
Uncertainty Reduction in Self-Adaptive Systems
Gabriel A. Moreno
gmoreno@sei.cmu.edu

Carnegie Mellon University
Software Engineering Institute

Pittsburgh, PA, USA

Javier Cámara
jcmoreno@cs.cmu.edu

Carnegie Mellon University
School of Computer Science

Pittsburgh, PA, USA

David Garlan
garlan@cs.cmu.edu

Carnegie Mellon University
School of Computer Science

Pittsburgh, PA, USA

Mark Klein
mk@sei.cmu.edu

Carnegie Mellon University
Software Engineering Institute

Pittsburgh, PA, USA

ABSTRACT
Self-adaptive systems depend on models of themselves and their
environment to decide whether and how to adapt, but these models
are often affected by uncertainty. While current adaptation decision
approaches are able to model and reason about this uncertainty,
they do not consider ways to reduce it. This presents an opportunity
for improving decision-making in self-adaptive systems, because
reducing uncertainty results in a better characterization of the cur-
rent and future states of the system and the environment (at some
cost), which in turn supports making better adaptation decisions.
We propose uncertainty reduction as the natural next step in un-
certainty management in the field of self-adaptive systems. This
requires both an approach to decide when to reduce uncertainty,
and a catalog of tactics to reduce different kinds of uncertainty. We
present an example of such a decision, examples of uncertainty
reduction tactics, and describe how uncertainty reduction requires
changes to the different activities in the typical self-adaptation loop.

ACM Reference Format:
Gabriel A. Moreno, Javier Cámara, David Garlan, and Mark Klein. 2018.
Uncertainty Reduction in Self-Adaptive Systems. In SEAMS ’18: SEAMS
’18: 13th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems , May 28–29, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3194133.3194144

1 INTRODUCTION
The software-intensive systems that our society relies on are in-
creasingly expected to satisfy their functional and extra-functional
requirements under changing conditions in the systems and in
their environments, including fluctuations in user demand and re-
source availability, component failures, and the presence of cyber
adversaries. Given the scale of modern systems and the fast pace at
which run-time conditions change, it is not viable to rely mainly on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5715-9/18/05. . . $15.00
https://doi.org/10.1145/3194133.3194144

humans to reconfigure systems to maintain optimal performance.
In safety-critical domains, such as unmanned vehicles operating
in remote areas and unmanned spacecrafts, reliance on humans is
not even an option. Self-adaptation is an approach to deal with this
problem by engineering a system with the ability to monitor its
own state and the state of its environment, and to autonomously
change its structure and behavior to operate as well as possible
with respect to a defined goal in the presence of run-time changing
conditions.

A self-adaptive system cannot make arbitrary changes to itself,
but instead uses a repertoire of adaptation tactics—action primitives
that change the system leaving it in a consistent state [13] (e.g.,
instantiating a new server, lowering the fidelity of a computation, or
turning a sensor off). In order to decide whether to adapt and how
to do it (i.e., which adaptation tactics to use), self-adaptive systems
depend on models of themselves and their environment. These
models are often affected by uncertainty that stems from different
factors [14, 35]. Two important classes of uncertainty are those
due to variability or and lack of knowledge [14]. The former, also
known as aleatory uncertainty, is due to randomness, whereas the
latter, epistemic uncertainty, is due to the lack of knowledge about
the state of the system (or environment) and not due to variability.

As previous research has shown, explicitly taking uncertainty
into account improves the effectiveness of self-adaptation [5, 11, 14].
For example, consider a system that must keep a parameter below
a threshold. If it uses a simple point estimate of that parameter
(e.g., the mean of the observations) to decide whether to adapt,
and that point estimate is below the threshold, the system would
decide not to adapt. On the other hand, using a confidence interval
to characterize the uncertainty of that estimate could help the
system determine that it is possible that the parameter is above
the threshold even if the point estimate is not, thus potentially
prompting an adaptation.

While current adaptation decision approaches are able to model
and reason about the uncertainty associated with a system and its
environment, they do not consider ways to reduce uncertainty. In
some cases, that is simply not possible because the uncertainty is
irreducible (e.g., due to an action controlled by an external entity
for which there is no model), but in other cases, the uncertainty
is reducible because it is about things that are knowable but are
unknown at a given time (e.g., a ping to a server can reduce the

https://doi.org/10.1145/3194133.3194144
https://doi.org/10.1145/3194133.3194144

SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden Gabriel A. Moreno, Javier Cámara, David Garlan, and Mark Klein

uncertainty of whether it is alive) [14]. This presents an opportunity
for improving decision-making in self-adaptive systems, because
uncertainty reduction results in a better characterization of the cur-
rent and future states of the system and the environment, which in
turn supports making better adaptation decisions. However, reduc-
ing uncertainty has a cost due, for example, to resources consumed
or time taken. This presents a trade-off between the benefit and
the cost of uncertainty reduction that must be considered when
evaluating the impact of uncertainty reduction.

