
Data-driven Understanding of Design Decisions
in Pattern-based Microservices Architecture

J. Andres Diaz-Pace1 , Catia Trubiani2 , and David Garlan3

1 ISISTAN Research Institute, CONICET and UNICEN University,
Tandil, Buenos Aires, Argentina
2 Gran Sasso Science Institute

L’Aquila, Italy
3 Software and Societal Systems Department, Carnegie Mellon University

Pittsburgh, PA, USA
andres.diazpace@isistan.unicen.edu.ar, catia.trubiani@gssi.it,

garlan@cs.cmu.edu

Abstract. The adoption of architectural patterns has recently been as-
sessed in relation to their impact on the performance of microservice-
based applications. For example, offloading common functionalities of
multiple microservices to a gateway may lead to a system response time
improvement. However, for a given system requirement, e.g., the latency
of services or the utilization of resources, the benefit of choosing an ar-
chitectural pattern is not guaranteed. Therefore, it becomes important
to collect data about the parameters that contribute to the effective use
of patterns, thus understanding the relationships between design deci-
sions and performance requirements. In this work, we propose a data-
driven approach to assess the quantitative impact of design decisions
for a given pattern on the achievement of performance tradeoffs. Our
approach seeks to control the pattern parameters that cause variations,
i.e., sensitivity, in performance tradeoffs. Starting from a dataset includ-
ing parameters related to three microservices patterns (i.e., Gateway
Offloading, Command and Query Responsibility Segregation, and Anti-
corruption Layer) and their performance characteristics, we do apply
machine learning techniques (i.e., PRIM and CART) to infer constraints
on the parameter values. This is helpful to understand and reduce the
performance sensitivity of pattern configurations. Our results support
software architects in making informed decisions by providing insights
on the parameters related to the behavior of microservices patterns.

Keywords: Data-driven Sensitivity Analysis · Design Decisions · Ar-
chitectural Patterns · Microservices · Performance metrics

1 Introduction

Microservice-based applications have gained the attention of researchers and
practitioners [28,6], and also the software architecture community has been at-
tracted to pursue methodologies to support their successful development [1,17].
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Although the adoption of patterns has a long history [13], their effective use and
their impact on quality attributes are a more recent research trend [20,22].

Software architects developing microservice-based systems, especially in in-
dustry, have pointed out the need to quantitatively assess the effects of pat-
terns on quality-based requirements [23]. For instance, focusing on performance-
related characteristics such as system response time or resource utilization [11],
it is important to understand how they lead to different tradeoffs depending on
specific pattern configurations and related design assumptions.

To enable a quantitative analysis, a recent work [16] has shown that well-
known microservices patterns can be modeled and evaluated through software
performance engineering (SPE) techniques, e.g., queueing networks [10]. Inter-
estingly, the SPE models show that the performance properties of the patterns
are sensitive to design decisions and input parameters. Furthermore, the vari-
ability in the values of such parameters has an effect on the performance trade-
offs achievable by the patterns. These parameters might refer to environmental
conditions (e.g., incoming request rate) or design decisions of the solution (e.g.,
implementing a software or hardware isolation mechanism for a certain pattern).
This scenario raises the notion of sensitivity of a design decision (belonging to
a pattern), and how to exploit parameter ranges that allow a system to achieve
desired performance properties [25]. For instance, in a microservices pattern, the
heterogeneity of requests and their frequencies may influence the design decision
to achieve a good tradeoff targeting low utilization and fast response time [16].

Motivated by the scenario above, we delve into the variability of the parame-
ters that characterize microservice-based architectural patterns, so that control-
ling such parameters can make the pattern behavior (or design model) less prone
to performance variations. Our goal is to reduce the sensitivity of input param-
eters thus understanding the performance variation of patterns’ configurations.
We follow a data-driven approach to profile the space of configuration alter-
natives for a given model (e.g., a pattern), identify the most influential model
parameters and performance tradeoffs, and run a sensitivity analysis with respect
to the tradeoffs. Furthermore, given a target tradeoff (e.g., fast response time
and average resource utilization), we provide a procedure that infers constraints
on the parameter values to ensure that the tradeoff is met. To do so, we rely on
machine learning (ML) techniques for scenario discovery, such as the patient rule
induction method (PRIM) [7] and classification/regression trees (CART) [4].

