state and for each valuation x1 ≤ · · · ≤

xk. There are
(

m+k−1
k

)
such valuations, which is Θ(mk) for

fixed m. Note that k, the number of rigid variables, is asymp-
totically proportional to the length of the formula, `. Thus,

3 In the program verification community, the problem of checking a finite,
single trace is known as runtime verification, with the term model checking
reserved for checking entire state structures [6].

we have to evaluate p(x1, . . . , xk) under Θ(m`) different valu-
ations. This gives us a strong hint that we have departed the
realm of polynomial-time algorithms.

However, we can model-check a path constraint in poly-
nomial space, because we only need to work with one valua-
tion at a time. In fact, even the naive recursive algorithm is
polynomial-space:

Theorem 1 There is a polynomial-space algorithm for
model-checking a path constraint on a single path.

Proof Let σ be a temporal sequence of finite length m. Let
φ be a path constraint of length `. We define a recursive
algorithm to determine whether σ, i � φ:

Check(σ, i, φ, s)
if φ is an atomic proposition

evaluate φ at i using assignment s
if φ = false

return false
if φ is of the form χ→ ψ

return Check(σ, i, ψ, s) or not Check(σ, i, χ, s)
if φ is of the form©ψ

return i = m or Check(σ, i + 1, ψ, s)
if φ is of the form χU ψ

for j = i to m
if Check(σ, j, ψ, s)

return true
if not Check(σ, j, χ, s)

return false
return false

if φ is of the form {x}ψ
return Check(σ, i, ψ, s[x 7→ σi])

To check whether σ, i � φ, we call Check(σ, i, φ, ∅).
Consider the space complexity of this algorithm. Since

every recursive call is of a strict subformula, the stack depth
of this algorithm never exceeds `. Each execution of Check
(excluding the recursion) uses only O(1) space. Thus, the
space complexity of the algorithm is O(`). ut

This shows that the model-checking problem for path con-
straints is in PSPACE. We will now prove that it is PSPACE-
complete. The usual way to prove that a problem is PSPACE-
hard is to prove that the quantified-Boolean-formula (QBF)
problem reduces to it. The QBF problem is to determine
whether a quantified Boolean formula such as

∃x∀y∃z(z ∧ x ∨ y) (2)

is true. (We may assume the QBF is in prenex normal form.)
There is a fairly obvious transformation from QBF to

our model-checking problem, but unfortunately this obvious
reduction does not work. The obvious reduction is to change
the ∀s into �s and the ∃s into ♦s, add variable bindings after
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each quantifier, then check the formula on a path of length 2,
where the first state represents falsehood and the second
represents truth. Thus formula (2) would become

♦{x}�{y}♦{z}(t(z) ∧ t(x) ∨ t(y))

where t is a predicate that is false when its argument refers to
state 1 and true for state 2. This would work if only � meant
“for all states” rather than “for all future states” and likewise
for ♦. But since y cannot be a state previous to x and z cannot
be previous to y, there are some assignments that will never
arise from this path constraint, such as {x 7→ 2, y 7→ 2, z 7→
1}. Thus the path constraint is not equivalent to formula (2).

However, it is temptingly close, and it is easy to imagine
language extensions that would make the proof work. For
example, if we had an operator called @ that allowed us to
jump to a previous state, we could translate formula (2) as

{h}♦{x}@0�{y}@h♦{z}(t(z) ∧ t(x) ∨ t(y))

The @ operator exists in hybrid logic, and indeed precisely
this approach was used to prove that model-checking a hy-
brid logic with @ and variable binders is PSPACE-hard [23].

Proving that model-checking a path constraint is PSPACE-
hard is more challenging. Instead of a simple two-state
model, we must build a 2k-state model, where k is the num-
ber of quantifiers. The odd states will represent falsehood;
the even, truth. The following proof provides the details.

Theorem 2 The problem of model-checking a path con-
straint on a single path is PSPACE-complete.

Proof By theorem 1, the problem is in PSPACE. To show it
is PSPACE-hard, we exhibit a polynomial-time reduction of
QBF. Let

Q1x1Q2x2 · · ·Qk xkφ(x1, x2, . . . , xk)

be a QBF in prenex normal form, so Q1, . . . ,Qk are quanti-
fiers and φ(x1, . . . , xk) is an abbreviation for a propositional
Boolean formula over the variables. We translate this QBF
into a path constraint model-checking problem as follows.
Define the signature by

Σ = ((x1, . . . , xk), (∅), ({p1, . . . , pk}, {t}, ∅, ∅, . . .))

Thus x1, . . . , xk will be variables, p1, . . . , pk will be nullary
predicates, and t will be a unary predicate. Now let σ be a
temporal sequence of 2k states, σ1, . . . , σ2k. We define the
interpretation of the nullary predicates at each state by

σi(p j) =

true if 2 j − 1 ≤ i ≤ 2 j

false otherwise

for all i, j. (A nullary relation can be simply identified with
true or false.) We define the interpretation of the unary pred-

icate t by

σi(t) = {σ2, σ4, σ6, . . . , σ2k}

Figure 3 summarizes this model. Note that we can construct
this model in linear time.

We now construct the path constraint that corresponds to
the QBF. For the quantifier part, we translate:

– ∀xi into the string “�(pi → {xi}”
– ∃xi into the string “♦(pi ∧ {xi}”

The quantifier-free part we transcribe literally, except that
each occurrence of xi becomes t(xi). At the end of the for-
mula, we add k closing parentheses. For example, formula (2)
becomes

♦(p ∧ {x}�(q→ {y}♦(r ∧ {z}(t(z) ∧ t(x) ∨ t(y)))))

This formula, too, can be constructed in linear time. (It is
larger than the original QBF, but only by a constant factor.)

It remains to show that the constructed path constraint
(call it ψ) is true iff the original QBF (call it χ) is true. Let χi

denote χ with the first i quantifiers removed. Similarly let ψi

denote ψ with the first i quantifier translations (and the last i
parentheses) removed. We will show that for any i, for any
j < 2i, and for any assignment s of the variables,

σ, j, s �PCL ψi iff s∗ �FOL χi

(We use �PCL and �FOL to indicate semantic consequence
with respect to our path constraint language and FOL, re-
spectively.) Note that we translate the path constraint lan-
guage assignment s : V → S into the FOL assignment
s∗ : V → {true, false} given by

s∗(x j) =

true if s(x j) is one of σ2, σ4, σ6, . . . , σ2k

false if not

The proof is by induction on i. The base case is i = k, where
all the quantifiers have been removed, so χi and ψi are both
propositional formulas. The propositional connectives have
the same semantics in our path constraint language and FOL,
so it suffices to show that for any j < 2i and for each h,

σ, j, s �PCL t(xh) iff s∗ �FOL xh

By the definition of t and the semantics of our path constraint
language, it suffices to show that

s(xh) ∈ {σ2, σ4, σ6, . . . , σ2k} iff s∗ �FOL xh

This is immediate from the definition of s∗.
For the inductive step, suppose we have proven the result

for i + 1, so we know that for any j < 2i + 2 and any
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σ1 σ2 σ3 σ4 σ5 σ6 · · · σ2k

p1 holds p2 holds p3 holds

t(σi) is true when i is even

t(σi) is false when i is odd

Fig. 3 A graphical representation of the path constraint language model that we construct in the reduction of a QBF.

assignment s, we have σ, j, s �PCL ψi+1 iff s∗ �FOL χi+1. We
split by cases based on whether the ith quantifier is ∀ or ∃.

