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Abstract 

A challenging problem for software engineering prac-
titioners is moving from high-level system architectures 
produced by system engineers to deployable software 
produced by software engineers. In this paper we de-
scribe our experience working with NASA engineers to 
develop an approach and toolset for automating the gen-
eration of space systems software from architectural 
specifications. Our experience shows that it is possible to 
leverage the space systems domain, formal architectural 
specifications, and component technology to provide re-
targetable code generators for this class of software. 

1. Introduction 

A long-term goal of software engineering has been to 
establish systematic techniques for developing systems 
from high-level specifications or models. This line of re-
search has led to a long stream of results in areas of for-
mal refinement, automatic code generation, and, perhaps 
most recently, model-driven architecture (MDA) [8]. The 
attraction of MDA stems from the observation that con-
siderable leverage can be obtained by separating software 
design into two levels. At the top level one describes a 
system in terms of a “platform-independent” model 
(PIM). Then one reifies that model into a lower-level 
“platform-specific” model (PSM) that binds abstract 
components and connectors to concrete mechanisms and 
code. This separation allows one to focus initially on ab-
stract structure and functionality of a system, binding im-
plementation issues later, and potentially allowing the 
same abstract model to be targeted to different platforms. 

While a great idea in principle, it is currently unclear 
how one should instantiate MDA in practice. In particular, 
what exactly is meant by “platform independence?” 
Which details should go in a PIM and which in the PSM? 
Can one apply a component-based approach to a PIM? If 
so, how should one describe components at that level so 
they can be “refined” into working code in more detailed 
models? What is the nature of code generation in such a 
scheme? How automated can it be? Where does the con-

crete code come from, and to what extent can one really 
target the same PIM to different PSMs? 

The answers to such questions are likely to be domain-
specific. At the very least, the nature of the reification 
process is likely to vary considerably depending on 
whether we are talking about a large scale-distributed 
information system (with platforms such as CORBA and 
J2EE), as compared to a resource-constrained embedded 
system (with real-time OS platforms concerned with 
scheduling, memory footprint, power consumption, etc.) 

In this paper we describe our experience of developing 
an approach and supporting tool set to support MDA-like 
approach to NASA Space Systems Software. The key 
elements of the approach are (a) the use of formal archi-
tectural modeling to capture the abstract system descrip-
tion; (b) the clear separation of essential component func-
tionality (described using pure functions) from incidental 
(or platform-specific) code; and (c) a retargetable code 
generator and reuse repository to translate architectural 
designs to one of many possible deployment platforms. 

2. The Challenge for Space Systems 

Space systems are a natural candidate for an MDA-like 
approach. In current practice at NASA, systems engineers 
typically develop the high-level design for a space mis-
sion based on knowledge of the mission goals, the target 
environment, and system resources. This design is speci-
fied in part as a high-level architecture in terms of com-
ponents such as sensors actuators, estimators, controllers, 
etc., and their pathways of interaction (including shared 
variables). Later that architecture is translated into work-
ing code by software engineers who take into considera-
tion details such as scheduling priorities, communication 
mechanisms, storage policies, etc. 

Unfortunately, bridging the gap between the system 
design and working code is manual, brittle, and error 
prone. Programmers may not fully understand the inten-
tions of system designers, and there is no verifiable rela-
tionship between system design and code.  

This situation is compounded by the fact that for most 
space missions multiple versions of the software must be 
created. Some are full-featured, used during development, 
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simulation, and testing on-ground; other leaner versions 
are needed for resource-constrained flight platforms. 

An MDA-like approach could in principle have a 
strong impact on this kind of development by providing a 
more rigorous connection between abstract designs and 
deployed code, by helping to automate the production of 
code from those designs, and by reducing the effort to 
target the same abstract system design to multiple de-
ployments. Such a solution, however, would need to 

1. support existing systems engineering models and 
methods, including the ability for systems engi-
neers to specify detailed algorithms for such 
things as estimation, mission planning, and ac-
tuation; 

2. provide a formal enough representation of the 
system design to support analyses and check 
conformance to design constraints; 

3. allow software engineers to produce code pref-
erably automatically) targeted to radically differ-
ent deployments; 

Note that the desired separation of concerns for NASA 
space systems has a very different flavor from those in 
many other domains. For most systems the distinction 
between a PIM and a PSM is that the former excludes 
details about the physical deployment environment (e.g., 
the location and number of servers). For space systems, 
however, the nature of the physical platform (e.g., sen-
sors, actuators) and its detailed characteristics (failure 
rates, jitter, power consumption, etc.) are central to the 
systems design process and the resulting high-level de-
sign, and must appear in the PIM. The control algorithms 
chosen for a particular system are also considered to be a 
part of the PIM. Lower-level variability for a particular 
deployment would include things like quality of monitor-
ing and debugging code, target programming language, 
and storage policies. 

