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Abstract. Current desktop environments provide weak support for 

carrying out complex user-oriented tasks. Although individual 

applications are becoming increasingly sophisticated and feature-

rich, users must map their high-level goals to the low-level opera-

tional vocabulary of applications, and deal with a myriad of rou-

tine tasks (such as keeping up with email, keeping calendars and 

web sites up-to-date, etc.). An alternative vision is that of a per-

sonal cognitive assistant. Like a good secretary, such an assistant 

would help users accomplish their high-level goals, coordinating 

the use of multiple applications, automatically handling routine 

tasks, and, most importantly, adapting to the individual needs of a 

user over time. In this paper we describe the architecture and its 

implementation for a personal cognitive assistant called RADAR. 

Key features include (a) extensibility through the use of a plug-in 

agent architecture (b) transparent integration with legacy applica-

tions and data of today’s desktop environments, and (c) extensive 

use of learning so that the environment adapts to the individual 

user over time. 
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1 INTRODUCTION 
Computers are playing an increasingly indispensable role in 

complex day-to-day activities of many people. Email, cal-

endaring systems, daily planners, web sites, and the like are 

now an essential component of most people’s lives. 

Unfortunately today’s desktop environments provide weak 

support for carrying out complex user-oriented tasks, or 

even dealing with the myriad details of handling everyday 

computer-assisted information, communication, and plan-

ning tasks. Although individual applications are becoming 

increasingly sophisticated, users must map their high-level 

goals to the low-level vocabulary of specific applications 

and services, and deal with a barrage of routine tasks, such 

as keeping up with their email, and keeping their calendars 

web sites up-to-date.  

An alternative vision is that of a personal cognitive assis-

tant (PCA). Like a good secretary, a PCA would help users 

accomplish their high-level goals, coordinating the use of 

multiple applications, automatically handling routine tasks, 

and, most importantly, adapting to the individual needs of a 

user over time. A PCA would also be able to work coopera-

tively with the user, automating tasks where appropriate, 

and staying out of the way where not. 

However, realizing such a vision raises a number of hard 

software engineering challenges. First, to be useful and 

economical, a PCA should dovetail with existing (and fu-

ture) applications, file systems, and user processes. Even if 

one could afford to reengineer all existing desktop applica-

tions (which we can’t), most users would not be inclined to 

learn to use an entirely new set of applications, regardless 

of the benefits provided. Second, a PCA should be extensi-

ble. That is, it should be possible to incrementally add new 

capabilities for personal assistance over time, possibly tak-

ing advantage of third-party components to increase the 

range of support. Third, it should be adaptive. Over time 

the capabilities of the environment should automatically 

adapt to the needs and preferences of a user, without a lot 

of specific user guidance and oversight. 

In this paper we describe an architecture and its implemen-

tation for a PCA, called RADAR, that tackles these chal-

lenges head-on. Building on top of existing agent-oriented 

and distributed systems architectures, RADAR provides a 

pluggable framework for integrating “specialists” that col-

lectively augment a user’s ability to handle complex tasks. 

Such specialists complement the capabilities of existing 

desktop environments, applications, and file systems, auto-

mating routine (but often complex) tasks programmatically. 

New specialists can be added or removed at any time. 

Moreover, learning is a core capability: over time special-

ists adapt to the needs and preferences of users. 

While RADAR is the product of a large number of cooper-

ating researchers, developed over the past three years at 

Carnegie Mellon, in this paper we focus specifically on the 

design of its architecture and the ways in which that archi-

tecture supports key engineering properties of composition-

ality, extensibility, and integration with existing applica-

tions and services. We also describe the current implemen-

tation and outline recent empirical results of RADAR’s 
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effectiveness in supporting a class of crisis management 

tasks. 

2 RELATED WORK 
One important branch of related research is traditional ap-

proaches to artificial intelligence, which attempt to auto-

mate human-oriented activities such as medical diagnosis, 

hardware configuration, chess, and robotics. In most of 

these systems the goal is to have the AI system replace the 

human, and many of these systems have focused on very 

specific task domains (like chess or medicine). In contrast 

our work on a personal cognitive assistant attempts to aug-

ment human capability, and to do this for rather mundane 

(although often voluminous and complex) tasks like priori-

tizing email, or helping to manage one’s calendar. Addi-

tionally, most AI systems have not investigated the engi-

neering issues of developing a component-based approach, 

or integrating AI capability with legacy systems. 