Case: ∀. We must show that for each j < 2i and for any s,

σ, j, s �PCL �(pi → {xi}ψi+1) iff s∗ �FOL ∀xiχi+1

Whenever j < 2i, observe that

σ, j, s �PCL �(pi → {xi}ψi+1)

iff σ, h, s �PCL {xi}ψi+1 for all h ≥ j with σ, h, s � pi

iff σ, h, s �PCL {xi}ψi+1 for all h ∈ {2i − 1, 2i}

iff σ, h, s[xi 7→ σh] �PCL ψi+1 for all h ∈ {2i − 1, 2i}

Similarly,

s∗ �FOL ∀xiχi+1

iff s∗[xi 7→ h] �FOL χi+1 for all h ∈ {true, false}

Thus, it suffices to show that

σ, h, s[xi 7→ σh] �PCL ψi+1 for all h ∈ {2i − 1, 2i}

iff s∗[xi 7→ h] �FOL χi+1 for all h ∈ {true, false}

For this, it suffices to show that

σ, 2i − 1, s[xi 7→ σ2i−1] �PCL ψi+1

iff s∗[xi 7→ false] �FOL χi+1

and

σ, 2i, s[xi 7→ σ2i] �PCL ψi+1

iff s∗[xi 7→ true] �FOL χi+1

But each of these is simply an instance of the induction
hypothesis, since by the definition of s∗ we have

(s[xi 7→ σ2i−1])∗ = s∗[xi 7→ false]

(s[xi 7→ σ2i])∗ = s∗[xi 7→ true]

Case: ∃. We must show that for each j < 2i and for any s,

σ, j, s �PCL ♦(pi ∧ {xi}ψi+1) iff s∗ �FOL ∃xiχi+1

By reasoning parallel to the ∀ case, it suffices to show
that

σ, h, s[xi 7→ σh] �PCL ψi+1 for some h ∈ {2i − 1, 2i}

iff s∗[xi 7→ h] �FOL χi+1 for some h ∈ {true, false}

As in the previous case, this follows from the induction
hypothesis.

This concludes the inductive proof that σ, j, s �PCL ψi iff
s∗ �FOL χi for any i, any j < 2i, and any s. Choosing i = 0
and j = 1, we obtain σ, 1 �PCL ψ iff �FOL χ as desired. ut

Our QBF reduction is similar to that recently employed to
prove PSPACE-completeness for the finitary model-checking
problem for LTL augmented with finitely many registers,
over deterministic one-counter automata [20].

Our PSPACE-completeness result is somewhat unfortu-
nate, but perhaps to be expected, since, as we have seen,
the variable-binding extension is a sort of quantifier, and a
great many interesting decision problems for quantified logic
are PSPACE-complete [25], including even the problem of
checking first-order monadic logic over finite paths [44].
And of course hybrid logic with ↓ has the same problem as
our path constraint language.

There are practical reasons not to be terribly concerned
about the PSPACE-hardness of checking path constraints.
First, actual path constraints are typically not terribly long.
They are, after all, written by humans for the purpose of
reasoning formally about constraints that arise naturally. Sec-
ond, it is possible that the predicates that arise in this domain
might lend themselves to specialized analyses with good
performance. That is, the predicates we actually encounter
are not arbitrary n-ary relations over the state space; they are
simple tests like “has a database.” Third, and most impor-
tantly, the constraints that arise are likely to be particularly
well-behaved, so the worst-case running time will be quite
rare in actuality. Of course, this is a claim that is likely to be
made about any intractable problem, but at least in our case
it can be formalized.

The complexity of the path-checking problem in our case
arises, of course, from the variable-binding extension, but
in particular it arises from nesting these binders. All of the
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intractable examples we have seen, such as the transformed
formula in the QBF reduction, involve arbitrarily deeply
nested variable bindings. The following theorem shows that
model-checking a path constraint over a path is intractable
only to the extent that variables are nested without bound.

Theorem 3 Let σ be a temporal sequence of length m. Let
φ be a path constraint of length `. Let d be the maximum
variable-nesting depth of φ (i.e., there is no point in φ at
which more than d variables are bound at once). Then there
is an algorithm that determines whether σ, i � φ in O(`md+1).

Proof Let φ1, . . . , φn be the subformulas of φ, listed by non-
decreasing length. We define a Boolean matrix [t j,k]m×n. The
follow recursive algorithm fills the kth column of the matrix
under variable assignment s:

FillCol(k, s)
if φk is an atomic proposition

for j = 1 to m
t j,k := evaluate φk at j using assignment s

if φk = false
for j = 1 to m

t j,k := false
if φk is of the form φg → φh

FillCol(g, s)
FillCol(h, s)
for j = 1 to m

t j,k := t j,h or not t j,g

if φk is of the form©φh

FillCol(h, s)
for j = 1 to m − 1

t j,k := t j+1,h

tm,k := true
if φk is of the form φg U φh

FillCol(g, s)
FillCol(h, s)
prev := false
for j = m to 1 step −1

prev := t j,h or (t j,g and prev)
t j,k := prev

if φk is of the form {x}φh

for j = 1 to m
FillCol(h, s[x→ σ j])
t j,k := t j,h

To solve the model-checking problem, execute FillCol(n, ∅)
and read the answer from ti,n. The correctness of the algo-
rithm follows easily from the semantics of path constraints.

Note that in the case where there are no variable assign-
ments, this algorithm reduces to the algorithm for LTL. When
there are variable assignments, intermediate results in the
matrix are overwritten; in an intermediate evaluation of a
formula of the form {x}ψ, we use the columns to our left

to first evaluate ψ under the assignment x 7→ 1, then im-
mediately overwrite them, using the same space to evaluate
ψ under the assignment x 7→ 2, and so on. More precisely,
the kth column of the matrix is ultimately filled mdk times,
where dk is the variable-nesting depth of φk (i.e., the number
of variables that are bound for the subformula φk). Thus no
column is filled more than md times, where d is the maxi-
mum variable-nesting depth of φ. Filling a single column,
not counting the time to fill its subformula columns to the
left, takes O(m) time. And there are n columns in total, which
is O(`). Therefore the total complexity of the algorithm is
O(`md+1). ut

If d is bounded (e.g., we never have constraints with a
variable-nesting depth greater than 3) then we can model-
check a path constraint over a path in polynomial time. (If
d = 0, we get the same, linear performance as the LTL algo-
rithm, as we would hope.) If d is unbounded, then the per-
formance is exponential, O(`m`), since the quantifier depth
can approach the length of the formula. In practice, it seems
unlikely that variable bindings will often be very deeply
nested, since software architects are unlikely to be naturally
interested in such convoluted constraints. However, although
these theoretical results are illuminating, performance test-
ing is needed to understand their practical significance. We
leave this for future work.

