
Proceedings of the 2006 Conference on Software Engineering and Knowledge Engineering, 5-7 July, 2006

An Architecture for Personal Cognitive Assistance

David Garlan, Bradley Schmerl

School of Computer Science, Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA, 15213
USA

+1 412 268 5057
{garlan,schmerl}@cs.cmu.edu

Abstract. Current desktop environments provide weak support for

carrying out complex user-oriented tasks. Although individual

applications are becoming increasingly sophisticated and feature-

rich, users must map their high-level goals to the low-level opera-

tional vocabulary of applications, and deal with a myriad of rou-

tine tasks (such as keeping up with email, keeping calendars and

web sites up-to-date, etc.). An alternative vision is that of a per-

sonal cognitive assistant. Like a good secretary, such an assistant

would help users accomplish their high-level goals, coordinating

the use of multiple applications, automatically handling routine

tasks, and, most importantly, adapting to the individual needs of a

user over time. In this paper we describe the architecture and its

implementation for a personal cognitive assistant called RADAR.

Key features include (a) extensibility through the use of a plug-in

agent architecture (b) transparent integration with legacy applica-

tions and data of today’s desktop environments, and (c) extensive

use of learning so that the environment adapts to the individual

user over time.

Keywords

Personal cognitive assistant, agent, software architecture

1 INTRODUCTION
Computers are playing an increasingly indispensable role in

complex day-to-day activities of many people. Email, cal-

endaring systems, daily planners, web sites, and the like are

now an essential component of most people’s lives.

Unfortunately today’s desktop environments provide weak

support for carrying out complex user-oriented tasks, or

even dealing with the myriad details of handling everyday

computer-assisted information, communication, and plan-

ning tasks. Although individual applications are becoming

increasingly sophisticated, users must map their high-level

goals to the low-level vocabulary of specific applications

and services, and deal with a barrage of routine tasks, such

as keeping up with their email, and keeping their calendars

web sites up-to-date.

An alternative vision is that of a personal cognitive assis-

tant (PCA). Like a good secretary, a PCA would help users

accomplish their high-level goals, coordinating the use of

multiple applications, automatically handling routine tasks,

and, most importantly, adapting to the individual needs of a

user over time. A PCA would also be able to work coopera-

tively with the user, automating tasks where appropriate,

and staying out of the way where not.

However, realizing such a vision raises a number of hard

software engineering challenges. First, to be useful and

economical, a PCA should dovetail with existing (and fu-

ture) applications, file systems, and user processes. Even if

one could afford to reengineer all existing desktop applica-

tions (which we can’t), most users would not be inclined to

learn to use an entirely new set of applications, regardless

of the benefits provided. Second, a PCA should be extensi-

ble. That is, it should be possible to incrementally add new

capabilities for personal assistance over time, possibly tak-

ing advantage of third-party components to increase the

range of support. Third, it should be adaptive. Over time

the capabilities of the environment should automatically

adapt to the needs and preferences of a user, without a lot

of specific user guidance and oversight.

In this paper we describe an architecture and its implemen-

tation for a PCA, called RADAR, that tackles these chal-

lenges head-on. Building on top of existing agent-oriented

and distributed systems architectures, RADAR provides a

pluggable framework for integrating “specialists” that col-

lectively augment a user’s ability to handle complex tasks.

Such specialists complement the capabilities of existing

desktop environments, applications, and file systems, auto-

mating routine (but often complex) tasks programmatically.

New specialists can be added or removed at any time.

Moreover, learning is a core capability: over time special-

ists adapt to the needs and preferences of users.

While RADAR is the product of a large number of cooper-

ating researchers, developed over the past three years at

Carnegie Mellon, in this paper we focus specifically on the

design of its architecture and the ways in which that archi-

tecture supports key engineering properties of composition-

ality, extensibility, and integration with existing applica-

tions and services. We also describe the current implemen-

tation and outline recent empirical results of RADAR’s

Proceedings of the 2006 Conference on Software Engineering and Knowledge Engineering, 5-7 July, 2006

 2

effectiveness in supporting a class of crisis management

tasks.