We perform an evaluation by focusing on three microservice patterns [23]:
(i) Anti-corruption Layer, (ii) Command Query Responsibility Segregation, and
(iii) Gateway Offloading. We study the effects of input parameter variations on
some performance metrics (i.e., response time and utilization), before and af-
ter applying parameter constraints. Our experimental results demonstrate that
the proposed approach infers specific ranges of input parameter values for the
microservices configuration that many times reduce its performance variations,
thus, achieving the desired tradeoff. Our approach provides knowledge to soft-
ware architects on performance sensitivity due to the identification of key param-
eters of a pattern model, thus supporting them in making informed decisions.
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The remainder of the paper is organized as follows. Section 2 provides back-
ground knowledge on the adopted architectural patterns and ML algorithms.
Section 3 describes the proposed methodology along with a motivating example
that clarifies the goal of this paper. Section 4 briefly introduces the experimental
setup, followed by the evaluation that is discussed in Section 5. Related work is
presented in Section 6, thus positioning our contribution in the state-of-the-art
approaches. Section 7 outlines concluding remarks and future work.

2 Background

This section provides knowledge on foundational concepts, discussing the charac-
teristics of the selected microservices patterns and the adopted ML algorithms.

2.1 Architectural Patterns

From a performance-based perspective, the selected microservices patterns [19]
include a set of relevant input parameters that have been evaluated in [16], and
we got inspiration from these parameters to build our dataset for this work. It
is worth remarking that the theoretical performance models presented in [16]
have been validated through an extensive experimentation in [14] where there is
evidence of a correspondence between real measurements of resource utilization
and system response time with respect to model-based performance predictions,
thus assessing the validity of the performance models and results.

Table 1 lists the parameters considered in one of the patterns we analyze.
Note that there are some common parameters that are replicated for all patterns,
such as the number of requests in the system (N), and the thinking time, i.e.,
the idle time before a new system request is issued (Z). Next, we explain the
specific parameters of the three patterns.

Gateway Offloading (GO). The problem occurs when different services re-
quire the same functionality (e.g., encryption) in their pipeline, thus causing a
backlog of requests. The solution involves offloading shared or specialized service
functionalities to a gateway proxy that manages them more efficiently, thus pre-
venting service slowdowns. The architectural diagram [19] consists of four main
components: three services (i.e., S1, S2, and S3) and the gateway (i.e., GW) that
hosts common services. Table 1 shows that the performance of this pattern is
affected by the service times of all components, i.e., SGW , SS1, SS2, and SS3.

Command and Query Responsibility Segregation (CQRS). The problem orig-
inates from traditional architectures that query and update the same (software
or hardware) resource. As a solution, operations that read data are segregated
from operations that update data. This can be performed at the software level
(i.e., read and write requests use separate interfaces, but they are located on the
same machine), or at the hardware level (i.e., having two different machines).
The architectural diagram [19] differs in case of a software or hardware solution.
The former includes a database component (i.e., DB) only, whereas the latter has
two database components (i.e., one for queries, DB-read, and one for updates,
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Pattern Parameters Description

GO

N Total amount of requests in the system
Z Thinking time
SGW Service time of GW component
SS1 Service time of service S1

SS2 Service time of service S2

SS3 Service time of service S3

Table 1: Gateway Offloading and its Performance-related Parameters

DB-write) that require synchronization. The pattern’s performance is affected
by the service times of the DB components (SDB , SDB−read, and SDB−write),
and by the time needed to synchronize read and write requests (R ↔ W ).

Anti-corruption Layer (ACL). The problem arises when an application lever-
ages different systems for its operation, e.g., a (recently) migrated application
needs to interact with a legacy system that makes use of technologies not com-
patible with the primary application. From a domain-driven design perspective,
this pattern applies whenever it is necessary to isolate domain models, not only
to set apart legacy systems. The solution introduces an adaptation layer that
mediates the communication between a (modern) application and a legacy sys-
tem. The architectural diagram [19] consists of three main components: two
subsystems (i.e., SS1 and SS2) and the anti-corruption layer (i.e., ACL) that acts
as adapter and mediates the communications between the two subsystems. The
pattern’s performance is affected by the probability of invoking the ACL com-
ponent (Prob), and by the service times of the three involved components, i.e.,
SSS1, SACL, and SSS2.

2.2 Scenario Discovery Algorithms

In the following, we briefly describe two algorithms for scenario discovery (SD) [5],
which is a type of ML technique used for finding regions of interest in a highly-
dimensional dataset containing inputs and outputs for a model.

