
Bridging the Gap between Systems Design
and Space Systems Software

David Garlan*, William K. Reinholtz**, Bradley Schmerl*, Nicholas D. Sherman*, Tony Tseng*
* School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

** Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109 USA
{garlan,schmerl,nds,tttseng}@cs.cmu.edu William.K.Reinholtz@jpl.nasa.gov

Abstract

A challenging problem for software engineering prac-
titioners is moving from high-level system architectures
produced by system engineers to deployable software
produced by software engineers. In this paper we de-
scribe our experience working with NASA engineers to
develop an approach and toolset for automating the gen-
eration of space systems software from architectural
specifications. Our experience shows that it is possible to
leverage the space systems domain, formal architectural
specifications, and component technology to provide re-
targetable code generators for this class of software.

1. Introduction

A long-term goal of software engineering has been to
establish systematic techniques for developing systems
from high-level specifications or models. This line of re-
search has led to a long stream of results in areas of for-
mal refinement, automatic code generation, and, perhaps
most recently, model-driven architecture (MDA) [8]. The
attraction of MDA stems from the observation that con-
siderable leverage can be obtained by separating software
design into two levels. At the top level one describes a
system in terms of a “platform-independent” model
(PIM). Then one reifies that model into a lower-level
“platform-specific” model (PSM) that binds abstract
components and connectors to concrete mechanisms and
code. This separation allows one to focus initially on ab-
stract structure and functionality of a system, binding im-
plementation issues later, and potentially allowing the
same abstract model to be targeted to different platforms.

While a great idea in principle, it is currently unclear
how one should instantiate MDA in practice. In particular,
what exactly is meant by “platform independence?”
Which details should go in a PIM and which in the PSM?
Can one apply a component-based approach to a PIM? If
so, how should one describe components at that level so
they can be “refined” into working code in more detailed
models? What is the nature of code generation in such a
scheme? How automated can it be? Where does the con-

crete code come from, and to what extent can one really
target the same PIM to different PSMs?

The answers to such questions are likely to be domain-
specific. At the very least, the nature of the reification
process is likely to vary considerably depending on
whether we are talking about a large scale-distributed
information system (with platforms such as CORBA and
J2EE), as compared to a resource-constrained embedded
system (with real-time OS platforms concerned with
scheduling, memory footprint, power consumption, etc.)

In this paper we describe our experience of developing
an approach and supporting tool set to support MDA-like
approach to NASA Space Systems Software. The key
elements of the approach are (a) the use of formal archi-
tectural modeling to capture the abstract system descrip-
tion; (b) the clear separation of essential component func-
tionality (described using pure functions) from incidental
(or platform-specific) code; and (c) a retargetable code
generator and reuse repository to translate architectural
designs to one of many possible deployment platforms.

2. The Challenge for Space Systems

Space systems are a natural candidate for an MDA-like
approach. In current practice at NASA, systems engineers
typically develop the high-level design for a space mis-
sion based on knowledge of the mission goals, the target
environment, and system resources. This design is speci-
fied in part as a high-level architecture in terms of com-
ponents such as sensors actuators, estimators, controllers,
etc., and their pathways of interaction (including shared
variables). Later that architecture is translated into work-
ing code by software engineers who take into considera-
tion details such as scheduling priorities, communication
mechanisms, storage policies, etc.

Unfortunately, bridging the gap between the system
design and working code is manual, brittle, and error
prone. Programmers may not fully understand the inten-
tions of system designers, and there is no verifiable rela-
tionship between system design and code.

This situation is compounded by the fact that for most
space missions multiple versions of the software must be
created. Some are full-featured, used during development,

In Proceedings of the 29th IEEE/NASA Software Engineering Workshop (SEW-29), 6-7 April, 2005, Greenbelt, MD, USA.

simulation, and testing on-ground; other leaner versions
are needed for resource-constrained flight platforms.

An MDA-like approach could in principle have a
strong impact on this kind of development by providing a
more rigorous connection between abstract designs and
deployed code, by helping to automate the production of
code from those designs, and by reducing the effort to
target the same abstract system design to multiple de-
ployments. Such a solution, however, would need to

1. support existing systems engineering models and
methods, including the ability for systems engi-
neers to specify detailed algorithms for such
things as estimation, mission planning, and ac-
tuation;

2. provide a formal enough representation of the
system design to support analyses and check
conformance to design constraints;

3. allow software engineers to produce code pref-
erably automatically) targeted to radically differ-
ent deployments;

Note that the desired separation of concerns for NASA
space systems has a very different flavor from those in
many other domains. For most systems the distinction
between a PIM and a PSM is that the former excludes
details about the physical deployment environment (e.g.,
the location and number of servers). For space systems,
however, the nature of the physical platform (e.g., sen-
sors, actuators) and its detailed characteristics (failure
rates, jitter, power consumption, etc.) are central to the
systems design process and the resulting high-level de-
sign, and must appear in the PIM. The control algorithms
chosen for a particular system are also considered to be a
part of the PIM. Lower-level variability for a particular
deployment would include things like quality of monitor-
ing and debugging code, target programming language,
and storage policies.

