SWIM: An Exemplar for Evaluation and Comparison of
Self-Adaptation Approaches for Web Applications

Gabriel A. Moreno
gmoreno@sei.cmu.edu
Carnegie Mellon University
Software Engineering Institute
Pittsburgh, PA, USA

ABSTRACT

Research in self-adaptive systems often uses web applications as
target systems, running the actual software on real web servers.
This approach has three drawbacks. First, these systems are not
easy and/or cheap to deploy. Second, run-time conditions cannot
be replicated exactly to compare different adaptation approaches
due to uncontrolled factors. Third, running experiments is time-
consuming. To address these issues, we present SWIM, an exemplar
that simulates a web application. SWIM can be used as a target
system with an external adaptation manager interacting with it
through its TCP-based interface. Since the servers are simulated,
this use case addresses the first two problems. The full benefit
of SWIM is attained when the adaptation manager is built as a
simulation module. An experiment using a simulated 60-server
cluster, processing 18 hours of traffic with 29 million requests takes
only 5 minutes to run on a laptop computer. SWIM has been used
for evaluating self-adaptation approaches, and for a comparative
study of model-based predictive approaches to self-adaptation.

ACM Reference Format:

Gabriel A. Moreno, Bradley Schmerl, and David Garlan. 2018. SWIM: An
Exemplar for Evaluation and Comparison of Self-Adaptation Approaches for
Web Applications. In SEAMS ’18: SEAMS ’18: 13th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems , May 28—
29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3194133.3194163

1 INTRODUCTION

Research in self-adaptive systems often uses web applications like
Znn.com [5] and RUBIS [25] as target systems [4, 7, 9, 12, 13, 15—
19, 24, 26, 28]. In most cases, these systems are configured to use
multiple web servers so that the self-adaptation manager can in-
crease or decrease the number of active servers to deal with chang-
ing traffic to the application. Although these applications were
developed for research and benchmarking, they are not simulated—
they run actual code and process requests on real web servers
such as the Apache HTTP Server. This complicates the deploy-
ment of these experimental systems because it requires having a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5715-9/18/05...$15.00
https://doi.org/10.1145/3194133.3194163

Bradley Schmerl
schmerl@cs.cmu.edu
Carnegie Mellon University
School of Computer Science
Pittsburgh, PA, USA

David Garlan
garlan@cs.cmu.edu
Carnegie Mellon University
School of Computer Science
Pittsburgh, PA, USA

distributed system of physical or virtual machines to deploy the
web servers. And even if virtual machines are commissioned from
a cloud provider to simplify the deployment, there is still a cost to
run the experiments.

Another problem with running the software on real web servers
is that the run-time conditions cannot be replicated exactly to
compare different self-adaptation approaches due to several un-
controllable factors, including the processing speed of the servers,
background processes, and network delays. This prevents compar-
ing results obtained by different research groups, and even between
experiments run by the same researcher.

Yet another problem is that running experiments is time con-
suming. These experiments involve sending requests to the system
for some period of time long enough to allow changes in the traffic
to the system. Ideally, the traffic to the system is generated from a
prerecorded trace captured from real traffic to a web application. In
such cases, the traces may have to be several hours long in order to
capture naturally-occurring changes in the traffic. Depending on
the experiment design, running a complete set of experiments may
take days. Furthermore, even while self-adaptation approaches are
being developed and tested, each run may be inconveniently long.

To address these issues, we present the Simulator for Web In-
frastructure and Management (SWIM), an exemplar that simulates
a web application like Znn.com or RUBIS. SWIM simulates the pro-
cessing of requests in multiple servers, but runs as a single process
in a single computer, making the deployment for an experiment
simple regardless of the number of servers required. Although there
are several random elements in the simulation, such as the time to
process a request, the random number generators are seeded, thus
allowing the replication of the same conditions multiple times.