5 Case study

In this section, we present a case study that illustrates the
application of these ideas to an actual architecture evolution.
The evolution in question was an artificial one, conducted in
the laboratory for the purposes of this research. Nonetheless,
we believe it provides a useful demonstration of how our
approach may be applied in practice.

Section 5.1 introduces the case study and explains our
reasons for our project selection. Section 5.2 describes the
result of the evolution and shows how our model may be
applied to analyze the evolution in retrospect. Section 5.3
discusses the limitations of the case study, and section 5.4
discusses the conclusions that may be drawn from it.

5.1 Case study description

Methodology. In this case study, we conducted a controlled
evolution of a real software system. We began with an open-
source software system and selected a target architectural
style to which we would migrate the system. Then one of us
(the first author) carried out the evolution unaided, without
the use of the models we have described.
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After the conclusion of the evolution, we analyzed it
retrospectively. We mapped the course that the evolution
had taken, using the model of section 3. We attempted to
identify the constraints to which the evolution had been sub-
ject, and we formalized them in our constraint language and
showed formally that the path adhered to them. Finally, we
reflected on the question of whether the evolution might have
gone more smoothly had we had access to an evolution style
for the domain before the evolution began. We considered
whether any automatable analyses could have been employed
in the planning stage to make the evolution more successful.

The case study was paper-based rather than tool-based.
There were two reasons for this. The first reason is practical:
as we note in section 7, the tools we have developed so far
do not support the full set of evolution modeling features we
wished to evaluate in the case study. The second reason is
that our goal for the case study was not to evaluate a tool, but
rather to assess whether the modeling approach itself was
suitable for representing an actual evolution.

Research questions. Because of its artificial nature and
small size, this case study is able to address only limited
research questions. In section 5.3, we will discuss these
limitations in detail. Here we merely present the questions
the case study sought to address:

1. Can our model be applied to the analysis of a real evolu-
tion? Previous studies in this area have tended to focus
on fictitious examples, like our example in section 2.1.
Although artificial, the present case study at least exam-
ines an evolution that was actually carried out rather than
merely imagined; it represents a significant step toward
real-world experimentation.

2. Is our path constraint language expressive enough to
capture the constraints that naturally arise in a real evo-
lution? We devised our path constraint language based on
our intuition about what evolution constraints are likely
to look like. But this intuition has never been tested. By
seeing what constraints arise in this case study, we can
achieve some level of validation of the practicality of the
language.

3. Is it likely that a model like ours, with appropriate tools
to implement it, could be useful for planning evolutions?
Our approach in this case study is to perform the evolution
unaided rather than with the use of our model. Nonethe-
less, we can make an attempt to get at this question by
examining the mistakes and missteps that occur during
the evolution, and asking whether they are the sort of
difficulties that might plausibly be averted by the use of
our model.

Project selection. We undertook an evolution of an existing
small, stand-alone desktop application to the Amazon EC2

cloud-computing platform [3]. We picked these initial and
target styles for several reasons. First, as noted in section 2.1,
evolution to the cloud is a topic of considerable current inter-
est. Not only does this give our case study greater practical
relevance, it also means that there is a wide variety of exist-
ing resources that provide guidance on this style of evolution.
Such resources can be a helpful source of evolution con-
straints and analyses, as we will see in section 5.2. Indeed,
by using guidance from external sources to generate some
of our constraints, we mitigate one threat to external valid-
ity: that we invented constraints that were particularly and
unrealistically easy to formalize in our system.

Second, evolutions to the cloud are amenable to this kind
of case study because they can be carried out at a large or
small scale. An evolution of a large software system to the
cloud can be a huge undertaking, requiring dozens (even
hundreds) of engineers and months (even years) of time. On
the other hand, a simple, small evolution of this kind can be
done by a single person in a matter of weeks. Indeed, this is
one of the attractions of cloud computing: software systems
of modest size and need can migrate to the cloud to avoid the
expense of dedicated hardware, so that they pay only for the
resources they use. So cloud computing is a viable evolution
style for both large and small systems.

Moreover, small and large cloud-based software systems
are not fundamentally different. Usually, a large cloud-based
system looks much like a scaled-up version of a small one.
This is not generally true for other architectural styles, but it
is a consequence of another important attraction of the cloud:
scalability. Instead of buying new hardware, engineers sim-
ply order additional resources to scale a system in the cloud.
Cloud-based systems are designed with this kind of horizon-
tal scaling in mind. Small and large cloud-based systems
alike are usually designed in this way; after all, many small
systems hope to later become large systems when demand
grows and more resources are available. Consequently, build-
ing a small cloud-based system can tell us something about
the experience of building a large cloud-based system, to
a greater degree than might be true of other architectural
styles.

We picked GNU Chess [31] as our starting system. GNU
Chess is a desktop chess engine with a venerable history. The
first version dates back to 1984, although the latest version,
GNU Chess 5, which was first released in 1999, shares no
code with earlier versions. GNU Chess is quite well-known
and has featured in a number of academic studies in various
domains.

Although chess engines may seem an esoteric domain,
they are quite suitable for this kind of evolution study. First,
a chess engine is about the right size and complexity—small
enough that a single person can understand and evolve the en-
tire system in a reasonable amount of time, but large enough
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to have an identifiable architecture and to present evolution
challenges. Second, as we will argue in section 5.3, chess en-
gines are representative of a much broader class of systems
amenable to cloud evolution. Indeed, as we will see, this
case study bears interesting similarities to the more realistic
scenario we described in section 2.1.

GNU Chess in particular is suitable because it is of an
appropriate size (14,370 lines of C code), because it is open-
source, and because it is neither artificially simple nor pro-
hibitively complex. That is, it is a real software application
that has emerged from a real-world development process and
has enjoyed popular use, not a toy application introduced
for the purposes of this study. At the same time, it is neither
excessively complex, nor is it poorly structured spaghetti
code; it has a discernible (albeit not explicitly documented)
software architecture, which is a prerequisite of our approach
to architecture evolution.

The latest version of GNU Chess available at the time we
began this study was GNU Chess 5.0.7, released in 2003,
so that is the version we used. (More precisely, we used
gnuchess-5.07-7 [19], an unofficial release from the Debian
project that fixed a number of problems in the aging official
release, including some that prevented it from compiling on
modern compilers.)

Evolution target. Our objective was to migrate GNU Chess
to Amazon EC2, one of the best-known cloud computing
platforms. The end goal was a web application, hosted in
the cloud, that would allow users to play chess against a
computer.

We chose Amazon EC2 over other cloud platforms for
a couple of reasons. First, it is quite popular, boasting an
impressive market share. Among other benefits, this means
that there are ample existing resources on migration to EC2,
some of which we thought might be helpful for generating
evolution constraints and analyses. Second, EC2 is quite
flexible, unlike some other cloud computing platforms that
are tied to certain languages (e.g., Google App Engine, which
supports only Python and Java [32]) or domains (e.g., Twilio,
a cloud computing platform for telephony applications [66]).
This was important, since we were dealing with a legacy
application written in C.