2 RELATED WORK
One important branch of related research is traditional ap-

proaches to artificial intelligence, which attempt to auto-

mate human-oriented activities such as medical diagnosis,

hardware configuration, chess, and robotics. In most of

these systems the goal is to have the AI system replace the

human, and many of these systems have focused on very

specific task domains (like chess or medicine). In contrast

our work on a personal cognitive assistant attempts to aug-

ment human capability, and to do this for rather mundane

(although often voluminous and complex) tasks like priori-

tizing email, or helping to manage one’s calendar. Addi-

tionally, most AI systems have not investigated the engi-

neering issues of developing a component-based approach,

or integrating AI capability with legacy systems.

More closely related are other approaches to assisting users

with tasks in familiar desktop environments. The Calo pro-

ject, for example, has been investigating similar approaches

[3]. Like RADAR, Calo provides an integration framework

for learning-based task-specific components. RADAR dif-

fers from Calo in two respects. First, RADAR attempts to

co-exist with off-the-shelf applications and data, such as

Outlook, while Calo has taken the approach of reengineer-

ing standard desktop applications to work smoothly with

it’s task support. The advantage of RADAR is the ability to

plug its capability into any desktop environment; the ad-

vantage of Calo is that reimplementation of standard appli-

cations provides better opportunities for close collaboration

between them and the cognitive assistant.

Other work that attempts to help users with ordinary tasks

comes out of the ubiquitous computing [1][16][19] While

these efforts attempt to dovetail with existing infrastructure

and applications, their primary focus is on the use of het-

erogeneous and pervasive devices to help users accomplish

tasks more effectively.

Another closely related area is that of Agent-oriented Ar-

chitectures [7][9][11][12][13][14]. Over the past decade

there has been considerable interest in multi-agent systems,

and middleware to support them. In particular, a number of

architectural frameworks have been proposed, including

AAS [6], Zeus [5], FIPA[10]. As described later, we build

on top of agent-oriented architectures (and, in particular,

FIPA), specializing the general notions of agents and coor-

dination with the specific architectural structures that char-

acterize the RADAR architecture.

3 ARCHITECTURAL REQUIREMENTS FOR A PCA
The vision of a PCA is that of a smart assistant, that in

some sense “understands” the user, helping out where

needed and effective, but staying out of the way otherwise.

Inherent in this view is the idea that a PCA should com-

plement what a user normally does, and how a user nor-

mally does it. Although over time a user might adapt his

behavior to rely more heavily on the PCA as he gains trust

in it, the user should not be forced to do this.

Consider the following scenario. A busy user has loaded a

PCA onto the desktop. At first the user notices little change

to his normal way of working. However, exploring the PCA

console, he discovers that he can activate a calendar assis-

tant. After activating it, the user is prompted to identify

some general preferences for things like what calendaring

application he wants to use, what times to keep free on the

schedule, cancellation policies, and the like. Since the user

is wary of turning over control to any automated calendar-

ing assistant, he decides to be conservative requesting that

the assistant should schedule meetings only during the

hours of 10-12 on weekdays, always confirming schedule

changes before committing them, and it should never can-

cel or reschedule an existing meeting. As time progresses

he notices that the calendaring assistant has been able to

correctly identify email messages that relate to scheduling

requests, and to suggest reasonable scheduling actions.

Based on positive experience, he decides to let the assistant

do it automatically. Over time, he discovers that the assis-

tant can do more and more: it learns his desires for cancel-

ing meetings (e.g., preferring to move subordinates’ meet-

ings before those with his boss); it learns that when the user

goes on vacation or business travel, email should be sent to

people with whom he has regular meetings to let them

know, etc. Quite happy with this capability he continues to

let it do more, confident that it is learning how he would

like it to be done, and asking for permission before attempt-

ing anything radically new.

From an engineering perspective this vision implies three

essential requirements for a PCA:

1. Compatibility: The services and assistance provided

by a PCA should co-exist with the capabilities of cur-

rent legacy applications and services. The user should

not have to abandon old ways of doing business, or

learn to use new applications with different interfaces.

While additional capability provided by a PCA will

necessarily require some additional forms of user inter-

action, these should supplement, not replace, existing

forms of interaction. This implies compatibility not

only with applications, but also with information

sources as well. For example, email messages are often

an important stimulus and information source for an

assistant (for example, signifying the need to start a

new task). Understanding email messages, written in a

Proceedings of the 2006 Conference on Software Engineering and Knowledge Engineering, 5-7 July, 2006

 3

natural language, and stored in standard email reposito-

ries (e.g., Imap), is essential.