3. Related Work

The problem of moving from abstract designs to code
has a long history of research and development. Most
researchers have examined this from a theoretical per-
spective, providing theories of correctness-preserving
refinement in languages like CSP [6], Z [12], algebraic
specifications [5], and many others. However, these have
had limited impact on industrial practice, since they tend
to require levels of formal training and large investments
in up-front system specification.

A number of researchers have looked at the more con-
strained problem of moving from architectural models to
code. [7] proposed a form of “correct” architectural re-
finement, based on the use of transformational patterns.
This work focused on moving from high-level architec-
tures to lower-level ones, as opposed to code. Aldrich has
proposed the ArchJava language [1] as a staging point for

transforming architectures to code. This is a promising
avenue, but requires the use of a specialized programming
language extension to work. Moreover, it does not di-
rectly address the problem of targeting multiple code de-
ployments. [11] addresses code generation from architec-
tures, but also does not provide alternative deployments,
and is limited to very specific forms of connection.

The closest branch of related work is the recent flurry
of activity in the area of “Model-Driven Architecture”
(MDA), proposed by the OMG as a method and set of
notations for moving between high-level and low-level
designs [8]. As noted earlier, MDA prescribes a two-level
process, in which deployment details are added at the
low-level so that the same abstract design can be used in
different concrete settings.

While attractive in principle, as noted, there remain
many details about the MDA approach that remain unan-
swered. This paper can be viewed as shedding light on
some of those answers for the specific domain of space
systems software. This domain has some distinct charac-
teristics that make it both challenging and tractable. One
of the distinguishing aspects is the need to have precise
representations of component functions at an abstract
level. Another is the need to model the physical setting
(actuators, sensors, environmental and system state) at the
high level. This is in contrast to most MDA approaches
which leave such details to the lower-level model (PSM).

The work reported here also builds on previous work
by the authors, unifying two separate streams of research
to produce a new synthetic approach. The first stream is
formal representation of software architecture and tools to
analyze those descriptions [2][4]. The second is a pro-
posal to define control systems from components speci-
fied as pure functions [3]. In this work we show how to
use architectural descriptions combined with pure func-
tions to create a tool that generates deployable code.

Our work is also related to other research into auto-
mated code generation from specifications [13]. Our work
is mainly differentiated by the fact that it is highly tailored
to a specific domain. This allows us to exploit the spe-
cific constraints of space systems code and architecture to
provide tailored analysis and code generation capabilities.

4. Current Practice

At the start of our collaboration, NASA was well aware of
the problems outlined above, and had developed a number
of processes and technologies to ameliorate some of the
problems: (a) a well-defined system design process and
repository to store the results; (b) an architectural style
well-matched to space systems development; (c) a large
body of reusable code for creating deployments of a sys-
tem. We consider each, together with comments about
their limitations.

Design Process: The success of most NASA missions
depends critically on up-front design by system engineers
who consider (a) the goals of the mission (b) scenarios of
use (c) resource concerns (d) failure modes to produce a
systems design. This process, called state effects analysis,
determines the relevant state variables for the system and
their dependencies. It also constrains the selection of al-
gorithms used by the various system components that
examine and change that state; candidate algorithms must
consider all of the cues determined to be relevant by the
state effects analysis. Results of this process are stored in
a state database, which records both the resulting design
and the rationale behind the design decisions.

While state effects analysis and the state database help
space systems domain experts to design effective systems,
balancing complex requirements for functionality, re-
source usage, and failure handling, there are a number of
limitations. First, the design decisions are largely infor-
mal. For example, the database may note a dependency
between two states, but that dependency is not repre-
sented in a way that can be automatically checked against
a resulting design. Second, and more importantly, compo-
nents in the design must be represented using the concrete
notations of a programming language: C++ in this case.
While programming languages allow engineers to be con-
crete about the algorithms to be used, they tend to over-
constrain the implementations. In particular, they force
premature decisions about things such as order of process-
ing of input variables, synchronization mechanisms,
communication polices, and data representation decisions.

Software Architecture: Over the past few years engi-
neers at NASA’s Jet Propulsion Lab (JPL) had developed
a new architectural style for space systems, called Mis-
sion Data Systems (MDS) [9]. MDS adopts a product-line
approach to space software, by providing a generic archi-
tectural framework for space systems design, providing a
vocabulary of design (sensors, actuators, state variables,
etc.) together with rules for how these elements can be
combined.1 This is coupled with a reusable code base
(described below) for instantiating the framework for spe-
cific missions.
While the creation of an architectural style for space sys-
tems is an important step towards regularizing develop-
ment, and providing opportunities for analysis and reuse,
at the start of our project this style was largely described
informally. As we illustrate later, rules for composition
were expressed in English, and there was no way to either
represent a design in the MDS style formally, or to check
for conformance to that style.