PRIM (Patient Rule Induction Method). It is a bump-hunting algorithm [7]
that searches for regions (bumps) in the input space with relatively high (or low)
values for a target variable. In our dataset, this variable takes Boolean values
depending on whether a performance requirement is met. PRIM describes the
regions by simple rules, as they are rectangles called boxes in the input space.
PRIM works by slowly reducing the data size by small amounts iteratively. First,
candidate boxes are generated. Each box removes a data portion based on the
levels of a single input variable. This stage is known as top-down peeling. Second,
for each candidate box, the relative improvement in the number of outputs (i.e.,
performance metrics) inside the box is calculated, and the candidate box with the
highest improvement is selected. Third, the data in the selected box replace the
starting data, and the process is repeated. There is also a second stage, known
as bottom-up pasting, which is the inverse of the peeling stage. The process ends
based on stopping criteria (e.g., the current box is too small). PRIM seeks for
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regions having both a high density of positive instances (i.e., those satisfying the
target property) and a good coverage of the space being analyzed.

CART (Classification And Regression Trees). It is a decision tree algorithm [4]
that recursively splits the data into subsets based on the values of input variables,
until creating a tree-like structure for predicting a target variable. Similarly to
PRIM, we assume that the target variable is a Boolean property, and use CART
to address a classification problem. CART creates a binary decision tree, in which
nodes are split into sub-nodes based on a threshold value of an input variable.
The root node is considered as the initial set and split into two subsets by con-
sidering the best input and threshold value. These subsets are split using the
same logic. This process continues until the last pure subset is found in the tree
or the maximum number of leaves is reached. Node splitting relies on the Gini
impurity criterion [4], which measures the probability of misclassifying a random
instance from a subset labeled according to the majority class. The lower the
Gini impurity, the more pure a subset is. CART evaluates all possible splits and
selects the one that best reduces the impurity of the subsets. Pruning is used to
remove nodes that contribute little to classifier accuracy. In general, CART is
faster than PRIM, although it might not identify the same rules for a dataset.

3 Approach

We propose a data-driven framework to support the architect’s understanding of
the outcomes of certain design decisions and assumptions on performance prop-
erties of a microservices pattern. In particular, we identify the pattern parame-
ters that contribute the most to performance variability and infer constraints for
those parameters to reduce the performance sensitivity, providing an envelope of
(desired) pattern behavior. Our research goal is to establish a richer knowledge
base for software architects. To this end, we provide project-specific evaluations
by leveraging existing patterns along with their performance data.

Our framework is a processing pipeline as outlined in Fig. 1. The pipeline
comprises four phases: pattern modeling, data collection, sensitivity assessment
of pattern parameters, and inference of parameter constraints. Constraints are
computed using either the PRIM or CART algorithms.

3.1 Processing pipeline

The process begins with the specification (or model) of a pattern M . Our frame-
work does not prescribe a specification formalism. The requirements for the
pattern modeling are: an initial architecture (i.e., the model components and
their connections), and the specification of parameters (e.g., the variability in
the service time of a specific system resource). The modelM must distinguish: (i)
the available design decisions (i.e., input parameters), (ii) the variations for the
parameters (i.e., the possible values to be assigned), and (iii) the performance
metrics of interest (i.e., output results). Variability in the parameters (inputs)
will be reflected in variability in the performance metrics (outputs).



6 Diaz-Pace et al.

Sample pattern configurations 
& parameter values

Compute performance metrics

Discretize peformance values

Identify key parameters

Run PRIM or CART

Apply parameter 
constraintsMS Pattern 

Dataset

Initial 
architecture + 

Parameter 
spec

Constraints (boxes)
2. DATA COLLECTION NO

1. PATTERN MODELING

3. PARAMETER SENSITIVITY
ASSESSMENT

Is perfomance 
sensitivity small 

enough?

Target performance tradeff

YES

parameters

data

4. INFERENCE OF PARAMETER CONSTRAINTS

END

Fig. 1: Main phases of the proposed framework for analyzing and acting on the
performance sensitivity of microservices patterns.

Once M is chosen, the data collection phase refers to the generation of alter-
native instances in terms of different pattern configurations and different param-
eter values for each configuration. These instances define the so-called configu-
ration space. The number of instances to sample is determined by the architect.
Each instance is evaluated by a performance model, which simulates how each
pattern configuration behaves under given parameter values (e.g., different work-
load variations) and computes a set of metrics (e.g., response time, utilization).
The metric values define the quality-attribute space for the configuration space.