2. Extensibility: It should be possible to incrementally

augment the capabilities of the PCA. For example, if

some new form of task assistance becomes available, it

should be easily pluggable into the existing system,

adding new capability without disrupting the old, and

dovetailing with existing assistance provided by the

PCA. One can even imagine a marketplace for personal

task assistance in which different forms of the same

kind of assistance might be purchased at different

price-quality points

3. Adaptability: The system should conform to the user,

learning new opportunities for assisting the user, and

inferring appropriate behavior based on how users

carry out their tasks. Learning should apply to a wide

variety things, including prioritization of tasks (e.g.,

helping a user focus on the important things), policies

for interaction with others (e.g., deciding who should

have access to certain kinds of information), cluster-

ings of related activities (e.g., noticing that if action A

is performed action B is usually also performed), inter-

pretation of natural language (e.g., recognizing idioms

that relate to task achievement), and many others.

In addition to these requirements, there are a number of

other more-standard systems-oriented engineering qualities,

such as robustness, availability, security, and performance.

Indeed, the services provided by the PCA should have com-

parable quality attributes to today’s mail systems, which

tend to be available in a global setting, highly robust, se-

cure, and reasonably efficient.

4 THE RADAR ARCHITECTURE
To achieve these goals RADAR has adopted a layered run-

time architecture, pictured in Figure 1, which depicts the

architecture from the point of view of a single individual

working in a personal RADAR space. We first give a high

level overview, and then look in more detail at specific

technical issues.

4.1 Overview

At the bottom layer are legacy applications, services, and

data stores. Applications include things like email readers,

web browsers, calendar managers, and the like. Data stores

include documents stored in local and remote file systems,

repositories of email, calendar information, contact lists,

etc. Users interact with these in normal ways. Application

APIs are used or written to allow RADAR to integrate with

legacy application. For example, (M) interfaces inform

RADAR of events that happen in the system (e.g., the user

moves an appointment), that might trigger new tasks or

learning by RADAR; Control (C) interfaces allow RADAR

to make changes to the desktop space (e.g., to schedule a

new appointment); User Interface embellishments (UI) al-

low RADAR to present information to the user in a manner

the user is familiar with (for example, to display RADAR-

proposed alternatives for a meeting on a user’s calendar). In

addition we add a RADAR Console, which provides a user

with direct access to RADAR and its capabilities.

On top of these RADAR adds a layer of task assistance.

This can be divided into four parts:

Task specialists: A task specialist (or just specialist) is a

component that attempts to provide assistance for a particu-

lar kind of task, such as schedule management, web site

updating, and routine email handling. The number and

kind of specialists can vary from user to user, and over

time for a single user as new specialists are added or re-

moved from that user’s RADAR space. Each specialist

contains knowledge about how to conduct a particular

task, and each contains a learning component that allows

each specialist to adapt to the user with respect to prefer-

ences, preferred methods of doing the task, etc. It stores

this learned knowledge in the shared knowledge base.

Task management: To coordinate the work of the spe-

cialists and to provide overall tracking and control of tasks

is a task manager. The task manager comprises a number

of logical services, including task dispatch (interacting

with specialists to assign new tasks), task tracking (keep-

ing track of high-level state of tasks – see below), task

query (retrieving all tasks that match certain selection cri-

teria), and task prioritization (keeping track of the relative

priority of tasks).

Shared information and knowledge: To be effective, spe-

cialists and task management services must manipulate data

in richer forms than is conventionally stored in today’s

desktop environments. For example, intelligent email assis-

Figure 1. An Individual’s Radar Architecture

Annotated Data

Knowledge

S
hared Inform

ation

 &
 K

now
ledge

RADAR

Console

--
-
--

Data Stores

Task

Manager

Bridging Elements

C

Applica-

U

MC

Applica-

U

M
C

Application

UI

M

Task Spe-Task Spe-Task Specialist

UI Dialog

Management

Abstractors

Proceedings of the 2006 Conference on Software Engineering and Knowledge Engineering, 5-7 July, 2006

 4

tance requires that key features of email messages are iden-

tified and classified. Similarly, calendaring information

may need to be structured in higher-level ways than is

natively stored by a calendar system. In addition, there is

the need to represent knowledge representing high level

entities and relationships in the user’s world. For example,

social nets that determine what relationships a user has to

other people, are stored in a knowledge base, and used by

specialists and task management to determine security pro-

cedures (e.g., who are my friends), policies for actions (e.g.

don’t cancel a meeting scheduled by my boss), and general

knowledge about the environment (e.g., what rooms are

physically close to my office).