1 MDS also defines a higher control layer for handling

goal-directed behavior and plans, which provides com-
mands and inputs to the system. Treatment of this layer is
outside the scope of this paper.

Reuse: Taking advantage of commonalities in space sys-
tems (as characterized by the MDS style), over the past
few years NASA engineers had developed a large body of
reusable code for creating specific MDS deployments.
This code covers areas such as data structures for state
representation, communications infrastructure, event log-
ging, timing services, units of measurement, and visuali-
zation. In fact, in its current state there are over 250K
lines of (potentially) reusable framework code.

While providing excellent opportunities for reuse, the
existing body of framework code had several limitations.
First was the sheer complexity of it. For a given target
deployment, knowing which packages to use and in which
combinations, was not a trivial matter. Second, since
framework code had to be combined with mission-
specific code manually, there were many opportunities for
error, and very little that one could do to check that the
resulting system continued to respect the abstract design.
Third, as noted, components written in C++ could poten-
tially conflict with the use of particular framework code,
by prematurely binding implementation decisions.

5. Our Approach

Working with engineers at NASA JPL, we developed
an approach, and a tool called MDS Studio, that is cen-
tered on three significant changes to their current practice:

1. Use a formal architectural modeling language to rep-
resent a system design and its constraints. Linked to
existing NASA system design databases, a formal ar-
chitectural description provides an explicit represen-
tation of a system configuration, and permits auto-
mated analyses such as conformance to architectural
style, as well as system-specific constraints. (For ex-
ample, if a system engineer determines that in the
system under design a state A depends on state B, a
rule is automatically created in the architectural mod-
eling tool to check that the estimator for state variable
A is also connected to state variable B.)

2. Define high-level components as pure functions
(stateless mappings of inputs to outputs), thereby ab-
stracting from details of timing, synchronization,
communication, and data representation, while still
retaining the ability to describe critical algorithms for
state estimation and control.

3. Provide a retargetable compiler that can produce mul-
tiple versions of deployable code from the abstract
architectural design. The compiler leverages the sub-
stantial body of reusable framework code to map the
“essential” computations defined in the abstract con-
figuration to specific implementations, but does so in
a way that preserves the design constraints.

This approach adopts the following process:

1. Systems Engineers conduct a state effects analysis
that identifies the types of physical states in the sys-
tem, and the relationships between these states. For
example, a solar radiation state and a solar panel
power level state will be of separate types; there may
be multiple instances of solar panel power level states
(as a spacecraft may have multiple solar panels). In
the state effects analysis, the fact that the solar radia-
tion state has an effect on the solar panel power level
states is identified and recorded

2. For each such state type, a C++ state variable type
and associated pure functions are created. For exam-
ple, a switch state will have a function that acts as a
controller. Engineers may create alternate pure func-
tion implementations for use in different situations.

3. The functions and state variable types are uploaded to
a state database and annotated with metadata describ-
ing the signatures of the functions.

4. The metadata is used to generate an architectural
style with component types that correspond to the
state variable types and the pure functions. The archi-
tectural style contains enough information to derive
the pure function signatures from the associated com-
ponent types.

5. Software engineers use these component types to
assemble an architectural model (described below).

6. The architectural model is passed to a code generator
that (a) generates incidental code such as connections
and schedulers, and (b) merges this code with the es-
sential code to form a deployment.

In the remainder of the section we elaborate on these
three innovations.

5.1. Architectural Modeling and Analysis

The architectural modeling tool allows the user to cre-
ate instances of components, both pure functions and state
variables. The architectural model primarily encapsulates
the knowledge of the instances of components, and the
communication patterns between components. The
architectural model is built according to a set of
architectural styles. An architectural style captures the
component, connector, and interface types that may be
used to compose an architectural model, and rules about

pose an architectural model, and rules about how these
types may be composed.

The base architectural style used for MDS consists of
the following component types:

• StateVariableT: Contains the record of the state over
time, and goals associated with the state.

• EstimatorT: Is responsible for examining all of the
available cues (other states, sensors, or goals) and
updating state variables periodically to provide a cur-
rent best estimate of the states value based on avail-
able evidence (command history, other states, sensor
values, etc.).

• ControllerT: If there are goals associated with a state
variable, this component is responsible for delegating
the goals to other states, or for issuing commands to
adaptors to achieve the state.

• ActuatorT: Represents the interface between a con-
troller and the hardware. Commands are issued to ac-
tuators to get the spacecraft to do something.

• SensorT: Represents an interface between an estima-
tor and hardware, for use by estimators.

• ValueHistoryT: Store a discrete set of data. For ex-
ample, they may be used to store the history of com-
mands sent to an actuator by a controller.