In this paper, we propose uncertainty reduction as the natural
next step in uncertainty management in self-adaptive systems. This
requires both an approach to decide when to reduce uncertainty,
and specific techniques to reduce different kinds of uncertainty. For
the latter, we propose using uncertainty reduction tactics, such as
sending a request to a web service that has not been recently used to
get information about its availability and response time [19], which
reduces the uncertainty that arises from lack of knowledge; and
getting more observations of a parameter to obtain a narrower con-
fidence interval, reducing uncertainty due to variability. Although
a variety of uncertainty reduction tactics like these exist and have
been used in practice, to date their use has been ad hoc, and has
not taken into consideration the tradeoff—in terms of costs and
benefits—in using them as is done with regular adaptation tactics.
For this reason, a principled decision-making approach to decide
when to use uncertainty reduction tactics is needed.

With a simple motivating example, we present the idea of uncer-
tainty reduction and how a decision-making approach can choose
when to use an uncertainty reduction tactic. Besides new decision-
making approaches, uncertainty reduction also requires capturing
the information needed to make such decisions, executing uncer-
tainty reduction tactics, and capturing their output. We show how
these activities can bemapped to theMAPE-K loop [22], and present
changes in the interactions between the different parts of the loop
that would be needed. In addition, we describe some uncertainty
reduction tactics with examples of how they can be used.

Although our initial results are promising, to enable develop-
ers of self-adaptive systems to fully exploit existing and emerging
techniques for uncertainty reduction, two things are needed: (i) a
catalog of uncertainty reduction tactics, together with descriptions
(preferably formal) of their costs and benefits; and (ii) tractable
reasoning mechanisms that allow a self-adaptive system to seam-
lessly integrate uncertainty reduction with other adaptation tactics.
Achieving this goal presents challenges, which we also discuss.

The rest of this paper is organized as follows. Section 2 presents
a motivating example and shows how uncertainty reduction works.
Section 3 describes how the different activities typically present in
a self-adaptation loop have to be extended to realize uncertainty
reduction. Examples of tactics and the kind of uncertainty they re-
duce are presented in Section 4. Section 5 concludes the paper with
a description of the research challenges that realizing uncertainty
reduction poses.

2 MOTIVATING EXAMPLE
Consider a corporate system comprised of two servers: server A is
a web server, and server B is a database. For this example, let us
focus on self-adaptation for protecting against a cyber-attack (a.k.a.,

res
tor

eA

NOP

res
tor

eA
B

NOP

✓✓

0.225
0.075

0.7

✗ ✗

C=500

C=100

✓
C=50

1.0

1.0

1.0

Key

✓

✗

state

tactic

clean

with IDS alert

compromised

p transition with
probability p

cost
(negative reward,
omitted when 0)

C

A B

A B

A B

Figure 1: Decision without uncertainty reduction.

self-protection [44]). An intrusion detection system (IDS) has just
raised an alert indicating that there is a 30% chance of server A
being compromised, and since nothing suspicious has been detected
on the other server yet, the IDS assumes it is clean. This current
state is represented by the leftmost circle in Figure 1.

The system has to make a decision between using tactic restoreA
to restore the contents of the server A to a non-compromised ver-
sion from a backup, or do nothing, which we refer to as the NOP
tactic. These two alternatives are depicted as thick arrows going
out of the current state. The tactic restoreA has a cost C = 50,1
but when used, it results in server A being clean with certainty (as
depicted by the single transition with probability 1.0). Tactic NOP,
on the contrary, has no cost, but has three possible outcomes in our
model. Since the IDS estimates that the server A is compromised
with probability 0.3, server A is actually clean with probability 0.7.
If server A is compromised, we assume that there is a small prob-
ability (0.075) that the attacker—who is part of the environment
for this system—will move on to compromise server B. In that case,
there is a big cost incurred (C = 500) due to the sensitivity of the
data in that server. On the other hand, if the attacker does not move
on to server B, the system remains in the same state.

In situations like this, making decisions solely on the immediate
outcome of the possible action the system can take, can result in
suboptimal adaptation. In this example, a myopic decision would
consider that the cost of using tactic restoreA is higher than the
expected cost of doing nothing (1.0 ·50 > 0.075 ·500 = 37.5). Instead,
a better decision can be made by considering what would happen
beyond the current decision, including the actions the system and
the attacker could take in the future. To that end, the possible tactics

1Tactics can incur costs due to resources or time consumed, for example. In this case,
the cost could be the revenue lost by the system being down for the duration of the
restore operation.

Uncertainty Reduction in Self-Adaptive Systems SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden

Table 1: Tactic choice without uncertainty reduction as a
function of the probability of server A being compromised.

p = P (A compromised) tactic

p ≤ 0.267 NOP
p > 0.267 restoreA

in the state in which both servers are compromised represent the
system actions in that state. If the system does not do anything
(i.e., tactic NOP), the system keeps incurring a high cost due to the
additional time the attacker has to exfiltrate sensitive data.2 Tactic
restoreAB, has a cost of C = 100, but evicts the attacker from the
two servers.