To facilitate the treatment of the quality-attribute space, we apply a dis-
cretization procedure that bins the values for each performance metric accord-
ing to an ordinal (or Likert) scale. For instance, for response time, we use a
3-point scale < fast, average, slow > which converts the metric numeric val-
ues into categorical ones. In the general case, the architect can partition the
quality-attribute space into more bins or even discretize it into arbitrary regions
(e.g., below or above specific thresholds). Any instance is mapped to a label
that results from the concatenation of the categorical values for the metrics.
This way, the instances are grouped in the quality-attribute space according to
the tradeoffs of their labels. These tradeoffs capture quality-attribute properties
for performance sensitivity analysis. Both the configuration and the (discretized)
quality-attribute spaces are stored in a dataset. It is worth remarking that de-
cisions and input parameters co-exist in the generated data. This implies that
a certain design decision (e.g., no-offloading) will be mapped to a region of the
space (quadrant) when exposed to a certain workload, whereas it may belong to
a different region when considering another workload intensity value.

In the third phase, called parameter sensitivity assessment, the software ar-
chitect chooses a target tradeoff (e.g., < average, fast > for utilization and
response time, respectively) and determines whether the performance variability
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of the M configurations, with unconstrained decisions and parameters, is good
enough for her preferences. This assessment can be made, for instance, by visu-
ally inspecting the quality-attribute. For example, the decision of offloading long
services in Fig. 3 shows that the resulting architectural configurations can vary
from < low, fast > to < low, slow >. If the performance variability is too high,
then parameter constraints must be imposed to reduce the pattern sensitivity.

Fourth, the constraint inference phase seeks to control for the uncertainty in
the parameter values, and thus reduce the variability of the performance metrics.
We rely on PRIM and CART for scenario discovery (SD). In our context, SD
refers to the identification of conditions that cause a set of instances (for a target
configuration) to satisfy a given property with a bound variability. For simplicity,
these properties correspond to the regions defined by the quality-attribute labels.
Nonetheless, other types of quality-attribute properties could be formulated. To
reduce the number of parameters to be taken by SD algorithms, a sensitivity
analysis filter can be applied so that only the most relevant parameters are
processed by the SD algorithm. To this end, we implement a correlation analysis
of the parameters with respect to the performance metrics, and retain those
parameters with high correlation values. Finally, the architect can decide which
the parameter constraints (called boxes) to apply to the pattern configurations.

3.2 Motivating Example

As an example of how our approach works, let us consider the Gateway Of-
floading (GO) pattern [16] introduced in Section 2.1. A GO instantiation for
three services and two pipelines is illustrated in Fig. 2. In this example, let us
assume a model with two request types, request A and request B, which need to
be served by the system, one being executed by the first pipeline (service1 ) and
another one being executed by the second pipeline (service2 and service3 ). Let
us also assume that the three microservices require the requests to be decrypted
before executing them. When using the GO pattern, the encryption operation
is deployed in the gateway component.

The GO performance depends on the operations being offloaded, as the time
a request spends in the gateway to execute the offloaded operation is taken away
from the other services. Thus, the offloading strategy becomes a design decision
for the pattern. Based on [16], let us consider three alternatives for this decision,
namely: no offloading, offloading short operations (e.g., those with execution
times up to 5ms), or offloading long operations (e.g., execution times between
5ms and 10ms). As performance metrics, let us assume that architects are inter-
ested in response time and utilization at the gateway. To estimate these metrics,
the architect can make assumptions about the behavior of the gateway and mi-
croservices when processing requests, and also about the system environment.
These assumptions are captured by parameters, such as the number of requests
(NA, NB), the time before requests are issued (ZA, and ZB), and the execution
times for each component (SGW , SS1, SS2 and SS3). Based on these parameters,
queuing networks (QNs) [10] can be applied to estimate performance metrics.
By using the numerical values provided in [16] we can see that tradeoffs exist
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NA 
ZA

NB 
ZB

SGW

SS2

SS3

SS1

offloading 
decision

Gateway Offloading

Req. Type request A request B
N [0, 25] 25−NA

Z 100 100
SGW [0, 10] SGW,requestA

SS1 20− SGW,requestA –
SS2 – 12− SGW,requestB

SS3 – 15− SGW,requestB

Fig. 2: Example of a Gateway Offloading pattern with performance parameters.

between utilization and response time for the three alternatives, as depicted in
Fig. 3. For simplicity, we discretize the values for response time and utiliza-
tion into three regions, each one exposing a feasible tradeoff category for the
problem. In the general case, the quality-attribute space can be partitioned in
multiple regions, depending on the variability of the metrics under analysis or
the architect’s needs.