3. Related Work 

The problem of moving from abstract designs to code 
has a long history of research and development. Most 
researchers have examined this from a theoretical per-
spective, providing theories of correctness-preserving 
refinement in languages like CSP [6], Z [12], algebraic 
specifications [5], and many others. However, these have 
had limited impact on industrial practice, since they tend 
to require levels of formal training and large investments 
in up-front system specification. 

A number of researchers have looked at the more con-
strained problem of moving from architectural models to 
code. [7] proposed a form of “correct” architectural re-
finement, based on the use of transformational patterns. 
This work focused on moving from high-level architec-
tures to lower-level ones, as opposed to code. Aldrich has 
proposed the ArchJava language [1] as a staging point for 

transforming architectures to code. This is a promising 
avenue, but requires the use of a specialized programming 
language extension to work. Moreover, it does not di-
rectly address the problem of targeting multiple code de-
ployments. [11] addresses code generation from architec-
tures, but also does not provide alternative deployments, 
and is limited to very specific forms of connection. 

The closest branch of related work is the recent flurry 
of activity in the area of “Model-Driven Architecture” 
(MDA), proposed by the OMG as a method and set of 
notations for moving between high-level and low-level 
designs [8]. As noted earlier, MDA prescribes a two-level 
process, in which deployment details are added at the 
low-level so that the same abstract design can be used in 
different concrete settings.  

While attractive in principle, as noted, there remain 
many details about the MDA approach that remain unan-
swered. This paper can be viewed as shedding light on 
some of those answers for the specific domain of space 
systems software. This domain has some distinct charac-
teristics that make it both challenging and tractable. One 
of the distinguishing aspects is the need to have precise 
representations of component functions at an abstract 
level. Another is the need to model the physical setting 
(actuators, sensors, environmental and system state) at the 
high level. This is in contrast to most MDA approaches 
which leave such details to the lower-level model (PSM). 

The work reported here also builds on previous work 
by the authors, unifying two separate streams of research 
to produce a new synthetic approach. The first stream is 
formal representation of software architecture and tools to 
analyze those descriptions [2][4]. The second is a pro-
posal to define control systems from components speci-
fied as pure functions [3]. In this work we show how to 
use architectural descriptions combined with pure func-
tions to create a tool that generates deployable code.  

Our work is also related to other research into auto-
mated code generation from specifications [13]. Our work 
is mainly differentiated by the fact that it is highly tailored 
to a specific domain.  This allows us to exploit the spe-
cific constraints of space systems code and architecture to 
provide tailored analysis and code generation capabilities.  

4. Current Practice 

At the start of our collaboration, NASA was well aware of 
the problems outlined above, and had developed a number 
of processes and technologies to ameliorate some of the 
problems: (a) a well-defined system design process and 
repository to store the results; (b) an architectural style 
well-matched to space systems development; (c) a large 
body of reusable code for creating deployments of a sys-
tem. We consider each, together with comments about 
their limitations. 



Design Process: The success of most NASA missions 
depends critically on up-front design by system engineers 
who consider (a) the goals of the mission (b) scenarios of 
use (c) resource concerns (d) failure modes to produce a 
systems design. This process, called state effects analysis, 
determines the relevant state variables for the system and 
their dependencies. It also constrains the selection of al-
gorithms used by the various system components that 
examine and change that state; candidate algorithms must 
consider all of the cues determined to be relevant by the 
state effects analysis. Results of this process are stored in 
a state database, which records both the resulting design 
and the rationale behind the design decisions.  

While state effects analysis and the state database help 
space systems domain experts to design effective systems, 
balancing complex requirements for functionality, re-
source usage, and failure handling, there are a number of 
limitations. First, the design decisions are largely infor-
mal. For example, the database may note a dependency 
between two states, but that dependency is not repre-
sented in a way that can be automatically checked against 
a resulting design. Second, and more importantly, compo-
nents in the design must be represented using the concrete 
notations of a programming language: C++ in this case. 
While programming languages allow engineers to be con-
crete about the algorithms to be used, they tend to over-
constrain the implementations. In particular, they force 
premature decisions about things such as order of process-
ing of input variables, synchronization mechanisms, 
communication polices, and data representation decisions. 

Software Architecture: Over the past few years engi-
neers at NASA’s Jet Propulsion Lab (JPL) had developed 
a new architectural style for space systems, called Mis-
sion Data Systems (MDS) [9]. MDS adopts a product-line 
approach to space software, by providing a generic archi-
tectural framework for space systems design, providing a 
vocabulary of design (sensors, actuators, state variables, 
etc.) together with rules for how these elements can be 
combined.1 This is coupled with a reusable code base 
(described below) for instantiating the framework for spe-
cific missions. 
While the creation of an architectural style for space sys-
tems is an important step towards regularizing develop-
ment, and providing opportunities for analysis and reuse, 
at the start of our project this style was largely described 
informally. As we illustrate later, rules for composition 
were expressed in English, and there was no way to either 
represent a design in the MDS style formally, or to check 
for conformance to that style. 