A model like the one shown in Figure 1 is a Markov decision
process (MDP), which can be used to make sequential decisions
under uncertainty [33]. A policy for an MDP is a mapping from
state to action3 indicating which action must be taken in each state.
An optimal policy for our example is such that when followed, it
minimizes the expected cost. The optimal policy for an MDP can
be generated using, for example, the PRISM probabilistic model
checker [25]. Table 1 shows the optimal decision (i.e., tactic to use
in the current state) depending on the probability of server A being
compromised. For our example with p = 0.30, the optimal policy
indicates that the system should use tactic restoreA to minimize the
expected cost, which is 50 under this policy. Given the uncertainty
about the state of the system, and the high cost of not restoring
server A if it happens to be compromised, the optimal decision in
this case is to execute tactic restoreA at a cost even though it is more
likely that server A is not compromised. This raises the question
of whether more effective adaptation decisions (i.e., with reduced
expected cost) could be made if the system could have a better
characterization of the state of server A at the expense of incurring
a cost to do so. This is analyzed next.

To show how uncertainty reduction can improve the effective-
ness of self-adaptation, let us revisit the example, but now with the
addition of an uncertainty reduction tactic. Tactic scanA performs
a malware scan in server A and reports whether it is infected or
not. This tactic has a cost (e.g., due to the performance impact it
causes, but a far less impact than restoring the server), so it would
not be effective to use it at all times. In order to decide when to use
it, we have to include it in the decision process, modeling not only
its cost, but also its impact. Figure 2 shows the MDP with this tactic
added. In this case, the outcome of this tactic is modeled using the
intrusion probability reported by the IDS. That is, we assume that
the tactic will report that the server is clean with 70% probability,
or compromised with 30% probability. The latter case is modeled
with a new state which represents the knowledge of the state of
server A with reduced uncertainty.

As was done before, the decision is made by computing the opti-
mal policy that minimizes the expected cost. In this case, it indicates
that the optimal decision is to execute the tactic scanA, achieving an

2This is modeled as a self-transition, incurring a cost of C = 500 every time step in
which NOP is taken and the system remains in the same state.
3This is a Markovian deterministic policy; however, there are other kinds of policies
(see [34]).

NOP

restoreA

sc
an

res
tor

eA

NOP
res

tor
eA
B

NOP

✓✓

0.225

0.075

0.7 C=100

C=50

0.7

0.3

C=50

C=25

0.25

0.75

C=500

1.0

1.0

1.0

sc
an
A

✓

✗ ✓

✗ ✗

1.0

A B

A B

A B

A B

C=500

Figure 2: Decision with uncertainty reduction.

overall expected cost of 40, a 20% reduction compared to not having
this tactic available. Although this may seem an obvious answer, it
is not obvious that having an available uncertainty reduction tactic
does not imply that it is always optimal to use it, as this depends
on the rest of the model. Table 2 shows how the decision changes
depending on the probability of server A being compromised as
reported initially by the IDS. If this probability is more than 0.5, the
system directly executes the restoreA tactic without attempting to
reduce the uncertainty first. Intuitively, this is consistent with the
fact that it may not be worth incurring the extra cost of reducing
uncertainty, since the server is most likely compromised anyway.
When the probability of server A being compromised is no more
than 0.198, the system does not do anything, even though uncer-
tainty reduction is an option. As it can be gleaned from these results,
a decision like this can take into account the tradeoff between the
cost and benefits of reducing uncertainty.

Table 2: Tactic choice with uncertainty reduction as a func-
tion of the probability of server A being compromised.

p = P (A compromised) Tactic

p ≤ 0.198 NOP
0.198 < p ≤ 0.5 scanA
p > 0.5 restoreA

In this paper we argue that this example is one instance of a
broad class of problems that can benefit from a systematic approach
to uncertainty reduction. In the following sections, we describe
what such an approach would require, the challenges it poses, and
present additional examples.

SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden Gabriel A. Moreno, Javier Cámara, David Garlan, and Mark Klein

3 UNCERTAINTY REDUCTION
A principled approach to uncertainty reduction requires not only
deciding when to reduce uncertainty and how, but also captur-
ing the information necessary to make that decision, executing
the uncertainty reduction tactics, and capturing the information
they produce. These activities and the information they use can be
mapped to the MAPE-K loop shown in Figure 3 [22]. The following
sections describe the extensions that would be needed to support
uncertainty reduction.

Monitor ExecuteKnowledge

Analyze Plan

Target system

Figure 3: MAPE-K loop.