The key quality attribute on which we focused was scala-
bility, which is, after all, one of the major appeals of cloud
computing. We aimed to rearchitect the system in such a way
that it could support arbitrarily many simultaneous users,
simply by buying more resources and configuring the system
accordingly. As we suggested in the last section, we planned
to accomplish this by decomposing GNU Chess into separate
components that could be deployed on separate machines to
accommodate piecewise horizontal scaling.

Of course, this attribute of scalability, though it was criti-
cal to the planning process, would never actually be tested.
In reality, our system will never have more than a couple of
users at a time. That is, for the purposes of this case study,
we imagined ourselves in the position of an organization
with particular business constraints and business goals, one
of which was the development of an online chess application
that could be easily and economically scaled as it became
more popular. In reality, of course, the application would
never need to scale at all, let alone be economically feasi-
ble. For the number of users we would actually have, we
would have been quite satisfactorily served by deploying an
unmodified GNU Chess on a single host and building a web
interface in front of it. But our architectural decisions were
driven by this artificial scenario that we envisioned. In this
way, we aimed to make the evolution simultaneously more
realistic and less trivial. Of course, it would be better, from
the standpoint of external validity, to be operating within a
real business context rather than contriving one. This may be
properly regarded as one of the limitations of our case study;
we discuss this issue further in section 5.3.

5.2 Analysis

Figures 4 and 5 show high-level overviews of the architec-
tures of the starting and final systems in the actual evolution.
We considered the evolution from two architectural perspec-
tives: a component-and-connector view, represented with the
UML 2 component diagram type (in line with the conven-
tions recommended by the Software Engineering Institute
for representing component-and-connector views in UML
[37]), and an allocation view, represented with the UML 2
deployment diagram type. We chose these two views for
our case study because they are the most useful given the
technical qualities of the evolution and the business con-
text. Component-and-connector views are essential for un-
derstanding the run-time structure of a system, as well as
its behavioral qualities, such as performance. A deployment
view is useful because it pertains to a central goal of the
evolution: the redeployment of the software to a different
environment (servers in the cloud rather than a desktop).

The initial version of GNU Chess had a rather monolithic
architecture (at least from the component-and-connector and
deployment perspectives; a static code view would show a
clearer structure). While we can identify some substructure
with effort (some of the most important identifiable subcom-
ponents are shown in figure 4), in essence the chess engine
is one component, consisting of a single-threaded, single-
process application running locally on a single machine.
Only with difficulty can we identify any useful subcompo-
nents. To put it another way, a component-and-connector
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Fig. 4 Two views of the initial architecture in our case study evolution: a component-and-connector view depicted as a UML component
diagram (top) and an allocation view depicted as a UML deployment diagram (bottom).

diagram is responsible for showing interactions among pro-
cessing units, but there are not really any interacting process-
ing units in GNU Chess. The only interaction is between
the application and the user, who is not part of the software
system (and occasionally between the application and the
file system, when information is stored to or loaded from
disk). So although we have made an effort to show some
decomposition of the component-and-connector view by de-
picting the structure of the control flow, it is fair to regard
the component-and-connector architecture of GNU Chess as
rather monolithic.

Over the course of the evolution, we split the application
into multiple separate parts that could be deployed sepa-
rately (figure 5): an opening-book component responsible
for looking up opening positions in a database, user interface
components responsible for mediating between the chess
engine and the user, and the core analysis component respon-
sible for calculating moves on positions that are not in the
opening database.

This kind of separation of concerns into separately deploy-
able components is quite useful for evolution to the cloud,
because it allows independent scaling of the different compo-
nents. The different components will scale differently (and
in a way that is to some degree unpredictable, since it may

depend on the actual usage of the system), so it makes sense
to separate them so that as the application grows, we can
target additional resources specifically at the components
that need them. In addition, different parts of the system
have different requirements (e.g., some are processor-bound
while others are disk-bound), so by decomposing the system
into separately deployable parts, we can host them on differ-
ent hardware, specially selected to be appropriate for each
component.

In addition to splitting the system into separate compo-
nents, of course, we also had to be concerned with how to
hook these components together. We employed a diverse
array of connector types. On the front end, the users inter-
act with the web servers through standard web technologies
(HTTP over TCP). The web servers then make requests
of the analysis and opening-book servers using a custom
application-level protocol built on TCP. Within the analy-
sis servers, communication between components occurs us-
ing traditional means of interprocess communication. A dis-
patcher places requests in a POSIX message queue. Analysis
engines dequeue these requests, handle them, and place the
results in a named pipe owned by the dispatcher. The sys-
tem is designed with scalability, performance, and cost in
mind. More web servers and analysis servers can be added
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Fig. 5 A component diagram (top) and deployment diagram (bottom) of the final architecture in our case study evolution.
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easily; traffic for these servers is mediated by load balancers
responsible for routing requests to the different servers in a
fair way. Each engine server runs as many AnalysisEngine
instances as there are processing cores on the server; since
the analysis engine is single-threaded, this is necessary to
make full use of whatever computing resources we have pur-
chased. (Amazon currently offers instances with up to eight
virtual cores.)

Many of the constraints and planning considerations we
naturally thought about during the evolution seem to fit
well into our framework. Some of these constraints can
be expressed with simple architectural-style constraints—
constraints that can be evaluated with respect to each single
intermediate architecture, without the need for notions of
temporality. For example, consider the constraint: “Two com-
ponents that are connected via a POSIX message queue must
be on the same host.” This can be expressed as a local con-
straint on a single state, which we express here in OCL:

context PosixMessageQueue inv:
let components = end.role.structuredClassifier in
let hosts =

components.manifestation.client.deployment.location
in hosts->size() < 2

This says that for each PosixMessageQueue connector, if
we look at the components it connects, and then look at
all the artifacts that manifest these components, we will
find that they are all on the same host. Note that this OCL
constraint is at the UML metamodel level. To understand
why this is necessary, bear in mind how our use case differs
from the most common use of OCL. Usually, OCL is used
with an existing, fixed UML diagram to specify additional
constraints beyond those represented in the diagram. But
we are using OCL to select from a space of many UML
diagrams; therefore, our OCL constraints must operate on the
UML metamodel rather than any particular UML model. Our
use of OCL is similar to that of Cariou et al. [13], who use
OCL to specify model transformation contracts. (By contrast,
the constraint language in Acme is designed specifically to
distinguish between allowed and disallowed architectures,
so when we model evolutions using Acme rather than UML,
we can use its constraint language in the usual way.)