More closely related are other approaches to assisting users 

with tasks in familiar desktop environments. The Calo pro-

ject, for example, has been investigating similar approaches 

[3]. Like RADAR, Calo provides an integration framework 

for learning-based task-specific components. RADAR dif-

fers from Calo in two respects. First, RADAR attempts to 

co-exist with off-the-shelf applications and data, such as 

Outlook, while Calo has taken the approach of reengineer-

ing standard desktop applications to work smoothly with 

it’s task support. The advantage of RADAR is the ability to 

plug its capability into any desktop environment; the ad-

vantage of Calo is that reimplementation of standard appli-

cations provides better opportunities for close collaboration 

between them and the cognitive assistant.  

Other work that attempts to help users with ordinary tasks 

comes out of the ubiquitous computing [1][16][19] While 

these efforts attempt to dovetail with existing infrastructure 

and applications, their primary focus is on the use of het-

erogeneous and pervasive devices to help users accomplish 

tasks more effectively. 

Another closely related area is that of Agent-oriented Ar-

chitectures [7][9][11][12][13][14]. Over the past decade 

there has been considerable interest in multi-agent systems, 

and middleware to support them. In particular, a number of 

architectural frameworks have been proposed, including 

AAS [6], Zeus [5], FIPA[10]. As described later, we build 

on top of agent-oriented architectures (and, in particular, 

FIPA), specializing the general notions of agents and coor-

dination with the specific architectural structures that char-

acterize the RADAR architecture. 

3 ARCHITECTURAL REQUIREMENTS FOR A PCA 
The vision of a PCA is that of a smart assistant, that in 

some sense “understands” the user, helping out where 

needed and effective, but staying out of the way otherwise. 

Inherent in this view is the idea that a PCA should com-

plement what a user normally does, and how a user nor-

mally does it. Although over time a user might adapt his 

behavior to rely more heavily on the PCA as he gains trust 

in it, the user should not be forced to do this.  

Consider the following scenario. A busy user has loaded a 

PCA onto the desktop. At first the user notices little change 

to his normal way of working. However, exploring the PCA 

console, he discovers that he can activate a calendar assis-

tant. After activating it, the user is prompted to identify 

some general preferences for things like what calendaring 

application he wants to use, what times to keep free on the 

schedule, cancellation policies, and the like. Since the user 

is wary of turning over control to any automated calendar-

ing assistant, he decides to be conservative requesting that 

the assistant should schedule meetings only during the 

hours of 10-12 on weekdays, always confirming schedule 

changes before committing them, and it should never can-

cel or reschedule an existing meeting. As time progresses 

he notices that the calendaring assistant has been able to 

correctly identify email messages that relate to scheduling 

requests, and to suggest reasonable scheduling actions. 

Based on positive experience, he decides to let the assistant 

do it automatically. Over time, he discovers that the assis-

tant can do more and more: it learns his desires for cancel-

ing meetings (e.g., preferring to move subordinates’ meet-

ings before those with his boss); it learns that when the user 

goes on vacation or business travel, email should be sent to 

people with whom he has regular meetings to let them 

know, etc. Quite happy with this capability he continues to 

let it do more, confident that it is learning how he would 

like it to be done, and asking for permission before attempt-

ing anything radically new. 

From an engineering perspective this vision implies three 

essential requirements for a PCA: 

1. Compatibility: The services and assistance provided 

by a PCA should co-exist with the capabilities of cur-

rent legacy applications and services.  The user should 

not have to abandon old ways of doing business, or 

learn to use new applications with different interfaces. 

While additional capability provided by a PCA will 

necessarily require some additional forms of user inter-

action, these should supplement, not replace, existing 

forms of interaction. This implies compatibility not 

only with applications, but also with information 

sources as well. For example, email messages are often 

an important stimulus and information source for an 

assistant (for example, signifying the need to start a 

new task). Understanding email messages, written in a 
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natural language, and stored in standard email reposito-

ries (e.g., Imap), is essential.  