Monitor. This activity has to capture the information necessary
to make uncertainty reduction decisions. In the example presented
in Section 2, this activity would monitor the probability of server
A being compromised as reported by the IDS, but in general, it
would need to collect the probability distribution over the possible
states. For other kinds of uncertainty reduction (e.g., to reduce a
confidence interval), it may need to gather meta-information about
a particular parameter, such as the number of observations taken
of that parameter.

In approaches based on MAPE-K, such as Rainbow [17] and
Hogna [2], monitor is the only activity that modifies the knowledge.
That is, when an adaptation tactic is executed to modify the system,
that change is not reflected in the knowledge until it is detected
by monitor, providing robustness against tactic execution failure.
Preserving the same rules for uncertainty reduction tactics would
require that the monitor activity captures the output of that tactic
(e.g., the output of the malware scan). Another alternative would
be to allow uncertainty reduction tactics to directly record their
output in the knowledge, since a failure of such a tactic would result
the knowledge not being updated, as if the tactic had not been
executed.4 This would remove the indirection and the associated
development effort needed to capture the output of the tactic via
monitor.

Finally, some uncertainty reduction tactics may change themoni-
tor activity instead of the system. This is the case when the sampling
rate of a parameter must be increased, or when a parameter that
was not being monitored must start being monitored. This requires
a modification to the MAPE-K loop so that the execute activity can
effect changes on the monitor (see Execute below for more details).

4By failure here we mean failure to execute. A fault such as producing incorrect output
would not be detected even if the output was captured by monitor.

Analyze. The analysis has to determine whether the system
would benefit from reducing uncertainty. This decision is different
than the traditional responsibility of the analyze activity, which
decides whether the system needs to adapt. Adaptation can be
(and often is [24, 37]) reactive—based on the current state of the
system and environment. However, deciding whether to reduce
uncertainty requires assessing the impact of doing so on subsequent
adaptation decisions, something that reactive approaches cannot
do. For this reason, approaches that make adaptation decisions with
a look-ahead horizon, such as the work of Gerasimou et al. [18]
and Moreno et al. [31], may be more suitable as starting points for
developing this kind of analysis.

It would also be possible to combine analyze with plan, as is
done in the proactive self-adaptation approach PLA, which does
not separate analysis and planning activities in its adaptation loop
because deciding how to adapt requires evaluating the impact of the
possible adaptations on the subsequent decisions [30, 31]. In fact,
this combination was done in the example of the previous section,
when we analyzed the model of Figure 2. The computed optimal
policy determined that uncertainty reduction was beneficial and
indicated the tactic we had to use.5

Plan. If the analyze activity determines that uncertainty reduc-
tion is needed, the plan activity must select one or more uncertainty
reduction tactics to execute based on some criteria such as minimiz-
ing the expected cost (as in our example) or maximizing utility. The
challenge here is that uncertainty reduction by itself does not have
any benefit, so such assessment has to be made taking into account
how the different applicable uncertainty reduction tactics will im-
prove subsequent decisions. In the example shown in Figure 2, this
was done leveraging an MDP to model a sequential decision prob-
lem. However, this is a simple example and challenges still remain
to incorporate uncertainty reduction to a broad class of problems.
First, in this case it was possible to explicitly represent the only two
possible outcomes of the scanA tactic, but it is not clear how the
impact of other tactics, such as one that increases the sampling rate
of a parameter, should be represented. Second, in the example we
limited the applicability of uncertainty reduction to a single state.
Adding other uncertainty reduction tactics and allowing them to
be used in all the states in which they are applicable would cause a
significant increase in the size of the model, possibly causing the
optimal policy computation to be too slow for run-time decision.
There may be many ways in which the calculations can be made
tractable. For example, considering uncertainty reduction tactics
only in the initial state (i.e., the state of the system at the time the
decision is made) would reduce the size of the problem.

Instead of MDPs there may be other formalisms that could be
used. In particular, partially observable Markov decision processes
(POMDP) make no distinction between actions that change the
system and actions that reduce uncertainty [21]. Themain challenge
with POMDPs will be making their solution fast enough to make
decisions at run time.

Execute. Once the plan activity selects the uncertainty reduction
tactics that must be executed, the execute activity takes care of

5If there had been more than one uncertainty reduction tactic applicable to the current
state, the policy would have selected the optimal.

Uncertainty Reduction in Self-Adaptive Systems SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden

executing them. For regular adaptation tactics, this would be done
using operators that change the target system. In the case of un-
certainty reduction tactics, the operators could likewise change the
system, for example, to turn a sensor on, or could launch some pro-
cess, such as the malware scan in the motivating example. However,
there are other kinds of uncertainty reduction tactics that do not
change the target system, but instead change the monitor activity
(e.g., instantiating a probe). One way to effect these changes would
be indirectly through the knowledge, from which monitor would
read its configuration every time execute changes it. Another option
would be to have operators, similar to those defined for the target
system, available to directly change the monitor activity.