In addition to the above component types, there are
connector types for communicating between components
(e.g., Command Submit, Measurement Request, State Up-
date), and port and role types for component and connec-
tor interfaces. Figure 1 illustrates a small segment of an
architecture written in this style. This segment depicts
interaction between a Controller, an Actuator, and an
Estimator. In this interaction, the Controller submits a
command to an Actuator via its Command Submit connec-
tor. The Actuator then notifies the Estimator that it re-
ceived a command and writes that command to a Value
History. Subsequently, the Estimator queries the Value
History to find out what the command was.

In addition to a set of types, the MDS style also defines
rules about the composition of a MDS system. These rules
were expressed in English by JPL engineers, but needed
to be translated into formal architectural rules that can be
checked automatically with architectural tools. In devel-
oping the architectural style, we were given ten informal
rules, which were translated into 39 architectural rules.
Examples of the MDS rules:

1. If an Estimator can be notified of a command by an
Actuator, then that Estimator must be able to read the
Value History that the Actuator updates.

2. An Actuator must have exactly one Controller con-
nected to it.

3. An Actuator must have the same number of Com-
mand Submit, Command Notification, and Value His-
tory Update ports (one for each type of command that
it receives).

Figure 1. A Controller/Actuator/Estimator pattern in MDS

The first MDS rule above can be captured in Acme
with the following predicate:2

invariant (forall e :! EstimatorT in self.components |
 (forall cnp :! CmdNotProvT in e.ports |
 (forall a :! ActuatorT in self.components |
 (forall cnr :! CmdNotReqrT in a.ports |
 (connected (cnp, cnr) ->
 (exists vh :! ValueHistoryT in self.components |
 reading (e, vh) and updating (a, vh))))))3;

In addition to this base MDS style, our approach takes
advantage of the use of specializations of the MDS style
that are tailored to both the particular mission and code
generation. Specializations of this style must satisfy all of
the rules of the original MDS style, but may add rules and
structure. For example, if the mission requires a wheel
state variable, then there will likely be specializations of
the state variable type tailored to this wheel, in addition to
specializations of wheel estimators, wheel controllers, etc.
For example, a WheelVelEstT would be a subtype of Es-
timatorT, and might have additional required ports or
properties. Furthermore, if state analysis specifies a de-
pendency between a wheel state variable and a power
state variable, then the corresponding mission style would
check that the estimator associated with one state variable
queries the state of the other state variable. A rule of this
type would look like the following:

invariant (forall e :! WheelVelEstT in self.components |
 (exists s :! PowerStateVar in self.components |
 connected (e, s));

5.2. Component Specification

Whereas in MDS as implemented by NASA JPL the
components of the system (controllers, estimators, and
hardware adaptors) are C++ objects, in MDS Studio the
components are implemented as pure stateless functions.
This means that everything that is needed for a function is
provided through the interface to the function, and the
result is returned by the function, i.e., the function does
not read or change any global variables.

Consider a Controller function. A controller must up-
date the state of any pending or current goals, as needed,
and issue commands to actuators to achieve goals. The
generic header for a controller pure function would look
like:

ControllerFunc (Goals, StateVar, Config)  messages

The algorithm for the controller would calculate what
it needs to do to achieve the goals, based on the value of
the state variable, as well as when the goals need to be

2 In this rule, self refers to the system, italicized words refer to prede-

fined Acme functions, and the clause <name> :! <type> means that
<name> declares the type <type>

3 reading and updating are defined elsewhere in the style.

achieved. It may use the configuration parameter to help
in its calculations. The configuration parameter will con-
tain information that is needed for the controller to accu-
rately calculate what it needs to do, such as the diameter
of the wheel being controlled. If the controller needs to
actuate the hardware, it returns the required messages that
need to be sent to the actuator. Where it receives the in-
formation from, and the particular actuators to which its
messages are sent, are completely independent of the con-
troller code.

The suggested benefits of using pure stateless func-
tions include making the components easier to write, test,
and integrate in a code generation system. For example,
while it is possible to write an OO component with a race
condition depending on the order of invocation of the
methods on the object, that category of defect is not pos-
sible in a pure function. Additionally, a testing suite no
longer has to be aware of the internal state of the object;
the return value of the pure function is a function of its
inputs alone. Finally, it is easier to capture the knowledge
of how to interact with a pure function in the state data-
base. By adopting certain constraints on the signature of
the pure function, the process of code generation becomes
much simpler; implementations of code generators there-
fore become easier to inspect for the property that they
correctly preserve the network of connections between
components that is specified by the architectural model.

Essential and Incidental Code
A critical aspect of our approach is the separation of the
software into essential and incidental code. Essential code
is broadly defined as software that is specific to the physi-
cal platform, the specific mission, or the physical envi-
ronment in which the rover is operating. For example,
essential code associated with a Power state on the space-
craft would include the code for recording the Power state
variable, and pure functions for the Power estimator, con-
troller, sensor, and actuator. If the systems engineers in-
clude a state in the state effects analysis, then that state
and its associated pure functions are essential.