Bridging elements: to get information from the desktop

level into RADAR space, requires certain bridging ele-

ments. There are several kinds of these. One kind transfers

information from desktop space into RADAR space. These

include categorizers and extractors that understand natural

language to label and categorize the information from the

desktop space. A second kind of bridging element takes

information directly from legacy applications, through the

M interface in Figure 1. These allow RADAR specialists to

monitor activities performed directly by legacy applica-

tions, and to control those applications programmatically.

(We discuss the differences between categorizers and ex-

tractors below.) The difference between such bridging ele-

ments and specialists is that, although they may both have

knowledge specific to particular tasks, bridging elements

are responsible for transforming native representations of

data (such textual email) into task-oriented information

(such as the existence of a new task), while specialists have

knowledge of how to assist the user in carrying out the

tasks.

4.2 Technical Details

To illustrate how information from the desktop space flows

through RADAR, consider the arrival at John’s desktop of

an email from fred@a.com containing the text “I would like

to organize a meeting with you and Melinda next Tuesday.”

1. Categorizers and extractors take this information and

annotate it with structural information such as the posi-

tions of names (Melinda), dates (Tuesday next), and

that the message is to do with organizing a meeting. A

new task for organizing a meeting is also constructed

by the extractor and sent to the task manager for dis-

patch. The task is stored as annotated data, with a ref-

erence to the original message.

2. Abstractors take the structured information and anno-

tate it with knowledge. For example, it notes that

Melinda is John’s boss, and that John prefers meetings

on Tuesday to be in the morning. The knowledge is

placed in a knowledge base, which can be queried by

other components.

3. The Task Management component notices that a new

task to organize a meeting has been proposed, by trig-

gers in the task database. It locates a task specialist that

is responsible for managing John’s calendar, and as-

signs the task to it.

4. The Task Specialist attempts to find suitable slots on

John’s calendar for the meeting to take place. This

might involve confirmation with John, which will be

done through UI dialog management, and by placing

the new meeting on John’s calendar (through the con-

trol (C) interface of his calendaring application in

Figure 1).

One important requirement of the flow of information

through RADAR is the need to manage interaction with a

user of RADAR. If a part of RADAR wishes to communi-

cate the user, it should only do so at appropriate times. For

example, in step 4 above, a calendar management specialist

might want to confirm an appointment. If it immediately

interrupts the user to request this, it might interrupt the user

who was working on another task, causing him to lose con-

text. For real world use, this will most likely make Fred less

efficient because he is constantly being interrupted. Thus,

all Radar-initiated interaction with the user is mediated

through the UI dialog management component, which

manages when and how a user should be interrupted. The

UI Dialog Manager learns when and whether to interrupt

the user [2], based on knowledge of the user’s focus and

interruption policies. The UI dialog might present this in-

formation via the RADAR console, by RADAR-specific UI

embellishments in legacy applications (the UI interface in

Figure 1), or other interfaces using techniques similar to

those described in [8].

A central notion of RADAR is the idea of a task. A task is a

unit of work that the user cares about that can be automated

(or partially automated) by RADAR. The unit of work

could be assigned to a single task specialist, or it may in-

volve the coordination (through a task planner) of multiple

task specialists. Such a planner would itself be imple-

mented as a specialist.
1

A key component in managing tasks in RADAR is the Task

Management facility, which is responsible for the following

task-related duties:

1. Task Dispatch and Specialist Registry. The Task Man-

ager acts as a directory facility for matching particular

1 The current implementation contains only a rudimentary planner.

See also Section 7 on future work.

Proceedings of the 2006 Conference on Software Engineering and Knowledge Engineering, 5-7 July, 2006

 5

types of tasks to specialists that can be used to automate

them. The task manager is then responsible for assigning

tasks to specialists, and also indicates to specialists when to

suspend or stop particular tasks (for example, at the user’s

behest, or because the task is no longer valid, or another

task is more important). In addition to dispatching tasks,

this component is also responsible for detecting the liveness

and availability of particular specialists.

