
Architecture-based Simulation for Security and Performance

Bradley Schmerl, Shawn Butler, and David Garlan
School of Computer Science, Carnegie Mellon University, Pittsburgh, USA

{bradley.schmerl,shawn.butler,david.garlan}@cs.cmu.edu

Abstract

Architectural analysis is key to producing high

quality architectures. In this demonstration we present
two extensions to AcmeStudio, and domain-neutral
Architecture Development Environment, to add Per-
formance and Security Simulation. Using AcmeStudio
as the integration platform for these analyses allows
comparisons and trade-offs between these different
quality attributes.

1. Introduction

Developing a software architectural model now recog-
nized as a crucial step in producing high quality soft-
ware. In addition to allowing designers to understand a
design in terms of its high-level abstractions such as
computational components and their interactions, an
architectural model is often suitable for analyses that
can prevent errors from propagating to later phases of
development. Such analyses include performance
analysis [5], simulation [3], and protocol analysis [1].

One of the major difficulties in providing tool sup-
port for architectural design and analysis is the need to
tailor those capabilities to the application domain.
While some analyses may be generally applicable
across many domains, typically the more significant
forms of analysis take advantage of the particular kind
of system built within an organization. For example,
representational and analytic needs of a web services
domain, which may be concerned with performance
and throughput, will be quite different than those for
an embedded controller domain, which may be con-
cerned with schedulability and resource allocation.

One possible solution is to create many specialized
environments – one for each domain. Indeed, during
the first decade of interest in architecture description
languages and tools we saw the introduction of dozens
of notations and analytical methods, each specialized
for some particular family of systems. For example, C2
[6] was restricted to layered event-based systems, and

MetaH [7] focused on architectures for embedded avi-
onics control systems.

Unfortunately, constructing a new tool from scratch
for each domain and form of analysis incurs a prohibi-
tive cost. On the other hand, it is not desirable to re-
quire architects to use tools that are not suitable to their
domains. Furthermore, integrating various analytic
tools to take advantage of their respective benefits is
also extremely difficult.

In previous work, we have developed a domain-
neutral architecture development environment, called
AcmeStudio, that can be tailored to specific domains at
relatively low cost. We demonstrated this tool at ICSE
2004 [4], and showed how it could be tailored to the
domains of automotive design and space systems engi-
neering. The type of analysis that was provided for
these domains used the built-in first-order predicate
language of Acme to analyze the general topologies of
those architectures.

While the kinds of analysis built in to AcmeStudio
are useful, more sophisticated analysis is needed to
analyze such quality attributes as security and per-
formance. In this research demonstration we present a
tool for analyzing the security and performance of ar-
chitectural models and for making trade-offs across
these two dimensions. The tool is an extension of
AcmeStudio, leveraging its existing features for defin-
ing architectural models, providing specific architec-
tural styles to specify the properties and topology rele-
vant to the kinds of analysis, and using AcmeStudio’s
plug-in framework to provide security and perform-
ance analysis using Monte Carlo simulation to evaluate
these properties under certain assumptions about their
stochastic behavior.

2. Performance Simulation

Performance simulation allows an architect to conduct
simulations based on performance properties of indi-
vidual components and connections in the architecture,
and the paths of interaction between them. In addition
to performance properties, such as the average process-

Submitted for publication.

ing time for components and the average transmission
rate on connectors, the architect may also specify:
a. Whether a component is multithreaded, and how

many threads it is allowed to produce. This allows
simultaneous processing of requests.

b. Whether a component has queuing enabled, and
the size of the queue. For requests that cannot be
processed because the component it busy, it is
possible to specify how many requests may be
queued before requests are discarded.

The above properties are standard properties re-
quired to conduct performance analysis; we used simi-
lar properties in a queuing-theory based approach to
performance analysis in [5]. Furthermore, the architect
is able to specify the probability of component error
and how to recover from these errors. For example, an
architect may specify the probability that a component
or thread will crash, and whether to connect to another
component/thread, report an error and stop, or report
an error and continue.