Incidental code is everything else. Incidental code is
subdivided into several types:

• A space system’s reuse library; for example, classes
for time reckoning and memory management.

• Platform-specific code for interacting with particular
hardware on a particular space craft.

• Code for communicating between components,
which is weaved in by the code generator.

• Classes and types to support the essential code, such
as message and command types specific to a particu-
lar mission.

In order to have a clean division between the essential
and incidental code, essential code is implemented using
pure functions as described above, but may use classes
and types in the incidental code. Furthermore essential

code is freed from having to be concerned with schedul-
ing or thread-safety (e.g., locking a mutex before access-
ing a variable). In fact, essential code is not permitted to
handle this – but rather, it is the responsibility of the inci-
dental code to handle these issues.

Generating Mission-specific Architectural Styles
Once the essential code elements have been written for a
particular mission, they are added to the state database for
the mission. The architectural style specializations (e.g.
component type descriptions for use in the architectural
model) corresponding to a particular mission are gener-
ated from the state database. An engineer can then assem-
ble the architectural model for the mission using these
styles. Consider the Power example introduced earlier.
The architectural style for the mission will include a Pow-
erStateVariableT and a PowerEstimatorT type (in addi-
tion to other component types). The software engineer can
then assemble the architectural model from these types,
and may include multiple instances of these types (one for
each battery on the spacecraft, for example).

5.3. Compilation

The code generation system is responsible for translat-
ing the component instances and communication patterns
in the architectural model to the appropriate representa-
tions in code. Essential code is not generated, but written
by engineers and stored in the state database, where it can
be retrieved by the compilation system. Incidental code is
generated from the architectural model. The code genera-
tor must also produce code for scheduling component
execution, initialization, logging or debugging. In order to
simplify the problem of unifying code from different
sources, C++ was chosen as a standard implementation
language for all essential and incidental software.

Different code generators can be plugged in to gener-
ate code for different platforms from the same architec-
tural model. For example, a code generator for a simula-
tion may choose to log all messages that are sent, to aid in
debugging.

It is possible to write incidental code generators with a
high degree of variability in the generated software. At-
tributes that can be modified include, but are not necessar-
ily limited to, the following list.

• Threading model: single-threaded or multi-threaded
systems are possible. The incidental code is responsi-
ble for taking any precautions (e.g. locking mutexes)
necessary in a multithreaded environment.

• Debugging code: The incidental code may include
debugging software to examine messages or state
while the system is executing.

• Scheduler implementation: The implementation of
the scheduler is not constrained by the architectural
model.

• Style of implementation. The architectural style of the
generated code is not constrained. In this project,
two incidental code generators were written; one that
generated code in a procedural style, and a second
that generated code in an object-oriented style.

The procedural-style incidental code generator written
for this project generated a wrapper function for every
component instance. Each wrapper function was respon-
sible for selecting the stateful objects associated with the
component instance, invoking the appropriate pure func-
tion, and relying the resulting messages (if any).

Figure 1 shows a pseudo-code example of the wrapper
that may be generated by a code generator for calling a
controller. The wrapper handles thread-safety and log-
ging, making sure that it acquires and releases the appro-
priate locks, and sends the appropriate logging messages.

6. Example

To illustrate how this approach works in practice, con-
sider a simple example of a wheel motor “control loop.”
In this control loop there is an actuator that adjusts the
current sent to a wheel motor, and a sensor that reports
how far the wheel has turned. The objective is to con-
struct a system that controls the motion of a wheel. It
should be possible to set a goal (for example, for a par-
ticular velocity) on the state variable associated with the
wheel; it should also be possible to read data such as the
current velocity from the wheel’s state variable. (For the
purposes of this example, we will not discuss the interac-
tion between this control loop and other control loops that
may exist on the space craft.)

void controller17_wrapper () {
 pthread_mutex_lock (stateVar17_mutex);
 pthread_mutex_lock (stateVar17_goals_mutex);
 pthread_mutex_lock (actuator17_config_mutex);
 pthread_mutex_lock (actuator17_inputQ_mutex);
 log.out (“Calling controller17 function”);
 message =
 controllerFunc (stateVar17_goals, stateVar17,
 actuator17_config);
 log.out (messages);
 actuator17_inputQ.put (message);
 pthread_mutex_unlock ()…
}

Figure 1. Example of Generated Code.

6.1. Writing the Essential Code

The essential code is written based on the results of the
state effects analysis. For each state (and associated state
variable) that is identified during the analysis, essential
code components associated with it need to be written.

In the wheel control loop, the following mission-
specific components are created:

• Wheel State Variable: This state variable contains the
value history of the wheel position and its deriva-
tives, the wheel velocity and the wheel acceleration.

• Wheel Controller: This pure function component is
responsible for handling goals placed on the Wheel
State Variable. It achieves the goals by issuing com-
mands to the wheel actuator, such as increasing the
amount of current sent to the hardware by the actua-
tor to affect the speed at which the wheel turns.