A software architect might be interested in GO configurations with average
or high utilization and average or fast response time. In the quality-attribute
space in Fig. 3, we can see the performance variations in the configurations due to
possible design decisions and assumptions. In this context, a design investigation
for the architect is whether constraints can be imposed on the assumptions (or on
the decisions) to reduce performance variability and thus, increase the chances
that a pattern configuration fulfills a given tradeoff. This effort focuses on the
insensitivity of a configuration, or a group of related configurations. In other
words, our approach aims to understand how sensitive the performance of a
configuration is to variations in its assumptions or design decisions. For instance,
in the GO space in Fig. 3, the decision of off-loading short services seems to be
mostly insensitive regarding the < fast, average > tradeoff for utilization and
response time, although it might deviate towards configurations with slower
response time. The no-offloading decision shows a considerable sensitivity for
the < fast, low > tradeoff, while off-loading long services is always insensitive
around the < fast, high > tradeoff.

Let us consider that the architect wants to ensure both average utilization
and fast response time as her target tradeoff. Thus, she needs to select an appro-
priate decision (e.g., off-loading short services) and also avoid deflections due to
parameter variability. In particular, she can try to bound relevant parameters,
such as NA, NB , SGW , in such a way the GO configurations fall within the
< fast, average > region. This effect can be achieved with NA = [1.0, 19.0] and
SGW = [2.5, 7.5]. These constraints express rules for controlling the parameter
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Fig. 3: Tradeoffs between response time and utilization for different configura-
tions of the Gateway Offloading pattern. On the right, the constraints imposed
(via PRIM) for reducing the sensitivity of achieving a target tradeoff are shown.

values. The architect can rely on these rules to understand the design decisions
related to the behavior of the GO pattern. For instance, she can realize that the
gateway service time SGW is instrumental in the pattern performance, but also
environmental factors play a role, e.g., the rate of incoming requests of request A
(NA) influences the pattern response. However, finding a set of constraints that
ensure insensitive configurations with respect to a quality-attribute property is
not straightforward. Here is where SD algorithms become useful.

4 Experimental Setup

We evaluate our approach by exercising it on three microservices patterns and
computing different performance metrics for the pattern configurations.The ex-
periments involve the patterns Gateway Offloading (GO), Command Query Re-
sponsibility Seggregation (CRQS) and Anticorruption Layer (ACL), as modeled
in [16]. We aim at addressing the following research questions:

– RQ#1: Which design decisions are more effective for satisfying a perfor-
mance tradeoff?

– RQ#2: For a given design decision, how do PRIM and CART help to reduce
sensitivity with respect to a performance tradeoff?

According to the processing pipeline of Fig. 1, we initially generate a dataset
per pattern by executing its corresponding QN model and then visually inspect
the distribution of the pattern configurations with respect to the tradeoffs. Two
performance metrics are discretized into three equally-spaced ranges of values,
leading to these tradeoff categories: fast, average, and slow for response time,
and high, average and low for utilization. These results mainly target RQ#1.
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For assessing the PRIM and CART algorithms, we split the pattern datasets
into training and test sets (70/30) using stratification on the tradeoff labels,
as typically done in ML. We remove outliers from the datasets via the z-score
method (z = 3). We additionally perform a feature analysis via the F-statistic
to retain the most relevant parameters (features) with respect to utilization and
response time (targets). These parameters were later fed into the algorithms. In
PRIM, we apply the algorithm on the training set for every combination of (fea-
sible) tradeoff label and design decision, and record the parameter rules (boxes).
In CART, we consider each design decision, as the resulting tree generates the
parameter rules for all the tradeoff labels at once.

For answering RQ#2, all the boxes obtained from both algorithms are used
for evaluation on the test set. To quantify the effects of imposing the parameter
rules, we compute the percentage of configurations that satisfy each performance
property (i.e., tradeoff label) before and after applying the boxes. We refer to this
percentage as density score. We also analyze differences in the scores for the boxes
generated by each algorithm to assess performance sensitivity improvements.

5 Evaluation

Fig. 4 shows the distributions of quality-attribute tradeoffs for the different
configurations. There are three alternative decisions for the GO pattern, two
decisions for the CQRS pattern, and one decision for the ACL pattern. Each
quadrant refers to a different performance requirement (for the corresponding
pattern) involving a tradeoff between utilization and response time. As depicted
in Fig. 4 , not all the tradeoffs were feasible in our sampled architectural space.