2. Extensibility: It should be possible to incrementally 

augment the capabilities of the PCA. For example, if 

some new form of task assistance becomes available, it 

should be easily pluggable into the existing system, 

adding new capability without disrupting the old, and 

dovetailing with existing assistance provided by the 

PCA. One can even imagine a marketplace for personal 

task assistance in which different forms of the same 

kind of assistance might be purchased at different 

price-quality points  

3. Adaptability: The system should conform to the user, 

learning new opportunities for assisting the user, and 

inferring appropriate behavior based on how users 

carry out their tasks. Learning should apply to a wide 

variety things, including prioritization of tasks (e.g., 

helping a user focus on the important things), policies 

for interaction with others (e.g., deciding who should 

have access to certain kinds of information), cluster-

ings of related activities (e.g., noticing that if action A 

is performed action B is usually also performed), inter-

pretation of natural language (e.g., recognizing idioms 

that relate to task achievement), and many others.  

In addition to these requirements, there are a number of 

other more-standard systems-oriented engineering qualities, 

such as robustness, availability, security, and performance. 

Indeed, the services provided by the PCA should have com-

parable quality attributes to today’s mail systems, which 

tend to be available in a global setting, highly robust, se-

cure, and reasonably efficient. 

4 THE RADAR ARCHITECTURE 
To achieve these goals RADAR has adopted a layered run-

time architecture, pictured in Figure 1, which depicts the 

architecture from the point of view of a single individual 

working in a personal RADAR space. We first give a high 

level overview, and then look in more detail at specific 

technical issues. 

4.1 Overview 

At the bottom layer are legacy applications, services, and 

data stores. Applications include things like email readers, 

web browsers, calendar managers, and the like. Data stores 

include documents stored in local and remote file systems, 

repositories of email, calendar information, contact lists, 

etc. Users interact with these in normal ways. Application 

APIs are used or written to allow RADAR to integrate with 

legacy application. For example, (M) interfaces inform 

RADAR of events that happen in the system (e.g., the user 

moves an appointment), that might trigger new tasks or 

learning by RADAR; Control (C) interfaces allow RADAR 

to make changes to the desktop space (e.g., to schedule a 

new appointment); User Interface embellishments (UI) al-

low RADAR to present information to the user in a manner 

the user is familiar with (for example, to display RADAR-

proposed alternatives for a meeting on a user’s calendar). In 

addition we add a RADAR Console, which provides a user 

with direct access to RADAR and its capabilities. 

On top of these RADAR adds a layer of task assistance. 

This can be divided into four parts: 

Task specialists: A task specialist (or just specialist) is a 

component that attempts to provide assistance for a particu-

lar kind of task, such as schedule management, web site 

updating, and routine email handling. The number and 

kind of specialists can vary from user to user, and over 

time for a single user as new specialists are added or re-

moved from that user’s RADAR space. Each specialist 

contains knowledge about how to conduct a particular 

task, and each contains a learning component that allows 

each specialist to adapt to the user with respect to prefer-

ences, preferred methods of doing the task, etc. It stores 

this learned knowledge in the shared knowledge base. 

Task management: To coordinate the work of the spe-

cialists and to provide overall tracking and control of tasks 

is a task manager. The task manager comprises a number 

of logical services, including task dispatch (interacting 

with specialists to assign new tasks), task tracking (keep-

ing track of high-level state of tasks – see below), task 

query (retrieving all tasks that match certain selection cri-

teria), and task prioritization (keeping track of the relative 

priority of tasks). 

Shared information and knowledge: To be effective, spe-

cialists and task management services must manipulate data 

in richer forms than is conventionally stored in today’s 

desktop environments. For example, intelligent email assis-

Figure 1. An Individual’s Radar Architecture 
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tance requires that key features of email messages are iden-

tified and classified. Similarly, calendaring information 

may need to be structured in higher-level ways than is 

natively stored by a calendar system. In addition, there is 

the need to represent knowledge representing high level 

entities and relationships in the user’s world. For example, 

social nets that determine what relationships a user has to 

other people, are stored in a knowledge base, and used by 

specialists and task management to determine security pro-

cedures (e.g., who are my friends), policies for actions (e.g. 

don’t cancel a meeting scheduled by my boss), and general 

knowledge about the environment (e.g., what rooms are 

physically close to my office). 