                                                             
1 MDS also defines a higher control layer for handling 

goal-directed behavior and plans, which provides com-
mands and inputs to the system. Treatment of this layer is 
outside the scope of this paper. 

Reuse: Taking advantage of commonalities in space sys-
tems (as characterized by the MDS style), over the past 
few years NASA engineers had developed a large body of 
reusable code for creating specific MDS deployments. 
This code covers areas such as data structures for state 
representation, communications infrastructure, event log-
ging, timing services, units of measurement, and visuali-
zation. In fact, in its current state there are over 250K 
lines of (potentially) reusable framework code. 

While providing excellent opportunities for reuse, the 
existing body of framework code had several limitations. 
First was the sheer complexity of it. For a given target 
deployment, knowing which packages to use and in which 
combinations, was not a trivial matter. Second, since 
framework code had to be combined with mission-
specific code manually, there were many opportunities for 
error, and very little that one could do to check that the 
resulting system continued to respect the abstract design. 
Third, as noted, components written in C++ could poten-
tially conflict with the use of particular framework code, 
by prematurely binding implementation decisions. 

5. Our Approach 

Working with engineers at NASA JPL, we developed 
an approach, and a tool called MDS Studio, that is cen-
tered on three significant changes to their current practice:  

1. Use a formal architectural modeling language to rep-
resent a system design and its constraints. Linked to 
existing NASA system design databases, a formal ar-
chitectural description provides an explicit represen-
tation of a system configuration, and permits auto-
mated analyses such as conformance to architectural 
style, as well as system-specific constraints. (For ex-
ample, if a system engineer determines that in the 
system under design a state A depends on state B, a 
rule is automatically created in the architectural mod-
eling tool to check that the estimator for state variable 
A is also connected to state variable B.)  

2. Define high-level components as pure functions 
(stateless mappings of inputs to outputs), thereby ab-
stracting from details of timing, synchronization, 
communication, and data representation, while still 
retaining the ability to describe critical algorithms for 
state estimation and control. 

3. Provide a retargetable compiler that can produce mul-
tiple versions of deployable code from the abstract 
architectural design. The compiler leverages the sub-
stantial body of reusable framework code to map the 
“essential” computations defined in the abstract con-
figuration to specific implementations, but does so in 
a way that preserves the design constraints. 

This approach adopts the following process: 



1. Systems Engineers conduct a state effects analysis 
that identifies the types of physical states in the sys-
tem, and the relationships between these states. For 
example, a solar radiation state and a solar panel 
power level state will be of separate types; there may 
be multiple instances of solar panel power level states 
(as a spacecraft may have multiple solar panels). In 
the state effects analysis, the fact that the solar radia-
tion state has an effect on the solar panel power level 
states is identified and recorded 

2. For each such state type, a C++ state variable type 
and associated pure functions are created.  For exam-
ple, a switch state will have a function that acts as a 
controller. Engineers may create alternate pure func-
tion implementations for use in different situations. 

3. The functions and state variable types are uploaded to 
a state database and annotated with metadata describ-
ing the signatures of the functions. 

4. The metadata is used to generate an architectural 
style with component types that correspond to the 
state variable types and the pure functions. The archi-
tectural style contains enough information to derive 
the pure function signatures from the associated com-
ponent types. 

5. Software engineers use these component types to 
assemble an architectural model (described below). 

6. The architectural model is passed to a code generator 
that (a) generates incidental code such as connections 
and schedulers, and (b) merges this code with the es-
sential code to form a deployment.    

In the remainder of the section we elaborate on these 
three innovations. 

5.1. Architectural Modeling and Analysis 

The architectural modeling tool allows the user to cre-
ate instances of components, both pure functions and state 
variables. The architectural model primarily encapsulates 
the knowledge of the instances of components, and the 
communication patterns between components. The 
architectural model is built according to a set of 
architectural styles. An architectural style captures the 
component, connector, and interface types that may be 
used to compose an architectural model, and rules about 

pose an architectural model, and rules about how these 
types may be composed.  

The base architectural style used for MDS consists of 
the following component types: 

• StateVariableT: Contains the record of the state over 
time, and goals associated with the state. 

• EstimatorT: Is responsible for examining all of the 
available cues (other states, sensors, or goals) and 
updating state variables periodically to provide a cur-
rent best estimate of the states value based on avail-
able evidence (command history, other states, sensor 
values, etc.). 

• ControllerT: If there are goals associated with a state 
variable, this component is responsible for delegating 
the goals to other states, or for issuing commands to 
adaptors to achieve the state. 

• ActuatorT: Represents the interface between a con-
troller and the hardware. Commands are issued to ac-
tuators to get the spacecraft to do something.  