The interaction between the adaptation manager and SWIM
can be done in two different ways. In the first mode, SWIM can
be used as a target system with an external adaptation manager
interacting with it through its TCP-based interface. This makes the
integration with SWIM straightforward regardless of the language
in which the adaptation manager was developed. With this use
case using an external adaptation manager, SWIM addresses the
first two problems described above. The full benefit of SWIM is
attained when the adaptation manager is built as a simulation
module, because in this case SWIM can control the timing of the
interaction with the adaptation manager, and thus it can compress
time, by skipping the wait time between events. In this second mode,
an experiment using a simulated 60-server cluster, processing 18
hours of traffic with 29 million requests takes only 5 minutes to
run on a laptop computer.

https://doi.org/10.1145/3194133.3194163
https://doi.org/10.1145/3194133.3194163
https://doi.org/10.1145/3194133.3194163

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

A
e |

web load grm— . DN
browser balancer i web | database
i server o

client tier web tier data tier

Key
" HTTP data
HTTPload
balancer

Figure 1: Simulated web application architecture.

database

hut-down | ! tier
H access

TTP server

SWIM has been used for evaluating self-adaptation approaches [21],
and for a comparative study of model-based predictive approaches
to self-adaptation [20]. Cito and Gall propose using Docker con-
tainers for artifacts supporting software engineering research [6],
so we are now making this exemplar available as a Docker image
for easy deployment on different operating systems.! This distri-
bution includes: two simple adaptation managers that show how
other adaptation managers can be developed for SWIM,; the traces
used for the comparative study; and a tool to create plots of the
simulation results.

The rest of the paper is organized as follows. Section 2 provides
and overview of SWIM and the kind of web applications it simu-
lates. Section 3 describes how adaptation managers for SWIM are
implemented. A description of how experiments with SWIM are
run is presented in Section 4.

2 OVERVIEW OF SWIM

SWIM simulates a generic multi-tier web application similar to
Znn.com and RUBIS. An application of this kind consists of a web
server tier that receives requests from clients using browsers, and a
database tier. A load balancer is used to support multiple servers in
the web tier, as shown in Figure 1. The load balancer distributes the
requests arriving at the website among the web servers. When a
client requests a web page using a browser, the web server process-
ing the request accesses the database tier to get the data needed
to render the page with dynamic content. The request arrival rate,
which induces the workload on the system, changes over time, and
we want the system to be able to self-adapt to best deal with this
changing environment.

There are two ways the system can deal with changes in the
workload induced by the clients. First, as is typical in elastic comput-
ing, the system can add/remove servers to/from the pool of servers
connected to the load balancer. Second, it can control whether re-
sponses include optional content (e.g., advertisement or suggested
products) or not, since not including the optional content in the re-
sponse to a request reduces the load imposed on the system. To this

! Available at https://hub.docker.com/r/gabrielmoreno/swim/.

Gabriel A. Moreno, Bradley Schmerl, and David Garlan

end, SWIM has brownout capability [16]. Instead of being limited
to a binary choice in which all or no responses include the optional
content, the brownout paradigm uses a control known as dimmer
to control the proportion of responses that include the optional
content, with 1 being the setting in which all responses include
the optional content, 0 when no one does (i.e., blackout). The value
of the dimmer can be thought of as the probability of a response
including the optional content, thus taking values in [0..1].

In general, the cost of running a system is proportional to the
number of servers used, and the revenue is higher when more
optional content is served and the response time requirement is
met. This introduces a trade-off that the adaptation manager has to
manage. SWIM provides the necessary monitoring data to include
these factors in the adaptation decision, and to compare adaptation
approaches using utility functions that use these factors.

SWIM was implemented using OMNeT++, an extensible discrete
event simulation environment [27]. SWIM does not simulate the
network, the actual functionality of the web application, or what
particular pages a user accesses. Instead, it only simulates the pro-
cessing of requests at a high level—simply as a computation that
takes time to execute—which is sufficient to evaluate approaches
in terms of qualities such as response times, response types, and
number of servers used.