Knowledge. The knowledge shared by all the activities typically
consists of models of the system and its environment. For uncer-
tainty reduction, it is necessary to extend these models to capture
information about the uncertainty (e.g., the probability of server A
being compromised in the example of the previous section). Cámara
et al. present a catalog of patterns to represent uncertainty in self-
adaptive systems, which could be useful to capture different kinds
of uncertainty in the knowledge [7]. Among system models, spec-
ifications of tactic execution impact deserve particular attention
and require description languages like the one introduced in [9]
to be extended with specifications of how the level of uncertainty
about the pieces of information in other models are modified by the
tactic’s execution. These specifications will be required to enable
reasoning about the trade-offs of employing uncertainty reduction
tactics.

4 UNCERTAINTY REDUCTION TACTICS
In addition to extending the activities and knowledge available to a
self-adaptive system, enabling uncertainty reduction entails having
available a catalog of tactics to improve the characterization of
current and future system and environment states at run time by
reducing uncertainties associated with different sources.

This section illustrates the uncertainty reduction mechanisms
available in domains in which self-adaptation is currently being
applied, even if these mechanisms are not being systematically
exploited as we propose in this paper. There have been several
works on identifying and categorizing types and sources of uncer-
tainty in the self-adaptive systems literature, attending to different
criteria and level of detail [14, 29, 35]. To illustrate some example
forms of uncertainty reduction, we employ a subset of the cate-
gories described by Esfahani and Malek, who identify uncertainties
associated with different sources in self-adaptive systems [14].

4.1 Uncertainty due to simplifying
assumptions

The analyses used in the analysis activity of MAPE-K may have sim-
plifying assumptions that make the analysis faster or even tractable.
For example, the need to adapt may be determined by simply com-
paring a property of the system (e.g., the average response time)
with a threshold set by the requirements of the system, ignoring
details such as predictions of how the environment will change, or
how recent changes in the system or its environment could affect
the ability of the system to continue meeting requirements. The
uncertainty introduced by these simplifications could be reduced

using more elaborate analyses. In some cases, the use of a differ-
ent analysis may require using different models in the knowledge
and the necessary changes to monitor to gather the information
required by the analysis. Changing the analysis would also require
that execute canmake changes to analysis. This can be accomplished
directly or indirectly in the same ways described in Section 3 for
changing monitor.

Tactic: use analysis with higher fidelity. For example, the uncer-
tainty due to a simple threshold-based analysis can be reduced by
using analyses with higher fidelity such as layered queuing net-
works [27] and queuing Petri nets for performance analysis [23],
or runtime quantitative verification to predict requirement viola-
tions [4].

4.2 Uncertainty due to noise
This uncertainty arises from the changes in the process being mon-
itored or from sensing error, which result in different values for
each observation taken.

Tactic: change the sampling rate. It is possible to create a con-
fidence interval for the value of the monitored parameter based
on the mean and variance of the observations. One way to control
the width of the interval, and thus the uncertainty, is to adapt the
sampling rate [1, 15, 39, 42].

4.3 Uncertainty due to model drift
Over time, the models used as part of the knowledge component
can become inconsistent with the actual state of the system or the
environment due to the decoupling between the adaptation man-
ager and the target system, or because there are changes happening
that are not initiated by the adaptation manager. The uncertainty
arising from model drift could be managed by adding probes, using
on-going machine learning [6], or by other mechanisms that can
refresh the information in the model that could be stale.

Tactic: probe service/device not recently used. When a service
(or device) has not been recently used, there is uncertainty as to
whether the service is still available. Even if the service is available,
its response time may vary overtime, for example, due to the load
the service is experiencing. Sending a request to a service before it
is actually needed can be used as a tactic to reduce these kinds of
uncertainty [19].

Tactic: turn probe/sensor on. In some cases, the uncertainty is
due to not having monitored something such as the presence or
state of a component, or the value of a parameter. In such cases,
the uncertainty can be reduced by turning a probe or a sensor on
so that the unknown state or value can be monitored [1, 12, 41].

Tactic: chaos monkey. There are cases in which the uncertainty is
caused by changes in the underlying system that may affect some
quality of the system. For example, Netflix uses a tool called Chaos
Monkey to test the resiliency of their system—which is modified
several times a day—by randomly terminating virtual machines [3].
In addition to testing whether the system can recover from this
injected failure, this technique allows collecting other information
that may change over time, such as how long it takes to recover
(i.e., returning to an acceptable state according to some measure of
effectiveness for the system).

SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden Gabriel A. Moreno, Javier Cámara, David Garlan, and Mark Klein

4.4 Uncertainty in the context
As the context in which a system executes changes, the charac-
teristic of different entities in the system’s environment, and the
availability of different resources may change, introducing uncer-
tainty. This can be reduced using additional probes or more specific
approaches such as discovery mechanisms [17] and tactics to dis-
cover external resources [26]. In addition to the tactic below, turn
probe/sensor on described above is useful for this kind of uncertainty.