• SensorT: Represents an interface between an estima-
tor and hardware, for use by estimators. 

• ValueHistoryT: Store a discrete set of data. For ex-
ample, they may be used to store the history of com-
mands sent to an actuator by a controller. 

In addition to the above component types, there are 
connector types for communicating between components 
(e.g., Command Submit, Measurement Request, State Up-
date), and port and role types for component and connec-
tor interfaces. Figure 1 illustrates a small segment of an 
architecture written in this style. This segment depicts 
interaction between a Controller, an Actuator, and an 
Estimator. In this interaction, the Controller submits a 
command to an Actuator via its Command Submit connec-
tor. The Actuator then notifies the Estimator that it re-
ceived a command and writes that command to a Value 
History. Subsequently, the Estimator queries the Value 
History to find out what the command was.  

In addition to a set of types, the MDS style also defines 
rules about the composition of a MDS system. These rules 
were expressed in English by JPL engineers, but needed 
to be translated into formal architectural rules that can be 
checked automatically with architectural tools. In devel-
oping the architectural style, we were given ten informal 
rules, which were translated into 39 architectural rules. 
Examples of the MDS rules: 

1. If an Estimator can be notified of a command by an 
Actuator, then that Estimator must be able to read the 
Value History that the Actuator updates.  

2. An Actuator must have exactly one Controller con-
nected to it. 

3. An Actuator must have the same number of Com-
mand Submit, Command Notification, and Value His-
tory Update ports (one for each type of command that 
it receives). 

 
Figure 1. A Controller/Actuator/Estimator pattern in MDS 

 



The first MDS rule above can be captured in Acme 
with the following predicate:2 

invariant (forall e :! EstimatorT in self.components | 
  (forall cnp :! CmdNotProvT in e.ports | 
    (forall a :! ActuatorT in self.components | 
      (forall cnr :! CmdNotReqrT in a.ports | 
        (connected (cnp, cnr) ->  
         (exists vh :! ValueHistoryT in self.components | 
            reading (e, vh) and updating (a, vh))))))3; 
 

In addition to this base MDS style, our approach takes 
advantage of the use of specializations of the MDS style 
that are tailored to both the particular mission and code 
generation. Specializations of this style must satisfy all of 
the rules of the original MDS style, but may add rules and 
structure. For example, if the mission requires a wheel 
state variable, then there will likely be specializations of 
the state variable type tailored to this wheel, in addition to 
specializations of wheel estimators, wheel controllers, etc. 
For example, a WheelVelEstT would be a subtype of Es-
timatorT, and might have additional required ports or 
properties. Furthermore, if state analysis specifies a de-
pendency between a wheel state variable and a power 
state variable, then the corresponding mission style would 
check that the estimator associated with one state variable 
queries the state of the other state variable. A rule of this 
type would look like the following: 

invariant (forall e :! WheelVelEstT in self.components | 
  (exists s :! PowerStateVar in self.components | 
    connected (e, s)); 

5.2. Component Specification 

Whereas in MDS as implemented by NASA JPL the 
components of the system (controllers, estimators, and 
hardware adaptors) are C++ objects, in MDS Studio the 
components are implemented as pure stateless functions. 
This means that everything that is needed for a function is 
provided through the interface to the function, and the 
result is returned by the function, i.e., the function does 
not read or change any global variables. 

Consider a Controller function. A controller must up-
date the state of any pending or current goals, as needed, 
and issue commands to actuators to achieve goals. The 
generic header for a controller pure function would look 
like: 

ControllerFunc (Goals, StateVar, Config)  messages 

The algorithm for the controller would calculate what 
it needs to do to achieve the goals, based on the value of 
the state variable, as well as when the goals need to be 

                                                             
2 In this rule, self refers to the system, italicized words refer to prede-

fined Acme functions, and the clause <name> :! <type> means that 
<name> declares the type <type> 

3 reading and updating are defined elsewhere in the style. 

achieved. It may use the configuration parameter to help 
in its calculations. The configuration parameter will con-
tain information that is needed for the controller to accu-
rately calculate what it needs to do, such as the diameter 
of the wheel being controlled. If the controller needs to 
actuate the hardware, it returns the required messages that 
need to be sent to the actuator. Where it receives the in-
formation from, and the particular actuators to which its 
messages are sent, are completely independent of the con-
troller code.  

The suggested benefits of using pure stateless func-
tions include making the components easier to write, test, 
and integrate in a code generation system. For example, 
while it is possible to write an OO component with a race 
condition depending on the order of invocation of the 
methods on the object, that category of defect is not pos-
sible in a pure function. Additionally, a testing suite no 
longer has to be aware of the internal state of the object; 
the return value of the pure function is a function of its 
inputs alone. Finally, it is easier to capture the knowledge 
of how to interact with a pure function in the state data-
base. By adopting certain constraints on the signature of 
the pure function, the process of code generation becomes 
much simpler; implementations of code generators there-
fore become easier to inspect for the property that they 
correctly preserve the network of connections between 
components that is specified by the architectural model.   