Setting aside the specific mechanics of the OCL, the key
point is that the constraint can be evaluated with respect
to an individual intermediate architecture; that is, for each
intermediate architecture, we can judge (without reference to
other intermediate architecture or to temporality) whether its
POSIX message queues are connected correctly. However,
more complex constraints require temporality to express. For
example, consider the constraint “The type of a connector
can be changed at most twice.” We might apply such a con-
straint to ensure that our evolution path does not involve

a lot of repeated reworking of connectors. Changing the
type of a connector (say, from a POSIX message queue to
network-socket-based communication) is a sensible thing
to do in an evolution, but we might decide that changing it
more than twice, as in figure 6, indicates an excessive de-
gree of reworking. Such a constraint cannot be represented
as a local architectural constraint in OCL or Acme—it is
a constraint on the entire evolution path, not an individual
architecture—so we must use our temporal path constraint
language to model it:

�{s}�{t}�{u}�{v} connTypeChangedAtMostTwice(s, t, u, v)

Of course, connTypeChangedAtMostTwice is not a keyword
built into the path constraint language; it is a quaternary
predicate over states that must be defined explicitly by the
evolution style in the applicable architectural constraint lan-
guage. In this case, we could define it in OCL by:

inv connTypeChangedAtMostTwice(s, t, u, v):
s::Connector.allInstances.forall(connS |

t::Connector.allInstances.forall(connT |

u::Connector.allInstances.forall(connU |

v::Connector.allInstances.forall(connV |

let connectors = {connS,connT,connU,connV} in
size(connectors.evId−>asSet()) = 1 implies
size(connectors.type−>asSet()) < 4))))

In effect, this constraint says, “There is no connector whose
type is different in all of s, t, u, v.” The constraint is violated
if there exist four connectors, one from each of the four
input states, that are evolutionarily identical (i.e., they rep-
resent the same connector at different stages of evolution)
but all have different types. (To determine whether the four
connectors have the same evolutionary identity but differ-
ent types, the constraint takes the set of four connectors,
{connS, connT, connU, connV}, and counts the number of
distinct evIds and the number of distinct types, to check
whether these counts are 1 and 4, respectively.) Note that
the definition of the constraint does not require temporal
operators.

A good source for evolution constraints and analyses is
existing documentation and advice on evolving to the target
architectural style. Fortuitously, while we were in the midst
of our case study, Amazon released a white paper with advice
on “Migrating Your Existing Applications to the AWS Cloud”
[67]. We mined this paper for evolution constraints that we
could formalize. We found a number of them, although not
all of them map very well to our case study because of
its small size. The paper recommends a phased approach
to cloud migration, with phases such as cloud assessment,
proof of concept, data migration, application migration, and
so on. In the recommended phase strategy, data migration
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Fig. 6 This is a partial depiction of a portion of an alternate evolution path; each of the three frames shows a different stage of evolution. In
this alternate path, the type of a connector is changed repeatedly, which may indicate an excessive degree of reworking. We can prohibit
such paths by means of a path constraint.

(phase 3) precedes application migration (phase 4). Suppose
that we wanted to make a constraint of this. (The paper itself
notes that some companies prefer to vary the order of the
phases, for example by performing application migration
before data migration is complete. Nonetheless, suppose
that we had decided that, for our purposes, it was indeed
prudent to migrate all data before beginning application
migration, and that we wanted to formalize this rule as an
evolution constraint.) In our small case study, there is not
much data to speak of—the only significant data store is the
opening database. Nonetheless, if we did wish to formalize
the constraint, we could do it easily:

¬hasMigratedApplication(system)

U allDataMigrated(system)

Once again, hasMigratedApplication and allDataMigrated
are predicates that must be defined by the evolution style.
So as not to belabor the point, we do not define them here,
but the important point is that they can be defined in the
architectural constraint language (in this case, OCL) with
reference only to the arguments of the predicate—without
use of temporal connectives.

We have now shown how a number of the constraints
relevant to our case study can be formalized. We now con-
sider operators, which are rather easier to come up with than
constraints. In our case study, we found that the steps we
carried out lent themselves naturally to expression as evo-
lution operators. For example, one important operation that
we carried out several times was moving a component to
another host. We can represent this as an operator as follows:

operator migrateComponent(c, newHost) {
transformations {

UML2Deployment {
let artifact = c.manifestation.client
unlink artifact as deployedArtifact

from artifact.deployment
link artifact as deployedArtifact

to newHost.deployment
}

}
preconditions {

UML2Component {
c.ownedConnector->forAll(

type <> PosixMessageQueue
and type <> NamedPipe)

}
UML2Deployment {

c.manifestation->notEmpty()
}

}
analysis {

"duration": {
"amount": 10, "unit": "person-hour"

}
}

}

This is a good example of how an operator looks when mul-
tiple views are involved. The transformations and precondi-
tions blocks each contain one subblock for each view (i.e.,
each model type). In this case, we have a component-and-
connector view, depicted using a UML component diagram,
and an allocation view, depicted by a UML deployment
diagram, so the subblocks are labeled UML2Component
and UML2Deployment. However, the UML2Component sub-
block of the transformations block was omitted because it
was empty; component migration is visible only in the de-
ployment view, not the component-and-connector view. The
analysis information in this example is fictitious, intended
simply to give an idea of what analysis information might
look like. This analysis information would be used by an
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[component-and-connector view identical to fig. 4]

operator setUpEc2Environment() {
transformations {

UML2Deployment {
Node ec2Environment = create Node : Network;
ec2Environment.name = "Amazon�Network";

}
}

}
operator createSmallEc2Node(environment, name) {

transformations {
UML2Deployment {

Device node = create Device : SmallEc2Node;
node.name = name;
Association a = create Association : TCP

between node, environment;
}

}
}
operator deleteNode(n) {

transformations {
UML2Deployment {

delete n;
}

}
}

Fig. 7 An example illustrating how an intermediate state can be defined by applying a sequence of evolution operators.

evaluation function for evolution duration and tells us how
long component migration takes to carry out.

By composing such operators together, we can fully spec-
ify the architectural transformations making up the transi-
tions of the evolution path, and thus fully define the inter-
mediate states. Figure 7 provides an example of how an
intermediate state (shown at left) can be defined by apply-
ing a sequence of operators (shown at right) to the initial
architecture of the system (shown earlier in figure 4). In this
example, the operators effect the migration of GNU Chess
from the desktop environment where it initially resides to
an Amazon EC2 node—the first step in the GNU Chess evo-
lution. Only the deployment diagram changes, since at this
stage GNU Chess is simply being migrated to a new deploy-
ment environment, without any architectural changes to the
code. The component-and-connector diagram is therefore
identical to that of the initial state.

The intermediate architecture in figure 7 can be obtained
from the initial architecture in figure 4 by applying four op-
erators (with the correct parameters and in an appropriate
sequence): the three operators defined in the stubs in figure 7,
along with the migrateComponent operator defined above.
First, we apply the setUpEc2Environment operator to cre-
ate the architectural representation of the EC2 environment.
Second, we apply createSmallEc2Node to create a new EC2
node. Third, we invoke migrateComponent twice to migrate
the two artifacts from the old desktop device to the new EC2

node. Lastly, we use deleteNode to remove the old desktop
device from the model. In this way, we define the second
state of the evolution path in terms of the first.