Once component and connector properties are
specified, the architect may specify paths through the
architecture that can be taken to exercise the compo-
nents and connectors. Out of these, scenarios are con-
structed that specify the simulation time, how many
users are connected, the rate at which these users gen-

erate requests that will follow the
paths in the architecture, the prob-
ability that particular paths will be
taken, and the network load. The
Performance Simulator then con-
structs a thread (or multiple
threads) for each component and
user, and then performs a Monte
Carlo style simulation, using the
probabilities of errors, calculating
random service times based on the
architect’s inputs. The final result is
a report indicating how many re-
quests were generated, and how
many of those requests were proc-
essed or failed.

Figure 1 illustrates how the Per-
formance Simulator is implemented
on top of AcmeStudio. To specify
the performance properties re-
quired, the system must satisfy the
Acme PerformanceSimulation
style, and each component must
satisfy the PerformanceComp com-
ponent type; this type is used in two
ways in AcmeStudio: (1) the type

specifies the properties that need to
be defined for performance simula-

tion to work; and (2) the particular types trigger
AcmeStudio to look for specific user interface embel-
lishments that can be used to enter properties for that
type. (In Figure 1, the Properties view has been ex-
tended by the Performance Simulator to add a Per-
formance tab, allowing users to enter in response rates,
threading and queuing characteristics, and error han-
dling properties for the Server.)

In addition to integration into the AcmeStudio UI,
the Performance Simulator adds its own view to
AcmeStudio for defining the paths through the archi-
tecture that should be taken by the simulation (a path is
shown as the thick grey line of Figure 1), and actions
for running the simulation. An example report showing
the result of the simulation of a scenario with 5 users
and a generation rate of 3 requests per second is shown
at the top of Figure 1. It indicates that all transactions
on the shown path were able to be completed; the ar-
chitect has specified satisfactory requirements for the
performance of each of the components in the path.

3. Security Simulation

The objective of the Security Simulator is to enable an
architect to perform simulations based on threat sce-

Figure 1. Performance property specifications and results for a simple architecture.

Submitted for publication.

narios that affect the architecture. The main concepts
in the security analysis are threat types, assets, and
countermeasures; the simulation is based on the ap-
proach outlined in [2].

Threat types specify the possible threats that can af-
fect the system, e.g., a virus , denial of service. Be-
cause different systems may be subject to different
types of threats, the architect must specify each of the
threat types that may be posed to the system.

Assets are components that may be damaged by par-
ticular threats. Assets are assigned a monetary value,
and the particular threat types that may affect the asset
are specified. For example, a database component may
not be susceptible to password sniffing attacks, but
may be vulnerable to data corruption as the result of a
virus.

Three different types of countermeasures can be de-
fined: Preventative components affect the frequency at
which threats occur; Monitoring components and re-
covery components reduce the effect of a threat. The
architect specifies each of the countermeasure’s target
threat types, and the effectiveness or reduction that the
countermeasure has on the target threat.

Once the particular properties are specified, the ar-
chitect must then define paths (consisting of compo-
nents and connectors) through the architecture that
particular threats may take. Such a path is called a
Threat Transaction in the Security Simulator. The
threat type that affects that path and the frequency (as a
stochastic function) of the threat type are specified.

After the threat transaction is created, the assets in the
path can be given outcome values. The outcome can be
in terms of dollars, loss of life, loss of productivity,
etc. A weight is assigned to each outcome factor.

Threat scenarios are composed of one or more
transactions. A scenario is used as the main entry-point
for the simulation, and specifies the amount of time
that will be used in performing the simulation. The
simulation takes into account the threat entering the
transaction path, the frequency of the threat type and
the countermeasures in the path. Monte Carlo simula-
tion is performed to determine the most probable dam-
age value to each of the assets in the threat transaction.
The value obtained is multiplied by the frequency of
threat transaction and the simulation time. This gives
the total damage for the particular threat outcome fac-
tor. The end result of the simulation is a report that
details the threat scenario, threat transaction and total
damage to the assets in the threat transaction path.

In a manner similar to the Performance Simulator,
the Security Simulator adds UI components to specify
the security properties, keyed on the type of the par-
ticular component (Asset, Preventative, etc.), and the
ability to define paths and scenarios for the simulation.