Essential and Incidental Code  
A critical aspect of our approach is the separation of the 
software into essential and incidental code. Essential code 
is broadly defined as software that is specific to the physi-
cal platform, the specific mission, or the physical envi-
ronment in which the rover is operating.  For example, 
essential code associated with a Power state on the space-
craft would include the code for recording the Power state 
variable, and pure functions for the Power estimator, con-
troller, sensor, and actuator.  If the systems engineers in-
clude a state in the state effects analysis, then that state 
and its associated pure functions are essential. 

Incidental code is everything else. Incidental code is 
subdivided into several types: 

• A space system’s reuse library; for example, classes 
for time reckoning and memory management.  

• Platform-specific code for interacting with particular 
hardware on a particular space craft. 

• Code for communicating between components, 
which is weaved in by the code generator. 

• Classes and types to support the essential code, such 
as message and command types specific to a particu-
lar mission. 

In order to have a clean division between the essential 
and incidental code, essential code is implemented using 
pure functions as described above, but may use classes 
and types in the incidental code. Furthermore essential 



code is freed from having to be concerned with schedul-
ing or thread-safety (e.g., locking a mutex before access-
ing a variable). In fact, essential code is not permitted to 
handle this – but rather, it is the responsibility of the inci-
dental code to handle these issues. 

Generating Mission-specific Architectural Styles 
Once the essential code elements have been written for a 
particular mission, they are added to the state database for 
the mission. The architectural style specializations (e.g. 
component type descriptions for use in the architectural 
model) corresponding to a particular mission are gener-
ated from the state database. An engineer can then assem-
ble the architectural model for the mission using these 
styles. Consider the Power example introduced earlier. 
The architectural style for the mission will include a Pow-
erStateVariableT and a PowerEstimatorT type (in addi-
tion to other component types). The software engineer can 
then assemble the architectural model from these types, 
and may include multiple instances of these types (one for 
each battery on the spacecraft, for example). 

5.3. Compilation 

The code generation system is responsible for translat-
ing the component instances and communication patterns 
in the architectural model to the appropriate representa-
tions in code. Essential code is not generated, but written 
by engineers and stored in the state database, where it can 
be retrieved by the compilation system.  Incidental code is 
generated from the architectural model. The code genera-
tor must also produce code for scheduling component 
execution, initialization, logging or debugging. In order to 
simplify the problem of unifying code from different 
sources, C++ was chosen as a standard implementation 
language for all essential and incidental software. 

Different code generators can be plugged in to gener-
ate code for different platforms from the same architec-
tural model. For example, a code generator for a simula-
tion may choose to log all messages that are sent, to aid in 
debugging.   

It is possible to write incidental code generators with a 
high degree of variability in the generated software. At-
tributes that can be modified include, but are not necessar-
ily limited to, the following list. 

• Threading model: single-threaded or multi-threaded 
systems are possible. The incidental code is responsi-
ble for taking any precautions (e.g. locking mutexes) 
necessary in a multithreaded environment. 

• Debugging code: The incidental code may include 
debugging software to examine messages or state 
while the system is executing. 

• Scheduler implementation: The implementation of 
the scheduler is not constrained by the architectural 
model. 

• Style of implementation. The architectural style of the 
generated code is not constrained.  In this project, 
two incidental code generators were written; one that 
generated code in a procedural style, and a second 
that generated code in an object-oriented style.  

The procedural-style incidental code generator written 
for this project generated a wrapper function for every 
component instance.  Each wrapper function was respon-
sible for selecting the stateful objects associated with the 
component instance, invoking the appropriate pure func-
tion, and relying the resulting messages (if any). 

Figure 1 shows a pseudo-code example of the wrapper 
that may be generated by a code generator for calling a 
controller. The wrapper handles thread-safety and log-
ging, making sure that it acquires and releases the appro-
priate locks, and sends the appropriate logging messages.   

6.   Example 

To illustrate how this approach works in practice, con-
sider a simple example of a wheel motor “control loop.” 
In this control loop there is an actuator that adjusts the 
current sent to a wheel motor, and a sensor that reports 
how far the wheel has turned. The objective is to con-
struct a system that controls the motion of a wheel. It 
should be possible to set a goal (for example, for a par-
ticular velocity) on the state variable associated with the 
wheel; it should also be possible to read data such as the 
current velocity from the wheel’s state variable. (For the 
purposes of this example, we will not discuss the interac-
tion between this control loop and other control loops that 
may exist on the space craft.) 

void controller17_wrapper () { 
 pthread_mutex_lock (stateVar17_mutex); 
 pthread_mutex_lock (stateVar17_goals_mutex); 
 pthread_mutex_lock (actuator17_config_mutex); 
 pthread_mutex_lock (actuator17_inputQ_mutex); 
 log.out (“Calling controller17 function”); 
 message =  
  controllerFunc (stateVar17_goals, stateVar17,  
       actuator17_config); 
 log.out (messages); 
 actuator17_inputQ.put (message); 
 pthread_mutex_unlock ()… 
} 

Figure 1. Example of Generated Code. 