(a) GO (b) CQRS (c) ACL

Fig. 4: Distribution of configurations with respect to the performance tradeoffs.

Tradeoff analysis of GO pattern. Fig. 4a shows that the decision of no-
offloading always results in a low system utilization, and the response time can
fluctuate between fast and slow depending on the parameter values. This sce-
nario indicates that the architect should apply parameter constraints to ensure a
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good response time. In turn, the decision of offloading only long services always
leads to a high utilization and an average response time, and thus seems to be
an adequate decision for a reasonable performance (if a high utilization is not
problematic for the system). When the goal is to optimize response time, the
decision of offloading short services gives average-to-fast response time with an
average utilization. Nonetheless, parameter constraints are necessary to avoid
deflections towards configurations with slow latency.

Tradeoff analysis of CQRS pattern. Figure 4b exhibits a similar trend
as the GO pattern with respect to trading off average-to-low utilization and
average-to-fast response time. If the software decision is chosen, the system uti-
lization will be always low, and the architect could apply additional constraints
to opt between an average or fast response time. The hardware decision is pre-
ferred for obtaining a high utilization, but the response time might degrade
for some parameter values in the configurations. In this scenario, the architect
should control for the parameter values to keep the response time fast or average
(i.e., avoid the bottom-right quadrant).

Tradeoff analysis of ACL pattern. Fig. 4c differs from the previous ones,
since here all performance variations are due to parameter values. The best con-
figurations have average-to-high utilization with mostly fast response time. How-
ever, deflections towards low utilization or slower response times are observed.
To avoid those scenarios, the architect should apply appropriate constraints on
the parameter values, especially on the frequency of despatching requests to the
ACL component.

Summarizing, Fig. 4 visualizes the pros and cons of each microservice pattern,
and how decisions could be taken to achieve specific performance tradeoffs, thus
answering RQ#1. Furthermore, the analyses expose the sensitivity of certain
pattern configurations, depending on the tradeoff targeted by the architect.

Based on the previous datasets, we ran PRIM and CART for the feasible
configurations, design decisions, and tradeoffs, in order to obtain a spectrum
of boxes and density scores. The results are summarized in Tables 2, 3, and 4.
Performance tradeoff is represented by response time (fast, average, slow), and
utilization (high, average, low). Please note that test sets represent the baselines,
i.e., without applying any algorithm. PRIM and CART produce density score
values after applying the boxes for different performance tradeoffs. The values
are in bold (and green), underlined (and yellow) or framed (and red) to highlight
whether the change was positive, marginal or negative, respectively, in terms of
configurations meeting the target tradeoff after imposing the constraints.

Constraints for GO pattern. After splitting the dataset (78 instances),
we build the PRIM and CART models using the training set (≈ 45 instances).
Out of 8 possible parameters, NA, NB , and SGW turned out to be the most
relevant ones for performance sensitivity of the pattern in both algorithms. Table
2 summarizes the density metrics obtained from the experiments. The first block
of rows (test set) shows the initial scores for different tradeoffs, in which the
most prevalent tradeoffs (< fast, low >, < average, high >, < fast, average >)
depend on the design decision implemented at the gateway. For instance, the first
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Performance fast, fast, fast, avg, avg, avg, slow, slow, slow,
GO Decision tradeoff low avg high low avg high low avg high

Test set
NO 0.50 0.30 0.20
LSO 1.00
SSO 0.67 0.11 0.11 0.11

PRIM

SSO

avg, avg 0.75 0.12 0.13
fast, avg 0.83 0.17
fast, high 1.00

slow, avg 1.00
�� ��0.00

LSO avg, high 1.00

NO
avg, low 0.83

�� ��0.17
fast, low 1.00
slow, low 0.50 0.30 0.20

CART
SSO

fast, high 0.50 0.50
avg, avg 0.33 0.33 0.33
fast, avg 1.00

NO fast, low 1.00

Table 2: GO pattern’s results. Decisions are: no-offloading (NO), short-services-
oflloaded (SSO), long-services-oflloaded (LSO). Average is abbreviated with avg.

row in the table indicates that with no-offloading 50% of solutions belong to the
< fast, low > tradeoff, 30% falls in the < average, low > quadrant, whereas
20% relates to the < slow, low > tradeoff. When PRIM is applied, for instance,
in the sixth row for the SSO decision and < fast, high > as the target tradeoff,
100% of the constrained configurations belong to that tradeoff quadrant. The
parameter constraints for this case are NA = [8.0, 12.0] and SGW = [2.5, 7.5].
The constraints for all the cases are provided in the reproducibility package.