Tactic: present a CAPTCHA.When a system is experiencing un-
usually high load due to a denial-of-service (DoS) attack, there is
uncertainty regarding which requests come from humans interact-
ing with the system, and which are part of the attack and executed
by bots. A CAPTCHA [40] can be used as a tactic to tell whether a
connection is originated by a human or by a bot [38].6

4.5 Uncertainty due to human in the loop
When humans are used as an effector [8, 10], there may be uncer-
tainty about their availability or willingness to perform a task.

Tactic: poll humans for their state. Elicit from the humans their
availability or willingness to perform a task in order to reduce the
uncertainty associated with relying on them. This could be done
through self-report or brain-computer interfaces [20, 28].

4.6 Uncertainty due to decentralization
In this case, no single subsystem or unit of the decentralized system
has complete knowledge of the state of all the units. Decentralized
models can gather information about other systems to reduce the
uncertainty about their state using direct queries or mechanisms
such as gossiping and proximity broadcasting [43].

Tactic: query other systems. An uncertainty reduction tactic could
request that information actively instead of waiting for it to be
received, as is done with the query interaction protocol used in
multi-agent systems [32].

5 RESEARCH CHALLENGES AND
CONCLUSION

Self-adaptive systems face uncertainty stemming from a variety of
sources. Although several self-adaptation approaches are able to
take uncertainty into account when making adaptation decisions,
to date there are no systematic techniques to reduce the uncertainty
when that is possible and cost-effective.

In this paper, we have introduced the concept of uncertainty
reduction to manage uncertainty in self-adaptive systems. The ex-
ample of a self-protecting system presented in Section 2 shows
how uncertainty reduction decisions can be integrated with self-
adaptation decisions, achieving better effectiveness than the base-
line approach that just considers the uncertainty without managing
it. Sections 3 and 4 made this observation more concrete by de-
scribing how support for uncertainty reduction could be added to
a self-adaptation loop, and by providing examples of uncertainty
reduction tactics, respectively.

6Unlike the other tactics presented, this one not only reduces uncertainty, but also
changes the connections between the system and its context. Still, this tactic improves
the outcome of subsequent adaptation decisions, for example, by preventing the system
from responding to a DoS attack as if it were an increase in user traffic.

Although we have given a description of the changes that would
be needed in a self-adaption loop to realize this idea, and have
described several uncertainty reduction tactics, there are several
interrelated research challenges that remain to be addressed.

In order for the system to decide when to use an uncertainty
reduction tactic, it is necessary to assess the trade-off between its
benefit and cost. Therefore, the impact of each tactic has to be
specified, as is done with regular adaptation tactics. How to do this
in a generic way is not obvious. For instance, in our example of
Section 2, impact of the tactic was relatively easy to specify because
it removed the uncertainty completely, and the probability of the
two possible outcomes was derived from the IDS report. However,
considering a tactic that just reduces the uncertainty without com-
pletely eliminating it brings up the challenge of quantifying how
much of a reduction the tactic could achieve. Uncertainty quantifi-
cation techniques [36] could help with that.

A catalog of uncertainty reduction tactics is needed so that prac-
titioners can adopt the ones relevant to their systems. The challenge
here is how to document the tactics in a way that is not system
specific while still containing useful information. The techniques
used for documenting design patterns [16] could be used as a model
to achieve that goal.

Finally, decision procedures that can decide when to use un-
certainty reduction tactics are needed. These procedures should
evaluate the trade-offs between the benefit and the cost of using
these tactics. Furthermore, it has to be sufficiently fast to make these
decisions at run time (this might rule out certain formal reasoning
mechanisms such as POMDPs). Ideally, uncertainty reduction deci-
sions should be integrated with the regular self-adaptation decision
in a way that treats both kinds of tactics uniformly. In that way,
a decision approach that considers a look-ahead decision horizon
would be able to assess adaptation paths consisting both kinds of
tactics. In the example of Section 2, an MDP solved with a prob-
abilistic model checker was used to achieve that. However, it is
not immediately clear whether including different uncertainty re-
duction tactics, possibly with different kinds of impacts, could be
supported with such an approach.

These three research challenges are not independent. Therefore,
progress will have to be made tackling the three of them simulta-
neously. We intend to make progress in our future work to realize
the ideas of uncertainty reduction put forward in this paper.

ACKNOWLEDGMENTS
Copyright 2018 ACM. All Rights Reserved. This material is based on
research sponsored by AFRL and DARPA under agreement number
FA8750-16-2-0042. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements,
either expressed or implied, of the AFRL, DARPA or the U.S. Govern-
ment. This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development
center. DM18-0045

Uncertainty Reduction in Self-Adaptive Systems SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri. 2009. Energy management

in wireless sensor networks with energy-hungry sensors. IEEE Instrumentation
and Measurement Magazine 12, 2 (apr 2009), 16–23.