• Wheel Motor Actuator: This pure function compo-
nent is responsible for accepting commands from the
Wheel Controller, relaying the commands to the ac-
tuator, and storing them in a command history.

• Wheel Encoder Sensor: This pure function compo-
nent is responsible for reading the data sent by the
encoders (encoders measure the number of times the
wheel has turned) and storing these measurements in
a measurement history.

• Wheel Estimator: This pure function component is
responsible for analyzing the available cues (current
state of the Wheel State Variable, command history,
measurement history, and goal record) and updating
the state function in the Wheel State Variable with a
new, best estimate of the value history of the wheel.
This estimate is represented as a state function; this
continuous function returns the state at any time in

the past or future; different times will have different
levels of the uncertainty for that time. Entities that
use the state need to be savvy of the uncertainty asso-
ciated with any state they read.

• Wheel Configuration State Variable: This state vari-
able is responsible for holding information about the
wheel. For example, the diameter of the wheel would
be a good candidate for capturing in a configuration
state variable, as opposed to hard-coding the value;
this allows for easy reuse of the code for different
size wheels.

6.2. Putting Essential Code in the State DB

The next step is to annotate the essential code in the State
Database. Every essential function is named; the argu-
ments and their associated order and types are described;
and the return values are described. In addition, every
state variable is described, along with its associated mem-
ber variables.

For the wheel motor control loop example, all of the
pure functions and state variables are entered into the
state database. Our tool then generates architectural styles
(e.g. collections of component types that may be used in
the architectural model) to represent the pure functions as
components in an architectural model. The types gener-
ated for the wheel example would be: MotorVelocityStateT,
MotorConfigurationStateT, MotorVelocityEstT, MotorSensorT, Mo-
torActuatorT, and MotorVelocityCntrlT.

6.3. Developing the Architectural Model

The architectural model is then developed, allowing
the software engineer to connect the various pure function

Figure 1. The Architectural Model of the Wheel Controller, and its Context in the Larger Robot Architecture.

components. In addition to the component types generated
as part of the previous step, the software engineer uses the
following types of generic MDS connectors to connect
instances of these components:

• Connectors between Pure Functions and State Vari-
ables represent a member of the state variable (e.g.
the state function, or the goals associated with the
state) being passed into the pure function as an argu-
ment. There are specializations of this connector to
enforce read-only and read-write semantics.

• Connectors between Pure Functions and Standalone
Value Histories represent that standalone value his-
tory being passed into the pure function as an argu-
ment. There are specializations of this connector to
enforce read-only and read-write semantics.

• Connectors between Pure Functions and Pure Func-
tions represent a message being passed from one Pure
Function to another.

Furthermore, the software engineer needs to introduce
information to aid the code generator in scheduling the
components. The software engineer can instantiate a
Scheduled Rate Group component and an appropriate
connector to connect those components that must be
scheduled. This is used to specify the rate at which com-
ponents are scheduled, and which components should be
scheduled in that rate group.

Once developed, the architectural model can be in-
spected for conformance with respect to the architectural
rules. For example, the model can be checked to ensure
that ports on either side of a connection are compatible,
and that every pure function is connected to a scheduler.

The left of Figure 1 shows the architectural model for
the wheel controller example. It shows that the MotorVeloc-
ityEstimator, MotorVelocityController, MotorActuator, and MotorSen-
sor are all in the same rate group, that the MotorVelocityEsti-
mator uses information from the MotorVehicleState, the Mo-
torSensor, and the MotorActuator to calculate the new states
for the MotorVelocity. If the estimator also required informa-
tion from other states (such as a power state), then this
would also be indicated in the architectural model.

The wheel motor controller is actually part of a larger
system for a robot with four wheels. The full architectural
model is presented to the right of Figure 1. This allows for
scalability of the architectural model, and also allows for
reuse. For example, the RightMotor component is decom-
posed with a similar control loop for the LeftMotor.

6.4. Generating the Code

Once the architectural model is developed, a code genera-
tor is chosen to produce the code for a particular deploy-
ment. For example, code could be generated from this
model for deployment on a Personal Exploration Robot
(PER), or for simulation in a software environment.

7. Implementation and Evaluation
7.1. Implementation

We have implemented the above approach in a toolset
that consists of the following components:

• A cleanroom MDS Framework implementation in
C++. Because of security restrictions, the team re-
sponsible for implementing the tool was unable to
view or use actual MDS code. We implemented a
limited version of the framework that contains some
functionality, but not some of the utility packages
(such as units of measurement).

• API interfaces for the pure functions.
• MDS Studio, an MDS architectural modeling tool

that extends AcmeStudio [10], an architecture devel-
opment environment. It is built on top of Eclipse, an
open extensible integrated development environ-
ment.4 The extensions provide access to the code
generators, as well as actions that are specific to the
MDS architectural style.