2. Information privacy and access control. In many in-

stances, users of RADAR will want to restrict information

that is made available to others. For example, a user may

not want to make details of their schedule available to oth-

ers, and may not want RADAR to automatically schedule

meetings if they are requested from certain people. While

the knowledge particular to this lives in the shared knowl-

edge base, the Task Management facility is responsible for

ensuring that the user’s preferences are met.

3. Inter-Radar Communication. To ensure privacy and ac-

cess control, the task manager mediates RADAR’s com-

munication with other users. This gives RADAR the oppor-

tunity to also determine how best to communicate with a

particular person. For example, if that person has their own

instance of RADAR, then this component can contact their

RADAR; if the person doesn’t use RADAR, it chooses

alternative ways to communicate (e.g., email, IM, cell-

phone text message).

4.3 Satisfying the Requirements

This architectural design, addresses the three critical re-

quirements for a PCA outlined in Section 3. First, compati-

bility is supported through the layered architecture, which

augments existing applications and data without replacing

them. While applications must be modified in small ways

to provide monitoring and control capabilities from the

RADAR layer, and have certain user interface enhance-

ments, by and large they remain unchanged.

Second, extensibility is supported through a component-

oriented architecture in which task assistance is provided

by modules (specialists) that can be incrementally added to

or removed from the RADAR ensemble, simply by regis-

tering or deregistering them.

Third, adaptability is supported in several ways. The

RADAR console allows a user to specify policies directly.

In addition each specialist and the task manager provides its

own learning capabilities, as outlined above, which coupled

with a shared knowledge base, and reusable mechanisms

for learning (e.g., extractors and abstractors) allow RADAR

to adapt over time to a user’s needs.

5 IMPLEMENTATION

RADAR is designed to run as a server-oriented system in

which the main capabilities are provided in stable environ-

ments that communicate with a user’s personal desktop or

mobile platform. As such, RADAR task management and

assistance operates much like email servers, communicat-

ing with mail clients, but accessing mail stored in a stable

way on externally-maintained and robust servers. This de-

sign helps provide the needed availability required to sup-

port a continuous, globally accessible service.
2

The implementation of RADAR is based on a layered use

of existing technology, illustrated in Figure 2. At the lowest

implementation layer are standard middleware services for

distributed systems. Specifically, we used Java Messaging

Services (JMS), which provide a network-wide service for

sending messages between components. The interface to

this layer provides an API that hides details of the middle-

ware, supporting basic communication mechanisms for

remote method invocation and publish-subscribe.

At the next higher level is an agent-oriented architecture,

which provides a virtual agent layer. The agent layer pro-

vides a FIPA-compliant API that defines the types of mes-

sages that can be used to exchange information between

components, and specifies the building blocks on which

more sophisticated communication protocols are built.

The RADAR communication layer specializes more gen-

eral agent-oriented paradigms, defining specific protocols

for communication between specialists and the task man-

agement services, interaction with the knowledge base,

registration and invocation of the bridging elements, and

the RADAR console for interacting with the user. This

layer defines the rights and responsibilities for specialists,

bridging elements, shared data and knowledge through a set

of interface specifications.

Building on top this architectural infrastructure, RADAR

V1.0 includes the following components and capabilities:

2
 Although targeted for server-oriented deployment, RADAR also permits

client-oriented configurations in which more of the functions run on the

client side. (Indeed, our initial implementation used this configuration).

Communication (JMS)

Agent (FIPA compliant)

Radar Communication

Radar Components

Figure 2. RADAR Layered Implementation Architecture.

Proceedings of the 2006 Conference on Software Engineering and Knowledge Engineering, 5-7 July, 2006

 6

• Extractors and categorizers that understand general

language terms such as places and names, but also

task-specific information such as scheduling constraint

requests.