6.1. Writing the Essential Code 

The essential code is written based on the results of the 
state effects analysis. For each state (and associated state 
variable) that is identified during the analysis, essential 
code components associated with it need to be written. 

In the wheel control loop, the following mission-
specific components are created: 

• Wheel State Variable: This state variable contains the 
value history of the wheel position and its deriva-
tives, the wheel velocity and the wheel acceleration. 

• Wheel Controller: This pure function component is 
responsible for handling goals placed on the Wheel 
State Variable. It achieves the goals by issuing com-
mands to the wheel actuator, such as increasing the 
amount of current sent to the hardware by the actua-
tor to affect the speed at which the wheel turns. 

• Wheel Motor Actuator: This pure function compo-
nent is responsible for accepting commands from the 
Wheel Controller, relaying the commands to the ac-
tuator, and storing them in a command history. 

• Wheel Encoder Sensor: This pure function compo-
nent is responsible for reading the data sent by the 
encoders (encoders measure the number of times the 
wheel has turned) and storing these measurements in 
a measurement history. 

• Wheel Estimator: This pure function component is 
responsible for analyzing the available cues (current 
state of the Wheel State Variable, command history, 
measurement history, and goal record) and updating 
the state function in the Wheel State Variable with a 
new, best estimate of the value history of the wheel. 
This estimate is represented as a state function; this 
continuous function returns the state at any time in 

the past or future; different times will have different 
levels of the uncertainty for that time. Entities that 
use the state need to be savvy of the uncertainty asso-
ciated with any state they read.  

• Wheel Configuration State Variable: This state vari-
able is responsible for holding information about the 
wheel. For example, the diameter of the wheel would 
be a good candidate for capturing in a configuration 
state variable, as opposed to hard-coding the value; 
this allows for easy reuse of the code for different 
size wheels.  

6.2. Putting Essential Code in the State DB 

The next step is to annotate the essential code in the State 
Database. Every essential function is named; the argu-
ments and their associated order and types are described; 
and the return values are described. In addition, every 
state variable is described, along with its associated mem-
ber variables. 

For the wheel motor control loop example, all of the 
pure functions and state variables are entered into the 
state database. Our tool then generates architectural styles  
(e.g. collections of component types that may be used in 
the architectural model) to represent the pure functions as 
components in an architectural model. The types gener-
ated for the wheel example would be: MotorVelocityStateT, 
MotorConfigurationStateT, MotorVelocityEstT, MotorSensorT, Mo-
torActuatorT, and MotorVelocityCntrlT.  

 

6.3. Developing the Architectural Model 

The architectural model is then developed, allowing 
the software engineer to connect the various pure function 

 
Figure 1. The Architectural Model of the Wheel Controller, and its Context in the Larger Robot Architecture. 



components. In addition to the component types generated 
as part of the previous step, the software engineer uses the 
following types of generic MDS connectors to connect 
instances of these components: 

• Connectors between Pure Functions and State Vari-
ables represent a member of the state variable (e.g. 
the state function, or the goals associated with the 
state) being passed into the pure function as an argu-
ment. There are specializations of this connector to 
enforce read-only and read-write semantics. 

• Connectors between Pure Functions and Standalone 
Value Histories represent that standalone value his-
tory being passed into the pure function as an argu-
ment. There are specializations of this connector to 
enforce read-only and read-write semantics. 

• Connectors between Pure Functions and Pure Func-
tions represent a message being passed from one Pure 
Function to another. 

Furthermore, the software engineer needs to introduce 
information to aid the code generator in scheduling the 
components. The software engineer can instantiate a 
Scheduled Rate Group component and an appropriate 
connector to connect those components that must be 
scheduled. This is used to specify the rate at which com-
ponents are scheduled, and which components should be 
scheduled in that rate group. 

Once developed, the architectural model can be in-
spected for conformance with respect to the architectural 
rules. For example, the model can be checked to ensure 
that ports on either side of a connection are compatible, 
and that every pure function is connected to a scheduler. 

The left of Figure 1 shows the architectural model for 
the wheel controller example. It shows that the MotorVeloc-
ityEstimator, MotorVelocityController, MotorActuator, and MotorSen-
sor are all in the same rate group, that the MotorVelocityEsti-
mator uses information from the MotorVehicleState, the Mo-
torSensor, and the MotorActuator to calculate the new states 
for the MotorVelocity. If the estimator also required informa-
tion from other states (such as a power state), then this 
would also be indicated in the architectural model. 