• Two types of code generators to generate code in
different platform styles:
- The procedural incidental code generator wraps

each pure function (corresponding to the compo-
nent type) with a wrapper function (corresponding
to the component instance) that is responsible for
accessing a shared data structure and selecting the
correct data structures to pass into the pure func-
tion. In other words, the global data structure main-
tains state, and the wrapper functions maintain the
communication patterns defined in the architectural
model.

- The object-oriented incidental code uses C++
classes to wrap each pure function. These classes
are responsible for supporting the communication
patterns described in the architectural model.

We have successfully generated code that runs on the
Personal Exploration Rover (PER),5 that is a robot de-
signed to be similar to the Mars Sojourner.

7.2. Evaluation

Having asserted that the tool developed in this project
provides several benefits to JPL Engineers, it is appropri-
ate to describe the benefits that have been observed.
7.2.1 Reduced Costs
In this system, there are the following opportunities for
reuse of code:

• MDS Framework code (schedulers, memory man-
agement, etc) may be reused across all missions.

4 http://www.eclipse.org
5 http://www.cs.cmu.edu/~personalrover/PER

• Essential code may be reused if a different mission is
using the same hardware, or in cases where the robots
are operating in a similar physical environment (for
example, estimators for time-of-day and solar radia-
tion levels on Mars will be reusable across different
robot platforms).

• Type definitions for stateful objects may be reused
across systems, if system and software engineers
choose to. They contain no program logic, merely
data. For example, a TemperatureKelvin class defini-
tion likely will find use in many circumstances.

• Incidental code generators can be reused across dif-
ferent platforms.

In addition, the code generation system saves having to
write a significant amount of code. It takes approximately
one hour to assemble the architectural model of the PER,
resulting in a system of approximately 50 components.
The incidental code generated for the PER consists of
approximately 542 lines of code. This is a good produc-
tivity level. However, this incidental code represents the
very simplest of the incidental code generators that can be
imagined. As incidental code generators become more
capable, and generate more sophisticated code, the pro-
ductivity gains will be even greater.
7.2.2 Increased Reliability
The architectural modeling tool provides a platform for
reasoning about the correctness of the model developed
by the software engineers. Whenever new rules about the
desired behavior of the system are discovered, the system
engineer can express this as a rule in the architectural
modeling tool, ensuring that this check becomes a part of
the build process of the system. One example of a poten-
tial rule would be a check that the state estimation de-
pendency graph is acyclic.

Another benefit of this approach is a side effect of the
reuse library; as components accumulate over time, the
amount of testing that any one component might experi-
ence will increase, providing more confidence in the reli-
ability of the components.

Finally, the functional approach to developing the es-
sential components is amenable to the design and mainte-
nance of an automated suite of unit tests. The simplicity
of the pure function signature specification ensures that
writing unit tests for these functions is a straightforward
practice; each pure function can be tested in complete
isolation from all other pure function components.
7.2.3 Usability
This project was developed in collaboration with engi-
neers at the NASA Jet Propulsion Laboratory, in multiple
meetings. As a part of this project, the tool was demon-
strated to several engineers at JPL. Initial reactions to the
tool were quite positive, indicating that such a tool for
their system would be helpful in their work.

8. Technical Challenges

Having described the approach and briefly illustrated it,
we now consider some of the specific technical challenges
that arose in carrying out the work.

8.1. Adding implementation choices

One of the critical issues in an MDA-like approach is how
to introduce implementation choices that are not directly
relevant at the PIM model, but are needed to produce
working code. In the case of MDS Studio there were two
categories of extra detail. First was scheduling informa-
tion: as real-time control systems specification and analy-
sis of timing properties are critical for the final system,
even though they are not part of the essential code pro-
duce for the high-level model.

To handle this we introduced a special architectural
construct called scheduled rate groups. Components in
the same rate group are scheduled together as periodic
tasks at a specified rate defined by the group. Putting this
in the architecture has the benefit that timing analysis can
be performed over the architectural model.

The second class of implementation choices concerned
the nature of the code produced. MDS Studio permits
variability along the dimensions outlined earlier. The
choice of value within each of those dimensions is deter-
mined by the choice of compiler. For example, in our
prototype one compiler produces code appropriate for
large-footprint testing and debugging; another produces
smaller run-time code that can operate in a resource con-
strained environment.

8.2. Fitting a Functional Style of Code into a
State-Oriented Environment

In this project, a functional style of code for the essential
code must be integrated with a state-oriented system, in
which globally accessible stateful objects are the most
important elements in both the architecture and imple-
mentation of the system. The functional style is important
from a system point of view, but may not be enforced by
the semantics of the target deployment language (e.g.,
C++). Therefore, while the essential functions are not
themselves stateful, they manipulate stateful objects in the
system. Thus persistent system state is factored out of the
components that access or change that state. The benefit
of this is that it becomes easy to understand the interac-
tions between components. Pure functions have only two
ways of interacting with the external world: they can re-
turn messages; or they may read or modify stateful ob-
jects that are passed in as arguments.