• Specialists that assist the user with:

o Managing a company website, by correcting errors

in people’s information based on emails, and pub-

lishing the updates to a website ;

o Managing a schedule, which includes scheduling

appointments and finding spaces where meetings

can take place,;

o Preparing work summaries, or briefings, that can

be sent to superiors, by learning which emails and

tasks are more important and helping the user to

summarize this information;

• Integration with Microsoft Outlook, for organizing

users’ email and as a user interface for controlling

some aspects of Radar. For this, Outlook’s COM inter-

face was used to provide the UI, C, and M interfaces,

providing natural extension points from which to inte-

grate Outlook with RADAR. While the interface to

each legacy application will differ, our experience in

another project [17] suggests that wrapping applica-

tions to provide the necessary interfaces is possible,

and is becoming increasingly easy with modern appli-

cations. We are, however, limited to facilities provided

by the interfaces of applications.

6 EVALUATION
While designed to promote the requirements outlined in

Section 3, a critical question is how well RADAR performs

in a live setting, and how effective is learning in automating

everyday tasks. To investigate these questions, the RADAR

team carried out extensive experimental evaluation. The

details of the evaluation are reported by others in [18]; here,

we give a summary.

A controlled crisis scenario was constructed: a week before

a conference is due to start, a building that was to be used

to host the conference becomes unavailable. Subjects in the

experiment were asked to reschedule the conference ses-

sions in alternative rooms, manage the constraints on

speakers who have already booked travel assuming the pre-

vious scheduled, and brief the program committee on pro-

gress, and stay current with arriving email. The crisis is

exacerbated by the fact that the primary conference organ-

izer is unavailable to help, although he used RADAR to

help organize the conference initially.

Two instantiations of RADAR were used in the experi-

ment:

1. Without any information learned about the conference.

This tested the effect of RADAR without it having

prior specialization to crisis situation. It does not know,

for example, whether a particular message concerns a

meeting. There were 31 subjects in this group.

2. With preloaded knowledge learned as if RADAR had

been used by the conference organizer to organize the

conference initially. Extractors and categorizers had

been trained so that they could recognize task-related

email. This group contained 47 subjects.

Test subjects engaged with the conference planning crisis

scenario during two sessions of 90 minutes. In this test,

learning was shown to have statistically significant positive

influences on several system-wide performance metrics.

7 CONCLUSION AND FUTURE WORK
Realizing the vision of a fully-featured PCA is a formidable

task that will take significant advances in research and en-

gineering to achieve and demonstrate. In this paper we de-

scribe first steps toward realizing that vision. The key to

this is the design of a pluggable architecture that permits

extensibility and adaptability, while remaining compatible

with existing desktop services and applications. Our im-

plementation of RADAR v1.0 and its performance on tests

are encouraging: it demonstrates that an integrated task

management system can be implemented and be effective

even in handling highly-stressful situations and with com-

plex tasks.

However, considerable work remains to be done to fully

realize the potential of a PCA. First, is the discovery of new

forms of learning that can help the user. With respect to the

crucial capability for learning to provide better task man-

agement, for example, we are now exploring the possibility

of learning such things as how to order tasks according to

their importance. In particular, we think it should be possi-

ble to take into consideration such things as the type of

task, the history about how quickly similar tasks have been

completed, and who originated the task, to predict the im-

portance of task when it enters the system.

Second, is representation and assistance with complex

tasks. In many cases such tasks will require planning as

well as learning. This requires research on combining learn-

ing and planning in complex tasks, as well as implementa-

tion mechanisms to make such capabilities available as

common services to RADAR specialists.

Third, is the need to provide a user with greater transpar-

ency into the workings of RADAR. While RADAR can

provide demonstrable value-added to users, at present it is

unable to explain its actions in a way that allows the user to

understand exactly what RADAR has learned and why it

believes what it does. Partly this is due to the nature of sta-

tistical machine learning, but it also related to the en-

hancement of specialists so that as a part of their normal

Proceedings of the 2006 Conference on Software Engineering and Knowledge Engineering, 5-7 July, 2006

 7

functionality they can explain their task understanding and

actions in user-oriented terms. Fourth is the effective inter-

action between multiple RADAR spaces. At present

RADAR uses standard modes of communication (such as

email) to communicate between users. But it should be pos-

sible to do much better when two users both have a

RADAR working in their environment.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Defense

Advanced Research Projects Agency (DARPA) under Con-

tract No. NBCHD030010. Any opinions, findings and con-

clusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the

views of the DARPA or the Department of Interior-

National Business Center (DOI-NBC).