Bridging elements: to get information from the desktop 

level into RADAR space, requires certain bridging ele-

ments. There are several kinds of these. One kind transfers 

information from desktop space into RADAR space. These 

include categorizers and extractors that understand natural 

language to label and categorize the information from the 

desktop space. A second kind of bridging element takes 

information directly from legacy applications, through the 

M interface in Figure 1. These allow RADAR specialists to 

monitor activities performed directly by legacy applica-

tions, and to control those applications programmatically. 

(We discuss the differences between categorizers and ex-

tractors below.) The difference between such bridging ele-

ments and specialists is that, although they may both have 

knowledge specific to particular tasks, bridging elements 

are responsible for transforming native representations of 

data (such textual email) into task-oriented information 

(such as the existence of a new task), while specialists have 

knowledge of how to assist the user in carrying out the 

tasks. 

4.2 Technical Details 

To illustrate how information from the desktop space flows 

through RADAR, consider the arrival at John’s desktop of 

an email from fred@a.com containing the text “I would like 

to organize a meeting with you and Melinda next Tuesday.” 

1. Categorizers and extractors take this information and 

annotate it with structural information such as the posi-

tions of names (Melinda), dates (Tuesday next), and 

that the message is to do with organizing a meeting. A 

new task for organizing a meeting is also constructed 

by the extractor and sent to the task manager for dis-

patch. The task is stored as annotated data, with a ref-

erence to the original message. 

2. Abstractors take the structured information and anno-

tate it with knowledge. For example, it notes that 

Melinda is John’s boss, and that John prefers meetings 

on Tuesday to be in the morning. The knowledge is 

placed in a knowledge base, which can be queried by 

other components. 

3. The Task Management component notices that a new 

task to organize a meeting has been proposed, by trig-

gers in the task database. It locates a task specialist that 

is responsible for managing John’s calendar, and as-

signs the task to it. 

4. The Task Specialist attempts to find suitable slots on 

John’s calendar for the meeting to take place. This 

might involve confirmation with John, which will be 

done through UI dialog management, and by placing 

the new meeting on John’s calendar (through the con-

trol (C) interface of his calendaring application in 

Figure 1). 

One important requirement of the flow of information 

through RADAR is the need to manage interaction with a 

user of RADAR. If a part of RADAR wishes to communi-

cate the user, it should only do so at appropriate times. For 

example, in step 4 above, a calendar management specialist 

might want to confirm an appointment. If it immediately 

interrupts the user to request this, it might interrupt the user 

who was working on another task, causing him to lose con-

text. For real world use, this will most likely make Fred less 

efficient because he is constantly being interrupted. Thus, 

all Radar-initiated interaction with the user is mediated 

through the UI dialog management component, which 

manages when and how a user should be interrupted. The 

UI Dialog Manager learns when and whether to interrupt 

the user [2], based on knowledge of the user’s focus and 

interruption policies. The UI dialog might present this in-

formation via the RADAR console, by RADAR-specific UI 

embellishments in legacy applications (the UI interface in 

Figure 1), or other interfaces using techniques similar to 

those described in [8]. 

A central notion of RADAR is the idea of a task. A task is a 

unit of work that the user cares about that can be automated  

(or partially automated) by RADAR. The unit of work 

could be assigned to a single task specialist, or it may in-

volve the coordination (through a task planner) of multiple 

task specialists. Such a planner would itself be imple-

mented as a specialist.
1
  

A key component in managing tasks in RADAR is the Task 

Management facility, which is responsible for the following 

task-related duties: 

1. Task Dispatch and Specialist Registry. The Task Man-

ager acts as a directory facility for matching particular 

                                                           

1 The current implementation contains only a rudimentary planner. 

See also Section 7 on future work. 
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types of tasks to specialists that can be used to automate 

them. The task manager is then responsible for assigning 

tasks to specialists, and also indicates to specialists when to 

suspend or stop particular tasks (for example, at the user’s 

behest, or because the task is no longer valid, or another 

task is more important). In addition to dispatching tasks, 

this component is also responsible for detecting the liveness 

and availability of particular specialists.   