[2] Cornel Barna, Hamoun Ghanbari, Marin Litoiu, and Mark Shtern. 2015. Hogna:
A Platform for Self-Adaptive Applications in Cloud Environments. In 2015
IEEE/ACM 10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. IEEE, 83–87.

[3] Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski,
Justin Reynolds, and Casey Rosenthal. 2016. Chaos Engineering. IEEE Software
33, 3 (may 2016), 35–41.

[4] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. 2012.
Self-adaptive software needs quantitative verification at runtime. Commun. ACM
55, 9 (sep 2012), 69.

[5] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola, and
Giordano Tamburrelli. 2011. Dynamic QoS Management and Optimization in
Service-Based Systems. IEEE Transactions on Software Engineering 37, 3 (may
2011), 387–409.

[6] Radu Calinescu, Yasmin Rafiq, Kenneth Johnson, and Mehmet Emin Bakir. 2014.
Adaptive Model Learning for Continual Verification of Non-functional Properties.
In Proceedings of the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE ’14). ACM, New York, NY, USA, 87–98.

[7] Javier Cámara, David Garlan, Won Gu Kang, Wenxin Peng, and Bradley Schmerl.
2017. Uncertainty in Self-Adaptive Systems. Technical Report CMU-ISR-17-110.
Institute for Software Research, Carnegie Mellon University.

[8] Javier Cámara, David Garlan, Gabriel A Moreno, and Bradley Schmerl. 2016. Eval-
uating Trade-Offs of Human Involvement in Self-Adaptive Systems. InManaging
Trade-Offs in Self-Adaptive Systems, Ivan Mistrik, Nour Ali, John Grundy, Rick
Kazman, and Bradley Schmerl (Eds.). Elsevier.

[9] Javier Cámara, Antonia Lopes, David Garlan, and Bradley Schmerl. 2014. Impact
Models for Architecture-Based Self-Adaptive Systems. In Proceedings of the 11th
International Symposium on Formal Aspects of Component Software (FACS2014).
Bertinoro, Italy.

[10] Javier Cámara, Gabriel A. Moreno, and David Garlan. 2015. Reasoning about
Human Participation in Self-Adaptive Systems. In 2015 IEEE/ACM 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems. IEEE, 146–156.

[11] Javier Cámara,Wenxin Peng, David Garlan, and Bradley Schmerl. 2017. Reasoning
about Sensing Uncertainty in Decision-Making for Self-Adaptation. In Proceedings
of the 15th International Workshop on Foundations of Coordination Languages and
Self-Adaptive Systems (FOCLASA 2017).

[12] Paulo Casanova, David Garlan, Bradley Schmerl, and Rui Abreu. 2014. Diagnos-
ing unobserved components in self-adaptive systems. In Proceedings of the 9th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems - SEAMS 2014. ACM Press, New York, New York, USA, 75–84.

[13] Shang-Wen Cheng and David Garlan. 2012. Stitch: A language for architecture-
based self-adaptation. Journal of Systems and Software 85, 12 (dec 2012), 2860–
2875.

[14] Naeem Esfahani and Sam Malek. 2013. Uncertainty in self-adaptive software
systems. In Software Engineering for Self-Adaptive Systems II, Rogério de Lemos,
Holger Giese, Hausi A. Müller, and Mary Shaw (Eds.). Lecture Notes in Computer
Science, Vol. 7475. Springer Berlin Heidelberg, 214–238.

[15] Mohamed Medhat Gaber and Philip S. Yu. 2006. A framework for resource-aware
knowledge discovery in data streams. In Proceedings of the 2006 ACM symposium
on Applied computing - SAC ’06. ACM Press, New York, New York, USA, 649.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design
Patterns: Abstraction and Reuse of Object-Oriented Design. Lecture Notes in
Computer Science 707 (1993), 406–431.

[17] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. 2004. Rainbow: architecture-based self-adaptation with reusable
infrastructure. Computer 37, 10 (oct 2004), 46–54.

[18] Simos Gerasimou, Radu Calinescu, and Alec Banks. 2014. Efficient runtime quan-
titative verification using caching, lookahead, and nearly-optimal reconfiguration.
In Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems - SEAMS 2014. ACM, New York, New York,
USA, 115–124.

[19] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. 2008.
A framework for proactive self-adaptation of service-based applications based
on online testing. In 1st European Conference on Towards a Service-Based Internet,
Vol. 5377. Springer Berlin Heidelberg, 122–133.

[20] Shihong Huang and Emmanuelle Tognoli. 2014. Brainware: synergizing software
systems and neural inputs. In Companion Proceedings of the 36th International
Conference on Software Engineering - ICSE Companion 2014. ACM Press, New
York, New York, USA, 444–447.

[21] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. Artificial Intelligence

101, 1 (1998), 99–134.
[22] Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing.