The wheel motor controller is actually part of a larger 
system for a robot with four wheels. The full architectural 
model is presented to the right of Figure 1. This allows for 
scalability of the architectural model, and also allows for 
reuse. For example, the RightMotor component is decom-
posed with a similar control loop for the LeftMotor. 

6.4. Generating the Code 

Once the architectural model is developed, a code genera-
tor is chosen to produce the code for a particular deploy-
ment. For example, code could be generated from this 
model for deployment on a Personal Exploration Robot 
(PER), or for simulation in a software environment. 

7. Implementation and Evaluation 
7.1. Implementation 

We have implemented the above approach in a toolset 
that consists of the following components: 

• A cleanroom MDS Framework implementation in 
C++. Because of security restrictions, the team re-
sponsible for implementing the tool was unable to 
view or use actual MDS code. We implemented a 
limited version of the framework that contains some 
functionality, but not some of the utility packages 
(such as units of measurement).  

• API interfaces for the pure functions. 
• MDS Studio, an MDS architectural modeling tool 

that extends AcmeStudio [10], an architecture devel-
opment environment. It is built on top of Eclipse, an 
open extensible integrated development environ-
ment.4 The extensions provide access to the code 
generators, as well as actions that are specific to the 
MDS architectural style.  

• Two types of code generators to generate code in 
different platform styles: 
- The procedural incidental code generator wraps 

each pure function (corresponding to the compo-
nent type) with a wrapper function (corresponding 
to the component instance) that is responsible for 
accessing a shared data structure and selecting the 
correct data structures to pass into the pure func-
tion. In other words, the global data structure main-
tains state, and the wrapper functions maintain the 
communication patterns defined in the architectural 
model.  

- The object-oriented incidental code uses C++ 
classes to wrap each pure function. These classes 
are responsible for supporting the communication 
patterns described in the architectural model. 

We have successfully generated code that runs on the 
Personal Exploration Rover (PER),5 that is a robot de-
signed to be similar to the Mars Sojourner.  

7.2. Evaluation 

Having asserted that the tool developed in this project 
provides several benefits to JPL Engineers, it is appropri-
ate to describe the benefits that have been observed.  
7.2.1 Reduced Costs 
In this system, there are the following opportunities for 
reuse of code: 

• MDS Framework code (schedulers, memory man-
agement, etc) may be reused across all missions. 

                                                             
4 http://www.eclipse.org 
5 http://www.cs.cmu.edu/~personalrover/PER 



• Essential code may be reused if a different mission is 
using the same hardware, or in cases where the robots 
are operating in a similar physical environment (for 
example, estimators for time-of-day and solar radia-
tion levels on Mars will be reusable across different 
robot platforms). 

• Type definitions for stateful objects may be reused 
across systems, if system and software engineers 
choose to. They contain no program logic, merely 
data. For example, a TemperatureKelvin class defini-
tion likely will find use in many circumstances. 

• Incidental code generators can be reused across dif-
ferent platforms. 

In addition, the code generation system saves having to 
write a significant amount of code. It takes approximately 
one hour to assemble the architectural model of the PER, 
resulting in a system of approximately 50 components. 
The incidental code generated for the PER consists of 
approximately 542 lines of code. This is a good produc-
tivity level. However, this incidental code represents the 
very simplest of the incidental code generators that can be 
imagined. As incidental code generators become more 
capable, and generate more sophisticated code, the pro-
ductivity gains will be even greater. 
7.2.2 Increased Reliability 
The architectural modeling tool provides a platform for 
reasoning about the correctness of the model developed 
by the software engineers. Whenever new rules about the 
desired behavior of the system are discovered, the system 
engineer can express this as a rule in the architectural 
modeling tool, ensuring that this check becomes a part of 
the build process of the system. One example of a poten-
tial rule would be a check that the state estimation de-
pendency graph is acyclic. 

Another benefit of this approach is a side effect of the 
reuse library; as components accumulate over time, the 
amount of testing that any one component might experi-
ence will increase, providing more confidence in the reli-
ability of the components. 

Finally, the functional approach to developing the es-
sential components is amenable to the design and mainte-
nance of an automated suite of unit tests. The simplicity 
of the pure function signature specification ensures that 
writing unit tests for these functions is a straightforward 
practice; each pure function can be tested in complete 
isolation from all other pure function components. 
7.2.3 Usability 
This project was developed in collaboration with engi-
neers at the NASA Jet Propulsion Laboratory, in multiple 
meetings. As a part of this project, the tool was demon-
strated to several engineers at JPL. Initial reactions to the 
tool were quite positive, indicating that such a tool for 
their system would be helpful in their work.  