REFERENCES

[1] First International Workshop on Computer Support for Hu-

man Tasks and Activties, Co-located with Pervasive 2004,

Vienna, April 2004.

[2] D. Avrahami and S. Hudson, QnA: Augmenting an instant

messaging client to balance user responsiveness and per-

formance. Proceeings of the ACM Conference on Computer

Supported Cooperative Work (CSCW), pp. 515-518, Jan.

2004.

[3] Berry, P., Myers, K., Uribe, T., and Yorke-Smith, N. Task

Management under Change and Uncertainty. Constraint

Solving Experience with the CALO Project. Proc. CP’05

Workshop on Constraint Solving under Change and Uncer-

tainty. Spain, 2005.

[4] F.Bellifemine, F.Bergenti, A.Poggi, G.Rimassa, P.Turci,

Middleware and Programming Support for Agent Systems.

Proc. 3rd International Symposium “From Agent Theory to

Agent Implementation”, Austria, 2002.

[5] J.C.Collins, D.T.Ndumu, H.S.Nwana, L.C.Lee. The ZEUS

agent building toolkit. BT Technology Journal 16(3), 1998.

[6] P. R. Cohen, A. Cheyer, M. Wang, S. C. Baeg, OAA: An

Open Agent Architecture, AAAI Spring Symposium, 1994.

[7] S. Cranefield, M. Purvis, An agent-based architecture for

software tool coordination, in the proceedings of the work-

shop on theoretical and practical foundations of intelligent

agents, Springer, 1996.

[8] A. Faulring and B. Myers, Enabling rich human-agent inter-

actions for a calendar scheduling agent. Proceedings of the

Conference on Human Factors in Computing Systems Ex-

tended Abstracts (CHI), Portland, Oregon, May 2005.

[9] T. Finin, J. Weber, G. Wiederhold, et al., Specification of the

KQML Agent-Communication Language, 1993.

[10] The Foundations for Intelligent Physical Agents (FIPA).

http://www.fipa.org.

[11] S. Franklin, A. Graesser, Is it an Agent or just a Program? A

Taxonomy for Autonomous Agents, in: Proceedings of the

Third International Workshop on Agents Theories, Architec-

tures, and Languages, Springer-Verlag, 1996.

[12] M. R. Genesereth, S. P. Ketchpel, Software Agents, Commu-

nications of the ACM, Vol. 37, No. 7, July 1994.

[13] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, M.

Balabanovic, A domain-specific Software Architecture for

adaptive intelligent systems, IEEE Transactions on Software

Engineering, April 1995.

[14] T. Khedro, M. Genesereth, The federation architecture for

interoperable agent-based concurrent engineering systems. In

International Journal on Concurrent Engineering, Research

and Applications, Vol. 2, pages 125-131, 1994.

[15] Y. Shoham, Agent-oriented programming, Artificial Intelli-

gence, Vol. 60, No. 1, pages 51-92, 1993.

[16] J.P. Sousa, Scaling Task Management in Space and Time:

Reducing User Overhead in Ubiquitous-Computing Envi-

ronments. Ph.D. Thesis, Carnegie Mellon University School

of Computer Science Technical Report CMU-CS-05-123,

2005.

[17] J.P. Sousa, V. Poladian, D. Garlan, and B. Schmerl. Capital-

izing on Awareness of User Tasks for Guiding Self-

Adaptation. Proc. the 1st International Workshop on Adaptive

and Self-managing Enterprise Applications at CAISE’05.

Portugal, 2005.

[18] Steinfeld, A., Bennett, R., Cunningham, K., Lahut, M.,

Quinones, P.-A., Wexler, D., Siewiorek, D., Cohen, P., Fitz-

gerald, J., Hansson, O., Hayes, J., Pool. M, and Drummond,

M. The RADAR Test Methodology: Evaluating a Multi-Task

ML System with Humans in the Loop. Carnegie Mellon Uni-

versity School of Computer Science Technical Report CMU-

CS-06-124, CMU-HCII-06-102, May, 2006.

[19] Want, R.; Pering, T.; Danneels, G.; Kumar, M; Sundar, M.;

and Light, J., "The Personal Server: changing the way we

think about ubiquitous computing", Proc. of Ubicomp 2002:

4th International Conference on Ubiquitous Computing,

Springer LNCS 2498, Goteborg, Sweden, 2002.