Computer 36, 1 (2003), 41–50.
[23] S. Kounev and A. Buchmann. [n. d.]. Performance modelling of distributed

e-business applications using Queuing Petri Nets. In 2003 IEEE International
Symposium on Performance Analysis of Systems and Software. ISPASS 2003. IEEE,
143–155.

[24] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. 2014. A survey on engineering approaches for self-adaptive
systems. Pervasive and Mobile Computing 17, Part B (oct 2014), 184–206.

[25] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: ver-
ification of probabilistic real-time systems. In 23rd international conference on
Computer Aided Verification. Springer-Verlag, 585–591.

[26] Grace A. Lewis and Patricia Lago. 2015. A Catalog of Architectural Tactics for
Cyber-Foraging. In Proceedings of the 11th International ACM SIGSOFT Conference
on Quality of Software Architectures - QoSA ’15. ACM Press, New York, New York,
USA, 53–62.

[27] Marin Litoiu and Cornel Barna. 2013. A performance evaluation framework for
Web applications. Journal of Software: Evolution and Process 25, 8 (aug 2013),
871–890.

[28] Eric Lloyd, Shihong Huang, and Emmanuelle Tognoli. 2017. Improving Human-in-
the-Loop Adaptive Systems Using Brain-Computer Interaction. In 2017 IEEE/ACM
12th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). IEEE, 163–174.

[29] S Mahdavi-Hezavehi, P Avgeriou, and DWeyns. 2016. A Classification of Current
Architecture-based Approaches Tackling Uncertainty in Self-Adaptive Systems
with Multiple Requirements. In Managing Trade-offs in Adaptable Software
Architectures, Ivan Mistrik, Nour Ali, Rick Kazman, John Grundy, and Bradley
Schmerl (Eds.). Elsevier, Chapter 3, 45 – 77.

[30] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015.
Proactive self-adaptation under uncertainty: a probabilistic model checking ap-
proach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2015. ACM Press, New York, New York, USA, 1–12.

[31] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2016. Ef-
ficient Decision-Making under Uncertainty for Proactive Self-Adaptation. In 2016
IEEE International Conference on Autonomic Computing (ICAC). IEEE, Wuerzburg,
Germany, 147–156.

[32] Stefan Poslad. 2007. Specifying protocols for multi-agent systems interaction.
ACM Transactions on Autonomous and Adaptive Systems 2, 4 (nov 2007).

[33] M. L. Puterman. 2002. Dynamic programming. Encyclopedia of Physical Science
and Technology 4 (2002), 673–696.

[34] M. L. Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, Ltd.

[35] Andres J Ramirez, Adam C Jensen, and Betty H C Cheng. 2012. A taxonomy of
uncertainty for dynamically adaptive systems. In 2012 7th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
IEEE, 99–108.

[36] Christopher J Roy and William L Oberkampf. 2011. A comprehensive framework
for verification, validation, and uncertainty quantification in scientific computing.
Computer Methods in Applied Mechanics and Engineering 200, 25 (2011), 2131–
2144.

[37] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape
and Research Challenges. ACM Transactions on Autonomous and Adaptive Systems
4, 2 (may 2009), 1–42.

[38] Bradley Schmerl, Javier Cámara, Jeffrey Gennari, David Garlan, Paulo Casanova,
Gabriel A. Moreno, Thomas J. Glazier, and Jeffrey M. Barnes. 2014. Architecture-
based self-protection. In Proceedings of the 2014 Symposium and Bootcamp on the
Science of Security - HotSoS ’14. ACM Press, New York, New York, USA, 1–12.

[39] Niels L. M. van Adrichem, Christian Doerr, and Fernando A. Kuipers. 2014.
OpenNetMon: Network monitoring in OpenFlow Software-Defined Networks.
In 2014 IEEE Network Operations and Management Symposium (NOMS). IEEE,
vanAdrichem2014, 1–8.

[40] Luis von Ahn, Manuel Blum, and John Langford. 2004. Telling humans and
computers apart automatically. Commun. ACM 47, 2 (feb 2004), 56–60.

[41] David L Wells and Paul Pazandak. 2001. Taming cyber incognito: Tools for
surveying Dynamic/Reconfigurable software landscapes. InWorking Conference
on Complex and Dynamic Systems Architectures, Brisbane, Australia. 13–24.

[42] Wenhong Ma, Changcheng Huang, and J. Yan. 2004. Adaptive sampling for
network performance measurement under voice traffic. In 2004 IEEE International
Conference on Communications (IEEE Cat. No.04CH37577). IEEE, 1129–1134 Vol.2.

[43] Danny Weyns, Sam Malek, and Jesper Andersson. 2010. On decentralized self-
adaptation. In Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems - SEAMS ’10. ACM Press, New York, New
York, USA, 84–93.

[44] Eric Yuan, Naeem Esfahani, and Sam Malek. 2014. A Systematic Survey of Self-
Protecting Software Systems. ACM Transactions on Autonomous and Adaptive
Systems 8, 4 (jan 2014), 1–41.