Finally, let us consider evaluation functions. There are a
number of evaluation functions that would have been useful
for planning an evolution such as the one we undertook in
this case study. One of the most straightforward to implement
is an analysis of the final running cost of the system—that
is, the hourly cost that Amazon will charge us to run the
system once the evolution is complete. This is a function
of the number and types of hosts that are used in the final
state, as well as some harder-to-determine figures like the
amount of network traffic. This particular evaluation func-
tion requires information from only the final state; more
sophisticated evaluation functions could perform arbitrarily
complex reasoning involving all the states of an evolution
path. For simplicity, we account for only the costs of running
the instances, not other costs such as bandwidth, storage,
and support. The language used here is JavaScript (more
precisely, ECMAScript, fifth edition [21]).

function analyzeFinalHourlyRunningCost(states) {
// The final state is all we are interested in
var finalState = states.pop();

// Get all the devices in the state by an OCL query
// on the deployment view
var devices = finalState.query(
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"Device.allInstances()", "UML2Deployment");

// Calculate the total hourly cost
var cost = 0;
for (var device in devices) {

switch (device.type) {
case SmallEc2Instance:

cost += .085; break;
case LargeEc2Instance:

cost += .34; break;
case HighCpuEc2Instance:

cost += .17; break;
// Et cetera

}
}
return cost;

}

Every evaluation function takes an argument, states, which
is a JavaScript array whose elements are the intermediate
evolution states that make up the path to be analyzed. Each
element of this array is an object containing a queryable
representation of the architectural model associated with
the state that the object represents. This examples shows
how these objects can be queried (with the query method) to
access this information.

It seems clear that we can create an evolution style for mi-
grations to Amazon EC2. But would such a style be useful?
Would it have been useful for the evolution we carried out
in our case study? There is no way we can give an absolute
answer to this question objectively, but it does seem that a
number of the questions and challenges that arose during the
course of the evolution are of the sort that could plausibly
be answered by such a style. For this case study, we deliber-
ately chose starting and ending domains with which we were
unfamiliar; that is, the author carrying out the evolution had
no prior practical experience with desktop or network-based
applications written in C, nor with developing cloud-based
software. Evolution styles, like most forms of capturing ar-
chitectural expertise, are likely to be most valuable in cases
such as this, because their role is to provide expertise that
the architects lack. If the architects are already experts in
the domain, evolution styles will likely be of less help. Our
experience in the case study seemed to support the idea that
evolution styles might be able to compensate for lack of
evolution domain expertise. Quite a bit of our design time
was taken up in researching the architectural element types
relevant to the domain, understanding how they could fit to-
gether, and working out the best way to evolve the system in
the chosen direction. For example, we considered a number
of possible ways to connect the pieces of the system together;
to do so, we had to gain an understanding of the available

connector types, such as network protocols and interprocess
communication channels. We spent quite a bit of time sim-
ply understanding the basic constraints of these connector
types. Which transport protocols (TCP, UDP, SCTP) support
message-based communication? Does a named pipe admit
multiple writers? These are the kinds of questions whose
answers could be easily captured in a style.

Another example of architectural expertise that would
have been useful to have is an understanding of how the
system would scale. How many users can an extra-large
high-CPU EC2 instance running our analysis engine sup-
port? What data must we gather to answer the question?
Does it make more sense to rent a single extra-large high-
CPU instance, or four medium high-CPU instances for the
same price? These are questions which we lack the expertise
to answer, but which an experienced cloud architect could
address easily. They are quite well suited to formalization as
evolution style analyses. An evaluation function could take
as input information on the expected resource requirements
of the software and then, based on the planned evolution
path, estimate how many users we will be able to support at
each stage of evolution. Or another analysis could take in a
probability distribution expressing how many users we are
likely to have in the future, and tell us how many on-demand
instances we should run, and how many we should rent at
the cheaper but more restrictive reserved-instance rate.

5.3 Limitations

Architecture evolution presents special validation challenges
different from those in many other subfields of software
engineering. In general, a good method for evaluating a
software engineering model is to test it and see if it produces
better results. For example, to evaluate a software evolution
technique, the ideal approach is to carry out evolutions with
and without the aid of the technique, and see if the use of
the technique produces better results. However, architecture
evolutions usually take place over long periods, often years,
so the prospect of evaluating an architecture evolution model
in this way is very different from that of evaluating, say,
a new source control plug-in. Indeed, we expect that our
architecture evolution work will be most useful for the largest
evolutions—those which take years of work and hundreds
of personnel. Our path-based approach is likely to be less
appealing for small-scale evolutions, because the overhead
may exceed the benefits gained. Thus, a fair experimental
evaluation of our approach would require us to enlist a large
organization to adopt our approach for a major evolution
and observe the results over the subsequent years or even
decades—and ideally to do this many times, to ensure that
the result is robust. Obviously, this is impractical, so we must
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look to other evaluative methods and see what they can tell
us about the usefulness, practicality, effectiveness, cost, and
feasibility of our approach.

Given the limitations at hand, there are a number of ap-
proaches we can take to evaluation. In this paper, we have
taken two separate approaches: a theoretical evaluation of
the properties of part of our modeling apparatus (section 4)
and a small, controlled case study. Although far more modest
than the grand experiment we imagined in the previous para-
graph, there is still a lot this case study can tell us—provided
that we are cautious about interpreting the results and do
not overreach. In this section, we consider the most signifi-
cant limitations of the case study that might complicate its
interpretation.

A significant problem in interpreting any case study is
that of generalizability, or external validity. Unlike research
based on quantitative methods, a case study does not attempt
to study any sort of representative sample of a population;
rather, the goal in a case study is to undertake a detailed
examination of a single case, and draw broader inferences
based on what is appropriate given the context of the case
study. In a case study, the aim is analytic, rather than statisti-
cal, generalization.

Here, generalizability is of particular concern because the
case study was an artificial one. In addition, the case study
was small in size (in terms of both the size of the system and
the size of the development team—one person) and relatively
straightforward in concept. The external validity of the case
study thus hinges in part on the question of how true to
life it was—and, insofar as the case study differed from a
real-world project, how relevant those differences are to the
research questions the case study attempts to address.

One of the reasons we selected this particular example is
that it bears some structural similarities to real-world evolu-
tions, such as the kind of scenario we described in section 2.1.
Like an algorithmic-trading platform, a chess engine has a va-
riety of components with different requirements. Some parts
are processing-intensive (like the main search algorithm re-
sponsible for finding good moves), some are disk-intensive
(a six-piece endgame tablebase, for example, requires over
a terabyte), some are memory-intensive (such as endgame
tablebases and transposition tables), and some are not par-
ticularly demanding of computing resources but may have
other special requirements (such as the user interface). As in
the example of section 2.1, trading platforms are often sim-
ilarly differentiated, with computation engines that require
complex, real-time calculation; market data that may require
vast amounts of storage; trade placement components that
require fast and absolutely reliable network connections; and
so on. This sort of differentiation of components is typical
of a large class of software systems, and cloud computing
makes particular technical sense for systems that have this

characteristic. (As mentioned in the case study, cloud com-
puting platforms allow deployment on different hardware
depending on the needs of the application or component; for
example, Amazon EC2 has “high-memory” and “high-CPU”
instances, as well as instances that also have increased net-
work performance for high-performance computing.) Thus,
a migration of a chess engine to the cloud makes sense for
some of the same technical reasons as a cloud migration of
a quantitative-trading platform, and the evolution operators
and constraints that arise are broadly analogous.