2. Information privacy and access control. In many in-

stances, users of RADAR will want to restrict information 

that is made available to others. For example, a user may 

not want to make details of their schedule available to oth-

ers, and may not want RADAR to automatically schedule 

meetings if they are requested from certain people. While 

the knowledge particular to this lives in the shared knowl-

edge base, the Task Management facility is responsible for 

ensuring that the user’s preferences are met.  

3. Inter-Radar Communication. To ensure privacy and ac-

cess control, the task manager mediates RADAR’s com-

munication with other users. This gives RADAR the oppor-

tunity to also determine how best to communicate with a 

particular person. For example, if that person has their own 

instance of RADAR, then this component can contact their 

RADAR; if the person doesn’t use RADAR, it chooses 

alternative ways to communicate (e.g., email, IM, cell-

phone text message). 

4.3 Satisfying the Requirements 

This architectural design, addresses the three critical re-

quirements for a PCA outlined in Section 3. First, compati-

bility is supported through the layered architecture, which 

augments existing applications and data without replacing 

them. While applications must be modified in small ways 

to provide monitoring and control capabilities from the 

RADAR layer, and have certain user interface enhance-

ments, by and large they remain unchanged.  

Second, extensibility is supported through a component-

oriented architecture in which task assistance is provided 

by modules (specialists) that can be incrementally added to 

or removed from the RADAR ensemble, simply by regis-

tering or deregistering them. 

Third, adaptability is supported in several ways. The 

RADAR console allows a user to specify policies directly. 

In addition each specialist and the task manager provides its 

own learning capabilities, as outlined above, which coupled 

with a shared knowledge base, and reusable mechanisms 

for learning (e.g., extractors and abstractors) allow RADAR 

to adapt over time to a user’s needs.   

5 IMPLEMENTATION 

RADAR is designed to run as a server-oriented system in 

which the main capabilities are provided in stable environ-

ments that communicate with a user’s personal desktop or 

mobile platform. As such, RADAR task management and 

assistance operates much like email servers, communicat-

ing with mail clients, but accessing mail stored in a stable 

way on externally-maintained and robust servers. This de-

sign helps provide the needed availability required to sup-

port a continuous, globally accessible service.
2
 

The implementation of RADAR is based on a layered use 

of existing technology, illustrated in Figure 2. At the lowest 

implementation layer are standard middleware services for 

distributed systems. Specifically, we used Java Messaging 

Services (JMS), which provide a network-wide service for 

sending messages between components. The interface to 

this layer provides an API that hides details of the middle-

ware, supporting basic communication mechanisms for 

remote method invocation and publish-subscribe. 

At the next higher level is an agent-oriented architecture, 

which provides a virtual agent layer. The agent layer pro-

vides a FIPA-compliant API that defines the types of mes-

sages that can be used to exchange information between 

components, and specifies the building blocks on which 

more sophisticated communication protocols are built.  

The RADAR communication layer specializes more gen-

eral agent-oriented paradigms, defining specific protocols 

for communication between specialists and the task man-

agement services, interaction with the knowledge base, 

registration and invocation of the bridging elements, and 

the RADAR console for interacting with the user.  This 

layer defines the rights and responsibilities for specialists, 

bridging elements, shared data and knowledge through a set 

of interface specifications. 

Building on top this architectural infrastructure, RADAR 

V1.0 includes the following components and capabilities:  

                                                           

2
 Although targeted for server-oriented deployment, RADAR also permits 

client-oriented configurations in which more of the functions run on the 

client side. (Indeed, our initial implementation used this configuration). 

Communication (JMS) 

Agent (FIPA compliant) 

Radar Communication 

Radar Components 

Figure 2. RADAR Layered Implementation Architecture. 
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• Extractors and categorizers that understand general 

language terms such as places and names, but also 

task-specific information such as scheduling constraint 

requests. 