8. Technical Challenges 

Having described the approach and briefly illustrated it, 
we now consider some of the specific technical challenges 
that arose in carrying out the work.  

8.1. Adding implementation choices 

One of the critical issues in an MDA-like approach is how 
to introduce implementation choices that are not directly 
relevant at the PIM model, but are needed to produce 
working code. In the case of MDS Studio there were two 
categories of extra detail. First was scheduling informa-
tion: as real-time control systems specification and analy-
sis of timing properties are critical for the final system, 
even though they are not part of the essential code pro-
duce for the high-level model.  

To handle this we introduced a special architectural 
construct called scheduled rate groups. Components in 
the same rate group are scheduled together as periodic 
tasks at a specified rate defined by the group. Putting this 
in the architecture has the benefit that timing analysis can 
be performed over the architectural model. 

The second class of implementation choices concerned 
the nature of the code produced. MDS Studio permits 
variability along the dimensions outlined earlier. The 
choice of value within each of those dimensions is deter-
mined by the choice of compiler. For example, in our 
prototype one compiler produces code appropriate for 
large-footprint testing and debugging; another produces 
smaller run-time code that can operate in a resource con-
strained environment. 

8.2. Fitting a Functional Style of Code into a 
State-Oriented Environment  

In this project, a functional style of code for the essential 
code must be integrated with a state-oriented system, in 
which globally accessible stateful objects are the most 
important elements in both the architecture and imple-
mentation of the system. The functional style is important 
from a system point of view, but may not be enforced by 
the semantics of the target deployment language (e.g., 
C++). Therefore, while the essential functions are not 
themselves stateful, they manipulate stateful objects in the 
system. Thus persistent system state is factored out of the 
components that access or change that state. The benefit 
of this is that it becomes easy to understand the interac-
tions between components. Pure functions have only two 
ways of interacting with the external world: they can re-
turn messages; or they may read or modify stateful ob-
jects that are passed in as arguments. 

8.3 Interfacing to Essential Code 

One of the key challenges that had to be addressed was 
finding the right interface to the pure functions. The inter-
face had to be not only sufficiently flexible to allow engi-



neers to implement the required algorithms, but also sim-
ple to understand, easy to represent in an architectural 
model, and easy to incorporate into code generators.  

We addressed this challenge in close consultation with 
JPL engineers, conducting interviews to simplify the in-
terface and ensure that the engineers could still write the 
necessary code in the pure functions. In the end, we set-
tled on the interfaces to pure functions essentially being 
value histories and messages. Once we got this right, im-
plementing the code generators was quite straightforward.  

9. Conclusions 

This paper has described our experience of adapting 
two research threads to develop a new tool for NASA 
space systems engineers that allows them to move from 
high-level system specifications to multiple deployments. 
Those threads were formal architectural representation 
within a domain-specific style for spaces systems, and 
pure functional representations of component capability.  

Although the tool we developed addresses a particular 
audience and domain, we believe there are a number of 
important general lessons that can be applied more gener-
ally to create tools for moving from architectural designs 
to working systems.  

1. Augmentation (not replacement) of existing capabili-
ties: For this work to be successful we had to fit into 
an existing development process and use predeter-
mined technologies. These included the architectural 
style rules, the state database, and the MDS frame-
work code. This meant that we had to design our 
tools so that they worked with current practices, 
rather than mandating a set of new technologies that 
would fit seamlessly with our approach. This is 
something that will need to be addressed when apply-
ing the MDA approach more generally.  

2. Use of formal models: The formal architectural style 
that we used is a benefit in this work because it is 
reasonably complex. This means that certain errors 
can be caught at the architectural modeling phase and 
not propagated to implementation. Less interesting 
styles would not produce the same benefits. 

3. Style specialization: We used two related architec-
tural styles for this work. The first style is a generic 
style that captures mission-independent rules about 
MDS composition. This was specialized to contain 
types representing particular specializations of the 
generic components for particular missions (for ex-
ample, a WheelControllerT became a subtype of Control-
lerT), and additional rules about composition. In fact, 
we are currently experimenting with additional styles 
to factor out some additional implementation details, 
such as scheduling, rather than including it in the one 
substyle. This use of successively detailed styles 

should prove useful in other areas where abstract ar-
chitectures need to be mapped into implementations. 

4. Separation of essential from incidental code. A key 
to making the refinement successful was to find the 
sweet-spot between what goes into the architectural 
model and what goes into the code generators. We 
suggest that any similar refinement process will need 
to involve both architects and developers, in order to 
define this interface. However, once this work is 
done, the actual implementation of the process in an-
other domain should be straightforward. 

While still a prototype system, the work to date shows 
promise for becoming a major advance in space systems 
engineering. In particular, the combination of component 
specification clarity, automatic generation of code, and 
formal checking of architectural constraints provides a 
powerful combination of new capabilities beyond existing 
practices of NASA engineers. 
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