Aside from the structural similarities, the systems have
some of the same quality attribute goals. Some of the reasons
one might wish to migrate a chess engine to the cloud are the
same reasons one might wish to migrate a trading platform:
scalability, cost, agility, reliability, and ease of use.

Obviously, this is a rough analogy, and we must not carry
it too far. There are great differences in scale and risk (if
a chess engine miscalculates, the worst that can happen is
checkmate—but a bad trade can lose millions of dollars).
Nonetheless, we can expect this case study to give us in-
sight into cloud evolutions beyond the narrow domain of the
original system.

Another limitation of the case study, in addition to its
small size and artificial purpose, is that the analysis was
retrospective; that is, we carried out the evolution first and
the analysis later. This is the inverse of the normal usage
of our approach (in which an architect builds and analyzes
a model in order to carry out the evolution as effectively
as possible). This methodological choice was necessary to
make the case study practical with the available resources,
but we must keep it in mind when interpreting the case study.

Of course, while it is natural to focus on the question of
whether a case study is generalizable, a more precise ques-
tion is: To what extent (i.e., to what class of architecture
evolutions) is the case study generalizable? The case study
generalizes most easily to systems that are similar to the one
in the case study. Thus, when attempting to generalize this
case study to another situation, we can be the most confi-
dent when that situation is similar to this one—for example,
another small-scale evolutions of a desktop application to a
cloud-computing platform. The more dissimilar a situation
is from this scenario, the harder it is to apply our results. For
example, one important characteristic of the system in this
case study is that its responsibilities could be easily separated
into discrete components. Quite different would be a system
with responsibilities delineated in some other manner (for
example, a “spaghetti architecture” with no clear separation
of responsibilities, or an aspect-oriented system that encapsu-
lates cross-cutting concerns), so we cannot apply our results
to such a scenario.
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5.4 Results

In section 5.1, we presented three research questions in
which we were primarily interested. We now return to them
and discuss the extent to which we have answered them,
bearing in mind the limitations discussed in section 5.3.

1. Can our model be applied to the analysis of a real evo-
lution? This case study was real only in a very limited
sense; it was never intended to result in a running system
that would have real users. Nonetheless, it was an evo-
lution that was really carried out, as opposed to one that
was merely imagined; in this respect it is considerably
more real than much of the previous work in this area.
In this case study, we did not encounter any serious lim-
itations of our approach that would establish a negative
answer to this research question. That is, our model turned
out to be quite adequate for modeling the evolution we
carried out in this case study, and we have no reason to
believe that less artificial examples would present any
additional difficulties. This answer is not quite as good as
applying our approach to a real evolution of a real system
with real users, but it is pretty good; our case study was
designed to be realistic if not entirely real, and if there
were to be applicability problems with our approach, it
seems likely that they would have appeared here.

2. Is our path constraint language expressive enough to
capture the constraints that naturally arise in a real evo-
lution? Again with a caveat about the interpretation of the
word real, we can give a qualified affirmative answer. We
were able to model the constraints that naturally arose dur-
ing our case study with relative ease. We do not anticipate
any obstacles that would prevent this result from continu-
ing to hold in a real-world evolution, but we cannot know
the outcome of such an application with certainty.

3. Is it likely that a model like ours, with appropriate tools
to implement it, could be useful for planning evolutions?
This question is a little more elusive than the other two, be-
cause we did not use the model to carry out the evolution.
Instead, we have to look back at the unaided evolution in
retrospect and ask whether we would have had an easier
time if we had used our model (assuming we had the
tools necessary to apply it effectively). In section 5.2, we
argued that the architectural expertise that could be cap-
tured in an evolution style likely would have been useful
in this evolution. If anything, we would expect this kind of
expertise to be even more useful in a larger, less artificial
evolution with more uncertainties.

Thus, despite the limitations inherent to this kind of case
study, there is some information it can give us about the
applicability of our approach. Based on the results of the
case study, it seems that our model of architecture evolution
may be useful in practice.

6 Related work

Today’s approaches to addressing problems of architecture
evolution fall into four categories. The first is support for soft-
ware evolution. Since the early days of software engineering
there has been concern for the maintainability of software,
leading to concepts such as criteria for code modularization
[53], indications of maintainability such as coupling and co-
hesion [4,69], code refactoring [50], and many others [30].
These techniques, which focus on the code structures of a
system, have led to numerous advances, such as language
support for modularization and encapsulation, analysis of
module compatibility and substitutability [14], and design
patterns that support maintainability [24].

While such advances have been critical to the progress of
software engineering, they generally do not treat large-scale
reorganization based on architectural abstractions. Working
primarily in the domain of code units, they do not capture the
essential, high-level, run-time structures that are necessary to
reason about the architecture of a complex software system.
Also, the techniques are typically general-purpose, focusing
on general properties of modularity such as coupling and
cohesion. In contrast, our work focuses on the reuse of spec-
ifications and analyses for domain-specific evolution at an
architectural level of abstraction.

The second related area of research and development is
tool support for versioning and project planning. Version
control systems such as CVS [8] allow different versions of
artifacts to be compared and reviewed. In these tools, the
primary managed artifact is source code rather than archi-
tectural models. Consequently these tools do not support
comparison or reasoning about different versions of the ar-
chitecture. More recent software architecture research has
investigated architectural versioning [1,34], but these tools
and techniques do not provide any reasoning framework
other than comparison. In particular, they are silent with re-
spect to what might constitute a correct or optimal evolution
path.

In the domain of project planning, traditional project man-
agement approaches and software development planning
approaches such as COCOMO [11] provide ways to plan
and analyze software development. Unfortunately, because
they focus primarily on the end state of a maintenance or
development effort, they do not provide ways to directly plan
and reason about sequences of developments, nor do they
have any way to state and enforce constraints on a system’s
architectural structure. Advice on how to organize architec-
ture evolution steps into waves and plateaus is given in [22].
The advice is pragmatic in nature, suggesting that introduc-
ing major infrastructure changes (waves) should be followed
by periods of relative stability so that new infrastructure
changes can be properly adjusted to (plateaus).
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The third related area is formal approaches to architec-
ture transformation. A number of researchers have proposed
formal models that can capture structural and behavioral
transformation [34,62,68]. For example, Wermelinger uses
category theory to describe how transformations can occur
in software architecture [68]. His approach separates com-
putations of a system from its configuration, allowing the
introduction of a “dynamic configuration step” that produces
a derivation from one architecture to the next. Architecture
in this sense is defined by the space of all possible configu-
rations that can result from a certain starting configuration.
Grunske [34] shows how to map architectural specifications
to hypergraphs and uses these to define architectural refac-
torings that can be applied automatically. These refactorings
are shown to preserve architectural behavior. Spitznagel [61]
focuses on the transformation of architectural connectors as
a way to augment the communication paths between compo-
nents.