• Specialists that assist the user with: 

o Managing a company website, by correcting errors 

in people’s information based on emails, and pub-

lishing the updates to a website ; 

o Managing a schedule, which includes scheduling 

appointments and finding spaces where meetings 

can take place,; 

o Preparing work summaries, or briefings, that can 

be sent to superiors, by learning which emails and 

tasks are more important and helping the user to 

summarize this information; 

• Integration with Microsoft Outlook, for organizing 

users’ email and as a user interface for controlling 

some aspects of Radar. For this, Outlook’s COM inter-

face was used to provide the UI, C, and M interfaces, 

providing natural extension points from which to inte-

grate Outlook with RADAR. While the interface to 

each legacy application will differ, our experience in 

another project [17]  suggests that wrapping applica-

tions to provide the necessary interfaces is possible, 

and is becoming increasingly easy with modern appli-

cations. We are, however, limited to facilities provided 

by the interfaces of applications. 

6 EVALUATION 
While designed to promote the requirements outlined in 

Section 3, a critical question is how well RADAR performs 

in a live setting, and how effective is learning in automating 

everyday tasks. To investigate these questions, the RADAR 

team carried out extensive experimental evaluation. The 

details of the evaluation are reported by others in [18]; here, 

we give a summary. 

A controlled crisis scenario was constructed: a week before 

a conference is due to start, a building that was to be used 

to host the conference becomes unavailable. Subjects in the 

experiment were asked to reschedule the conference ses-

sions in alternative rooms, manage the constraints on 

speakers who have already booked travel assuming the pre-

vious scheduled, and brief the program committee on pro-

gress, and stay current with arriving email. The crisis is 

exacerbated by the fact that the primary conference organ-

izer is unavailable to help, although he used RADAR to 

help organize the conference initially. 

Two instantiations of RADAR were used in the experi-

ment:  

1. Without any information learned about the conference. 

This tested the effect of RADAR without it having 

prior specialization to crisis situation. It does not know, 

for example, whether a particular message concerns a 

meeting. There were 31 subjects in this group. 

2. With preloaded knowledge learned as if RADAR had 

been used by the conference organizer to organize the 

conference initially. Extractors and categorizers had 

been trained so that they could recognize task-related 

email. This group contained 47 subjects.  

Test subjects engaged with the conference planning crisis 

scenario during two sessions of 90 minutes. In this test, 

learning was shown to have statistically significant positive 

influences on several system-wide performance metrics. 

7 CONCLUSION AND FUTURE WORK 
Realizing the vision of a fully-featured PCA is a formidable 

task that will take significant advances in research and en-

gineering to achieve and demonstrate. In this paper we de-

scribe first steps toward realizing that vision. The key to 

this is the design of a pluggable architecture that permits 

extensibility and adaptability, while remaining compatible 

with existing desktop services and applications. Our im-

plementation of RADAR v1.0 and its performance on tests 

are encouraging: it demonstrates that an integrated task 

management system can be implemented and be effective 

even in handling highly-stressful situations and with com-

plex tasks. 

However, considerable work remains to be done to fully 

realize the potential of a PCA. First, is the discovery of new 

forms of learning that can help the user. With respect to the 

crucial capability for learning to provide better task man-

agement, for example, we are now exploring the possibility 

of learning such things as how to order tasks according to 

their importance. In particular, we think it should be possi-

ble to take into consideration such things as the type of 

task, the history about how quickly similar tasks have been 

completed, and who originated the task, to predict the im-

portance of task when it enters the system. 

Second, is representation and assistance with complex 

tasks.  In many cases such tasks will require planning as 

well as learning. This requires research on combining learn-

ing and planning in complex tasks, as well as implementa-

tion mechanisms to make such capabilities available as 

common services to RADAR specialists. 

Third, is the need to provide a user with greater transpar-

ency into the workings of RADAR. While RADAR can 

provide demonstrable value-added to users, at present it is 

unable to explain its actions in a way that allows the user to 

understand exactly what RADAR has learned and why it 

believes what it does. Partly this is due to the nature of sta-

tistical machine learning, but it also related to the en-

hancement of specialists so that as a part of their normal 
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functionality they can explain their task understanding and 

actions in user-oriented terms. Fourth is the effective inter-

action between multiple RADAR spaces. At present 

RADAR uses standard modes of communication (such as 

email) to communicate between users. But it should be pos-

sible to do much better when two users both have a 

RADAR working in their environment.  
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