8.3 Interfacing to Essential Code

One of the key challenges that had to be addressed was
finding the right interface to the pure functions. The inter-
face had to be not only sufficiently flexible to allow engi-

neers to implement the required algorithms, but also sim-
ple to understand, easy to represent in an architectural
model, and easy to incorporate into code generators.

We addressed this challenge in close consultation with
JPL engineers, conducting interviews to simplify the in-
terface and ensure that the engineers could still write the
necessary code in the pure functions. In the end, we set-
tled on the interfaces to pure functions essentially being
value histories and messages. Once we got this right, im-
plementing the code generators was quite straightforward.

9. Conclusions

This paper has described our experience of adapting
two research threads to develop a new tool for NASA
space systems engineers that allows them to move from
high-level system specifications to multiple deployments.
Those threads were formal architectural representation
within a domain-specific style for spaces systems, and
pure functional representations of component capability.

Although the tool we developed addresses a particular
audience and domain, we believe there are a number of
important general lessons that can be applied more gener-
ally to create tools for moving from architectural designs
to working systems.

1. Augmentation (not replacement) of existing capabili-
ties: For this work to be successful we had to fit into
an existing development process and use predeter-
mined technologies. These included the architectural
style rules, the state database, and the MDS frame-
work code. This meant that we had to design our
tools so that they worked with current practices,
rather than mandating a set of new technologies that
would fit seamlessly with our approach. This is
something that will need to be addressed when apply-
ing the MDA approach more generally.

2. Use of formal models: The formal architectural style
that we used is a benefit in this work because it is
reasonably complex. This means that certain errors
can be caught at the architectural modeling phase and
not propagated to implementation. Less interesting
styles would not produce the same benefits.

3. Style specialization: We used two related architec-
tural styles for this work. The first style is a generic
style that captures mission-independent rules about
MDS composition. This was specialized to contain
types representing particular specializations of the
generic components for particular missions (for ex-
ample, a WheelControllerT became a subtype of Control-
lerT), and additional rules about composition. In fact,
we are currently experimenting with additional styles
to factor out some additional implementation details,
such as scheduling, rather than including it in the one
substyle. This use of successively detailed styles

should prove useful in other areas where abstract ar-
chitectures need to be mapped into implementations.

4. Separation of essential from incidental code. A key
to making the refinement successful was to find the
sweet-spot between what goes into the architectural
model and what goes into the code generators. We
suggest that any similar refinement process will need
to involve both architects and developers, in order to
define this interface. However, once this work is
done, the actual implementation of the process in an-
other domain should be straightforward.

While still a prototype system, the work to date shows
promise for becoming a major advance in space systems
engineering. In particular, the combination of component
specification clarity, automatic generation of code, and
formal checking of architectural constraints provides a
powerful combination of new capabilities beyond existing
practices of NASA engineers.

References

[1] Aldrich, J., Chambers, C., and Notkin, D. ArchJava:
Connecting Software Architecture to Implementation. Proc. ICSE
24, Orlando, Florida, 2002.
[2] Allen, R. and Garlan, D. A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering and
Methodology, 6(3), July 1997.
[3] Dvorak, D., and Reinholtz, K. Separating Essential from
Incidentals, An Execution Architecture for Real-Time Control
Systems. Proc. 7th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing. Austria, 2004.
[4] Garlan, D., Monroe, R., and Wile, D. “Acme: Architectural
Description of Component-Based Systems.” Foundations of
Component-Based Systems, Cambridge University Press, 2000.
[5] Guttag, J.V., and Horning, J.J. (Eds) Larch: Languages and
Tools for Formal Specification. Springer-Verlag, 1993.
[6] Hoare, C.A.R. Communicating Sequential Processes.
Prentice Hall, 1985.
[7] Moriconi, M., Quian, X., and Riemenschneider, R. Correct
Architecture Refinement. IEEE Trans. Soft. Eng. 21(4), 1995.
[8] Object Management Group. MDA: The Architecture of
Choice for a Changing World. http://www.omg.org/mda.
[9] Rasmussen, R. Goal-Based Fault Tolerance for Space
Systems using the Mission Data Systems. Proc. 2001 IEEE
Aerospace Conference, Big Sky, MT, 2001.
[10] Schmerl, B. and Garlan, D. Supporting Style-Centered
Architecture Development. ICSE 26, Edinburgh, Scotland, 2004.
[11] Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young,
D.M., Zelesnik, G. Abstractions for Software Architectures and
Tools to Support Them. IEEE Transactions on Software
Engineering, 21(4):314-335, 1995.
[12] Woodcock, J. and Davies, J. Using Z: Specification,
Refinement, and Proof. Prentice Hall International, 1996.
[13] Czarnecki, K. and Eisenecker, U. Generative Programming –
Methods, Tools, and Applications. Addison-Wesley, June 2000.