Both algorithms were able to effectively constraint certain parameters for
ensuring the desirable tradeoffs of Fig. 4a, namely: < fast, low > (no-offloading),
< fast, average > and < fast, high > (short-services offloading). On one hand,
PRIM was able to address more cases than CART, although it was not effective
at improving all of them. On the other hand, the cases addressed by CART
were limited but all of them were improved. CART outperformed PRIM for
the < fast, average > (1.00 versus 0.83 w.r.t. 0.67 as the initial score) and <
average, average > (0.33 versus 0.13 w.r.t. 0.11 as the initial score) targets under
the decision of short-services offloading. PRIM did better than CART for the <
fast, high > target (1.0 versus 0.5 w.r.t. 0.11 as the initial score). The differences
can be attributed to the internal working of the algorithms, which returned
different parameter ranges even for the same targets. In CART, we observed
that improving the < average, average > and < fast, high > targets (with
short-services offloading) had a positive side-effect on the < fast, average >
target, which is the most prevalent tradeoff in the space.

Constraints for CQRS pattern. The PRIM and CART models are built
from the training set (382 instances) and their rules are applied to the test set
(256 instances). The most prevalent tradeoffs are < fast, average > for the
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Performance fast, fast, fast, avg, avg, avg, slow, slow, slow,
CQRS Decision tradeoff low avg high low avg high low avg high

Test set
hw 0.04 0.84 0.02 0.05 0.06
sw 0.44 0.56

PRIM

hw

avg, avg 0.17 0.43 0.03 0.20 0.17
avg, low 0.05 0.81 0.02 0.06 0.07
fast, avg 1.00
slow, low 0.22 0.11 0.11 0.56

sw

avg, avg 0.52 0.48 0.00
avg, low 0.46 0.54
fast, avg 0.41 0.00 0.59
slow, low 0.43 0.57 0.00

CART
hw fast, avg 1.00
sw fast, avg 0.45 0.00 0.55

Table 3: CQRS pattern’s results. Decisions are: hardware separation (hw) and
software separation (sw). Average is abbreviated with avg.

Performance fast, fast, fast, avg, avg, avg, slow, slow, slow,
ACL Decision tradeoff low avg high low avg high low avg high

Test set acl 0.02 0.48 0.39 0.09 0.01 0.01

PRIM
acl fast, avg 1.00
acl fast, high 0.04 0.96

CART
acl fast, avg 0.73 0.20 0.07
acl fast, high 0.10 0.87 0.03

Table 4: ACL pattern’s results. Decision consists of the frequency of invoking
the ACL component. Average is abbreviated with avg.

hardware decision and < fast, low > and < average, low > for the software
alternative. Coincidentally, both models identify the frequency of write requests
in the database (Z write) as the key parameter for performance sensitivity of the
pattern. Furthermore, both models are in agreement suggesting a lower frequency
for the parameter that relates to the writing requests.

As noted from the density metrics in Table 3, both PRIM and CART ob-
tain maximal effectiveness at improving the < fast, average > target, which is
a desirable target with the hardware decision, according to Fig. 4b. CART is
very limited and could not address other tradeoffs. However, PRIM successfully
addresses the < average, average > (0.2 w.r.t. 0.05 as the initial score) and
< slow, low > (0.56 w.r.t. 0.06 as the initial score) targets for the hardware
decision, even when those tradeoffs are not prevalent in the dataset. This result
highlights an interesting feature of PRIM that is not observed in CART, as it
mostly detects prevalent tradeoffs.

Constraints for ACL pattern. The pattern dataset was split (234 in-
stances) in order to build the PRIM and CART models on the training set
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(≈ 138 instances). The most prevalent tradeoffs are < fast, average > and
< average, high >, which are also desirable targets, according to Fig. 4c.

The corresponding rules are evaluated on the test set, and both yield gains in
the density scores for the target tradeoffs above, with a slight score increment for
PRIM over CART. The parameters NA and NB are shared by the two algorithms
as being relevant for performance sensitivity, with more or less the same ranges
of values. The reason is that these parameters relate to the workload of requests,
thus affecting the performance metrics. However, PRIM also returned p A as a
relevant parameter, while CART returned 1- p B for the same role. These two
parameters relate to the probability of invoking the ACL component that plays
a key role for this pattern. In PRIM, the suggested ranges for p A were below
0.5 for < fast, average > and above 0.7 for < fast, high >. In CART instead
the value range for 1- p B was below 0.5 for both tradeoffs.