Consider the simple architecture illustrated in
Figure 1, where we additionally define the database as
an asset (giving the asset value of $100K), run a secu-
rity simulation on the same path for a simulated virus
attack, and define the scenario so that (1) the simula-
tion time is two virtual months; and (2) a virus attack

happens on average 5 times per day, with a
maximum of 20 attacks per day. The report
generated indicates a $1,112,409 loss of reve-
nue for this scenario.

Figure 2 shows the Security Simulator where
we have added a firewall between the client and
the server, and changed the path to run through
the firewall. If the firewall is 95% effective
against virus threats then running the same sce-
nario indicates that the damage has been re-
duced to $56, 677.

Such a simulation allows the architect to
evaluate different scenarios, and to evaluate the
effectiveness of different countermeasures
against different attacks.

4. Quality Trade-off

Generally, design decisions affecting one qual-
ity attribute will interact with decisions affect-
ing other attributes. For example, increasing the
security of a design may decrease the perform-
ance (e.g., a firewall will slow the performance Figure 2. A simple client-server architecture showing the cost of a virus attack

on a database protected by a firewall that is 95% effective against it.

Submitted for publication.

of the system). Therefore, the simulation results enable
architects to gain insights into performance and secu-
rity tradeoffs in their architectures, and evaluate the
merits of including different countermeasures.

Table 1. Comparing tradeoffs between 3 different firewalls.

Design d Simulation Results x

FW
FW Per-

form
(sec)

Viruses
(% stopped)

User Event
Latency (sec)

Exposure
($K)

A .3 98 1.2 50
B .22 90 0.9 63
C .17 87 0.4 75

The architect can use Acme Simulator to compare

the performance and security risk exposure values for
various architectures. For example, suppose the archi-
tect needs to choose among different firewalls, each
with different effectiveness and performance charac-
teristics. The simulations for performance and security
of each design can be run, and a table like the one in
Table 1 can be constructed. From the table, the design
with Firewall (FW) A appears to have the slowest per-
formance, but the least amount of financial exposure.
In contrast, the design that includes Firewall C has the
fastest performance, but greatest exposure. Currently,
comparisons need to be constructed manually; in future
work, the tool will support this comparison directly.

Although this is a particularly simple example, with
more complex designs understanding the trade-offs
between performance and countermeasures to a variety
of threats is highly non-trivial.

5. Implementation

Acme Simulator is written in the AcmeStudio frame-
work. AcmeStudio is written on the Eclipse frame-
work, which allows flexible extensions. Therefore,
AcmeStudio acts as an integration framework for add-
ing additional domain-specific architectural analyses.
To support additional analysis, three things must be
provided to AcmeStudio:
a. An architectural style on which to base the analy-

sis. In the case of the security and performance
analyses, the SecuritySimulation style specifies
that that an Asset should provide a value property
and a set of threat types to which it is vulnerable.

b. The code that performs the simulation. In the case
of the performance simulation, each component,
and the associated performance properties, are
mapped into a thread that models the performance
of that particular property.

c. User interface embellishments that allow for tight
user interface integration with AcmeStudio. For

example, the Security tab in the Properties view at
the bottom of Figure 2 is provided by the Security
Simulator plugin.

6. Conclusions

We propose to demonstrate a tool illustrating the po-
tential of integrated simulation-based tools, centered
on an architectural design environment that permits an
architect to make engineering trade-offs when architec-
tural decisions affect multiple quality dimensions. The
use of an architecture based tool provides benefit
through (1) a consistent interface for creating and
viewing the architectural model and the impact of ar-
chitectural decisions on dimensions such as perform-
ance and security; (2) a flexible integration framework
for Monte Carlo simulations as plug-in analyses that
become available when certain styles are used; and (3)
the ability to support trade-offs between different
analyses, possibly written by different parties.

AcmeStudio is available for free from
http://acmestudio.org. The Acme Simulator extensions
are also available from this site.

Acknowledgements
This work was supported by a grant from CMU’s Cy-
lab. We also appreciate the work of various student
teams in implementing the simulations described here.

References
[1] Allen, R., Garlan, D., and Ivers, J. “Formal Modeling

an Analysis of the HLA Component Integration Stan-
dard.” Proc. 6th International Symposium on the Foun-
dations of Software Engineering (FSE-6), 1998.