While such formal approaches lay a foundation for archi-
tecture evolution operators, they differ from our approach
in that they are not amenable to specialization for specific
classes of transformation and systematic reuse. Moreover,
while they can provide some support for characterizing forms
of evolution correctness (like our path constraints), they do
not address issues of evolution quality (like our evaluation
functions).

In recent years, Tamzalit, Le Goaer, and others have inves-
tigated recurring patterns of architecture evolution, primarily
with respect to component-based architectures [41,42,51,63,
64]. They use the term evolution style to denote a pattern for
updating a component-based architecture. They provide a
formal approach based on a three-tiered conceptual frame-
work. Like us, they attempt to capture recurring and reusable
patterns of architecture evolution. However, they do not ex-
plicitly characterize or reason about the space of architecture
paths, or apply utility-oriented evaluation to selecting appro-
priate paths.

The fourth related area is trade-off analysis for archi-
tectural evolution. The work of Kazman et al. [38] applies
architectural analysis and trade-off techniques to incremen-
tally improve architectures through the application of tactics.
Their approach, however, has not been used for planning
architecture evolution, which looks at large-scale, system-
wide evolution over a long period of time. Ozkaya et al.
[52] propose to use techniques from option theory to de-
termine investments in introducing flexibility into a system.
This work is similar to ours in that it provides some basis
for analyzing architectural quality, but differs in that it does
not consider correct architectural transformations or reuse
through evolution styles.

Brown et al. [12] present an approach to iterative release
planning based on analysis and selection of development

paths, where each development path consists of a sequence
of releases. Their analysis is based on measurement of ar-
chitectural design dependencies as represented by design
structure matrices. Like us, they approach the problem of
software architecture evolution from the perspective of ana-
lyzing and selecting among candidate paths. However, they
do not support definition of evolution constraints, nor do
they attempt to capture domain-specific evolution expertise.

There is also work that addresses architecture evolution
in the context of a specific style, such as Darwin [43] and
C2 [65]. Like our approach, this work can take advantage
of domain-specific classes of systems, and thereby achieve
analytic leverage, as well as tool support for evolution. How-
ever, these approaches are limited to a particular architectural
style.

7 Future work

Our ongoing work is devoted to elaborating the definition
of evolution styles by enhancing the concepts of evolution
operators and evolution analyses. We would like to explore
other ways of specifying evolution operators declaratively,
perhaps in the style of graph grammars [68] or rewrite rules
[36]. Furthermore, we plan to develop and explore better
ways to analyze evolution paths, perhaps considering ap-
proaches from economic option theory. Another class of
analyses that we envision is based on the idea of technical
debt introduced by Cunningham [18]. Technical debt is of-
ten advanced as a concept but seldom treated formally. We
believe it is amenable to formal analysis at the architectural
level and that such analysis could be useful in planning evolu-
tions (e.g., analyzing trade-offs between taking on technical
debt, gaining a short-term advantage, and avoiding techni-
cal debt, obviating the need to “repay” it later). Our model
provides a sound foundation for a wide range of such path
analysis techniques.

In addition, we would like to relax some of the restric-
tions that our current approach imposes, particularly the
assumption that the target architecture is known in advance.
In reality, there may be multiple candidate target architec-
tures. Indeed the ultimate architecture may be unknowable
at the outset of the evolution, because future developments
could depend on contingencies that may or may not occur
during the evolution. We believe that our model could be
expanded to account for such uncertainties.

Another area that merits exploration is the use of planning
to generate candidate paths automatically. Since an evolution
path is simply a composition of well-defined evolution opera-
tors, and since our path constraints provide an automatically
checkable notion of path correctness, it may be possible to
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Fig. 8 The Ævol workbench.

use a planning approach similar to those discussed in [29] to
generate alternative paths automatically.

A final promising topic for future research is linking ar-
chitecture evolution to the code level. Of course, there exists
a great deal of research on linking software architecture to
code in general (e.g., [46,58]), but architecture evolution
presents special challenges and opportunities. A worthy goal
would be to tie architectural operators to code transforma-
tions.

7.1 Tool support

To support our research, we have developed two partial pro-
totype implementations based on the software architecture
evolution concepts we have presented here. We described
them in two previous conference papers [5,28]. The first tool,
Ævol [28], was a plug-in framework that we developed in
2009 to support basic evolution planning and analysis. Archi-
tects can define an evolution graph in Ævol and link its nodes
to system architecture descriptions that are represented in
AcmeStudio [57], an editor for Acme.

Figure 8 is a screenshot of Ævol displaying an evolution
graph. Nodes are linked to architectural instances, which can
be opened in AcmeStudio. Associated with each node and
transition in the graph is a set of properties. The selected
element’s properties are shown in the properties view at
the bottom of the figure. This view displays the instances
that the node is linked to, in addition to properties required
for analysis (in the example in the figure, simply cost and
benefit). Paths are represented as semitransparent, thick lines
in the diagram. Once the properties on each path are filled
in, it is possible to run an analysis to compute overall utility
of a path and then to compare utilities of different paths.

Although Ævol provided a vehicle to explore several of
the key concepts we have discussed in this paper, including
definition of candidate evolution paths and evaluation of
path constraints, it lacked other key features such as support
for multiple architectural views and a robust mechanism for
defining evolution operators.

In more recent work, the first author carried out a case
study at NASA’s Jet Propulsion Laboratory, in which he
extended a commercial, off-the-shelf UML modeling tool,
MagicDraw [47], to model an architecture evolution. This
work is described in a 2012 conference paper [5]. This proto-
type supports a number of new features, such as describing
an architecture evolution in terms of architectural transforma-
tions between states and documenting multiple architectural
views. However, it is missing support for some of the key
concepts of our approach, including path constraints and
evaluation functions.

Neither of these implementations has reached an adequate
stage of maturity to support an architect in carrying out a
real evolution. Thus, tool development is a priority for us
as we continue our research. We are currently engaged in a
follow-on project to extend the MagicDraw-based tool to add
support for some of the missing features and to improve the
usability of the tool so that it could be used by practitioners.

8 Conclusion

In this paper we outlined foundations for reasoning about
and supporting architectural evolution. The key idea is to fo-
cus on evolution paths, with the goal of choosing an optimal
path to achieve business objectives of an organization. Opti-
mality is achieved by adopting a utility-theoretic approach,
allowing us to tailor the analysis to the context. Additionally,
we characterize recurring patterns as a set of related paths,
which we term evolution styles. Such styles can be formally
characterized, allowing for support by tools.

We evaluated this approach for software architecture evo-
lution modeling by two very different methods. First, we
formally evaluated the computational complexity of model-
checking evolution path constraints. This theoretical study
showed that our approach to verifying path validity is com-
putationally feasible (as long as the variable-nesting depth
of path constraints is suitably limited). Second, we demon-
strated the applicability of our approach on a small case
study that exemplifies the kinds of concerns that arise in real-
world evolutions. These two kinds of evaluation complement
each other to provide evidence for the practicality of our ap-
proach. However, future work would be useful to understand
more fully the domains and situations for which this kind of
architecture evolution modeling technique is most useful.
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