Summarizing, these analysis results answer RQ#2. In general, the score
improvements for all the patterns are most noticeable in those quality-attribute
tradeoffs encompassing many configurations in the dataset, i.e., tradeoffs with a
reasonable coverage of solutions in the space. Both PRIM and CART work well
for certain under-represented tradeoffs for the GO and CQRS patterns.

6 Related work

Microservices are increasingly popular due to their promises of agility, scalability,
maintainability, and performance [8], which have even attracted major vendors,
e.g., Netflix [21]. Recent studies have remarked on the importance of evaluating
the performance of microservices, e.g., [28,6,1] to mention a few recent ones. In
the following, we discuss the main approaches related to the aspects tackled in
this paper, acknowledging that our selection of works is not exhaustive.

Performance evaluation. Di Francesco et al. [18] collect 103 studies on mi-
croservice architectures, and performance is observed to grow in popularity and
relevance among microservice quality attributes. Li et al. [11] review 72 studies
and outline performance as one of critical attributes when designing a microser-
vices application. Wijerathna et al. [24] show that performance is often evaluated
during the latest stages of the development cycles, hence fixing issues becomes
expensive, so it is instead preferable to incorporate performance-based knowl-
edge from the architectural phase. All these studies highlight the importance of
performance analysis in microservices architectures, thus endorsing our research.

Architectural patterns. Khomh et al. [9] study a cloud-based application along
with six design patterns that influence the system performance and energy con-
sumption, but there is no sensitivity analysis in the derived findings. Akbulut
et al. [2] evaluate the performance of three design patterns, and measurements
reveal that the patterns perform better or worse depending on the different sce-
narios they are applied to. Amiri et al. [3] leverage the adoption of architectural
patterns to explore performance and reliability tradeoffs. Ma et al. [12] present
a correlation mechanism to detect cloud design patterns showing an anomalous
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performance behavior. Long et al. [15] assess the usage of one design pattern that
aims to balance the incoming load of requests, thus showing a positive impact
on the performance of a serverless application. Overall, these studies evaluate
the impact of applying architectural patterns, but they do not quantitatively
compare the design decisions along with the correlated sensitivity analysis, as
we pursue in this paper.

Behavioral robustness. The notion of sensitivity is related to robustness, as re-
cently renewed by Zhang et al. [26]. Robustness is defined as the largest set of de-
viating environmental behaviors under which the system is capable of guarantee-
ing a desired property. This concept evolved into a robustification objective [27],
i.e., how to improve the robustness of a design (while minimizing the cost of
architectural changes) against potential deviations. A tool-based approach is
proposed in [25] where repairs are synthesized from solving a multi-objective
problem that minimizes the amount of behaviors and the costs of design modifi-
cations. Our research is motivated by controlling the possible deviations in design
patterns’ parameters with respect to performance properties. This is achieved
through PRIM and CART that reduce the variability of parameters.

In summary, to the best of our knowledge, there are several approaches that
investigated the performance behavior of pattern-based microservices architec-
tures. Our novelty relies on inferring rules to support architects in understanding
and controlling pattern variability while achieving performance tradeoffs.

7 Conclusion and future work

This paper proposes a data-driven analysis of architectural patterns applied in
the context of microservices applications. Our results provide insights to software
architects since they are informed on the key parameters that affect the adop-
tion of architectural patterns and their impact on performance tradeoffs, thus
contributing to the quantitative evaluation of microservices applications. In this
work, we rely on Queuing Networks as analytical models for performance, since
we exploit a publicly available dataset4 that includes different parameter ranges
and reports interesting performance variations and insights. However, we recall
that our approach is not tied to any performance modeling formalism, its pri-
mary goal is to collect data about patterns and their performance indicators as
the basis for sensitivity analysis and subsequent constraint inference.

As future work, we plan to analyze a larger set of architectural patterns and
their combinations, even from different application domains, and to consider
other quality indicators, such as reliability and security. We are interested in de-
riving design decisions with associated tradeoffs so that software architects have
a wider understanding of the alternative decisions at their disposal. We also plan
to assess the actual adoption of architectural patterns in industrial case studies,
thus collecting further data to study the variability of pattern parameters.

4 https://zenodo.org/records/7524410

https://zenodo.org/records/7524410


16 Diaz-Pace et al.

8 Data Availability

We provide a reproducibility package with the scripts and datasets used in our
experiments at: https://doi.org/10.5281/zenodo.15526563
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