[2] Butler, S. Security Attribute Evaluation Method: A
Cost-Benefit Approach. Proc. ICSE 2002, pp. 232-240.

[3] Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J.,
Bryan, D., and Mann, W. “Specification an Analysis of
System Architecture Using Rapide.” IEEE Transac-
tions on Software Engineering, 21(4):336-355, 1995.

[4] Schmerl, B., and Garlan, D. “AcmeStudio: Supporting
Style-Centered Architecture Development (Research
Demonstration).” Proc. 26th ICSE Edinburgh, 2004.

[5] Spitznagel, B., and Garlan, D. “Architecture-Based
Performance Analysis.” Proc. the 1998 Conference on
Software Engineering and Knowledge Engineering
(SEKE’98), 1998.

[6] Taylor, R.N., Medvidovic, N., Anderson, K.M.,
Whitehead, E.J., Robbins, J.E., Nies, K.A., Oriezy, P.,
and Dubrow, D.I.. “A Component- and Message-Based
Architectural Style for GUI Software.” IEEE Transac-
tions on Software Engineering, 22(6):390-406, 1996.

[7] Vestel, S. “MetaH Programmer’s Manual, Version
1.09.” Technical Report, Honeywell Technology Cen-
ter, 1996.

Submitted for publication.

Appendix A: Demonstration

The demonstration that we plan to do at ICSE will be
divided into three phases, that follows the outline de-
scribed in the body of the paper.

Phase 1: Performance Simulation

During this phase we will demonstrate the performance
simulation tool, starting with an architecture in an ar-
chitectural style that does not have performance attrib-
utes defined. We will then:

1. Show how to specify the performance attrib-
utes for the architecture. This is done by as-
signing the PerformanceSimulation architec-
tural style to the family, and then choosing the
components and connects to be involved the
performance simulation, by assigning the ap-
propriate types. Assigning the types will make
available the performance simulation UI em-
bellishments, and we will show how to use
these to specify simple response and transmis-
sion times for the component and connectors.

2. Define the scenario for the simulation. This is
done by first defining paths through the sys-
tem that the scenario will exercise. We will
then define the scenario which specifies the
paths to exercise, the number of users in the
simulation, how frequently the generate trans-
actions, and the total simulation time.

3. Run the simulation and view the results. Once
the scenario is simulated, we will show the
reporting results. In this simple case, many of
the requests will be lost because the system
will be overloaded. We will show how to tell
this from the reports.

4. Improve the performance attributes. We will
then show how adding multi-threading and
queuing to the components will improve the
performance of the system.

After this phase, it will be clear to the audience how to
use the simulation to determine the performance prop-
erties of the architecture that will need to be satisfied
by an implementation to ensure correct performance of
the implemented system.

Phase 2: Security Simulation

During this phase, we will demonstrate the security
simulation tool, continuing with the architecture that

we completed in Phase 1. This phase will contain the
following steps:

1. Specify the values for the assets and the
paths through the system. The paths will
be based on the paths defined in the per-
formance simulator.

2. Execute the security simulation. On this
system, because it does not have any
countermeasures yet defined, the security
simulation will show that a threat can
cause extreme damage to the system.

3. Make the system more secure. By adding
a countermeasure to the architecture in
the path taken by the threat, we will show
how to make the system more secure, and
how this reduces the damage that a threat
along the path will have. The architecture
that will result will be similar to Figure 2.

4. Show that security degrades perform-
ance. We will now rerun the performance
simulation, after assigning performance
values to the countermeasure, and will
show that now the performance of the
system is impacted negatively by the ad-
dition of the security measures.

After this phase, it will be clear to the audience how to
specify security attributes, how to run the security
simulation, and how it is possible to now reason about
the impact of security on performance, and vice versa.

Phase 3: Performance/Security Trade-offs

In this phase, we will introduce different versions of
the architecture used in the previous phases that con-
tain different security countermeasures to ward off
various threats. We will run the security and perform-
ance simulations on these architectures to construct a
table for comparing and choosing the most suitable
version of the architecture that finds a balance between
security and performance for the stakeholders of the
architecture.

Submitted for publication.