The traffic to the system is simulated by replaying request traces
stored in files. A trace file consists of one line per request, and each
line is a single floating-point number that specifies how long to
wait (in seconds) before sending the next request. SWIM includes
traces from the WorldCup 98 trace archive [2] and the ClarkNet
traces [3], which were previously recorded from real websites.

The requests arrive at the load balancer, and are forwarded to
one of the servers following a round robin algorithm. Each server
simulates the processing of requests in the web server. Akin to the
maximum number of processes in a real web server, the maximum
number of concurrent requests in a server is configurable in the
simulation. When more than one request is being processed by
a server, the sharing of its processor is simulated by inflating its
processing time accordingly. Requests assigned to a server that is
already processing the maximum number of concurrent request are
queued and serviced in FIFO order.

The processing of a request is simulated only in terms of the time
that it takes, not the computation or results it produces. This time
is determined by the service time—the amount of time processing
the request would take if there were no contention. To support
brownout, when a request arrives at a server, a random number
is drawn from a uniform distribution to determine whether its re-
sponse should include the optional content according to the current
dimmer setting. The service time is then drawn from a normal
distribution whose parameters depend on the type of response. Al-
though the parameters of the two distributions are configurable in
a flexible way, generally the service time for responses that include
the optional content have higher mean and variance.

In SWIM, the effect of a cold cache is also simulated by increasing
service times when a server is newly instantiated, emulating how
cache misses add to the normal steady state service time. As the
server processes more requests, this effect gradually disappears.

All the random number generators used in the simulation are
seeded so that it is possible to replicate experiments with the same

https://hub.docker.com/r/gabrielmoreno/swim/

SWIM: An Exemplar for Self-Adaptation for Web Applications

conditions, and thus make a direct comparison of different adapta-
tion approaches.

Thus far, we have described SWIM as a target system. The next
section describes how adaptation managers interact with SWIM.

3 IMPLEMENTING ADAPTATION MANAGERS

An adaptation manager requires an interface with the target system
in order to monitor that system and to execute adaptation actions
on it. SWIM provides two interfaces that allow an adaptation man-
ager to interact with it. One is TCP-based and can be used by an
external adaptation manager; the other requires that the adaptation
manager be built as an OMNeT++ module. Both interfaces provide
probing methods to obtain information about the system and its
environment, including current dimmer value, number of servers
and active servers,? utilization of each active server, average re-
quest arrival rate, and average throughput and response time for
the two kinds of responses (i.e., with and without optional content).
In addition, these interfaces have effectors that allow the adaptation
manager to change the dimmer setting, and to add® and remove
servers. All operations have negligible execution time, except for
adding a server, which takes an amount of time configurable in the
simulation. This time simulates the time it takes to boot a server,
or instantiate a new virtual machine in the cloud.

In the following sections, the two alternatives for implementing
adaptation managers using these interfaces are described.

3.1 Adaptation Manager as Simulation Module

To obtain the most benefit out of SWIM, the adaptation manager
must be built as an OMNeT++ simulation module. Doing so allows
the simulation to control the timing of events without needing to
synchronize with an external adaptation manager process. This
allows time to be compressed in two ways in the simulation. First,
there is never a real wait for something to happen, since the simu-
lation clock can be advanced to the next relevant event. In addition,
operations that take time and whose actual result is not needed
can be simulated by calculating when the operation would be com-
pleted and just inserting a completion event at that time into the
future, without actually performing the time-consuming operation.

When used in this way, SWIM implements most of the MAPE-K
loop [14]. The model module holds the knowledge of the system,
including static information about configuration of the simulation
(e.g., maximum number of servers supported), and information that
changes during the execution of the system, which is collected by
the monitor module. This module has probes to measure request
arrival rate, throughput, server utilization, etc. The execution man-
ager takes an adaptation tactic (i.e., add server, remove server, set
dimmer, or a composite of them) and executes it to effect changes
on the system. Analysis and planning are the only activities of the
MAPE-K loop that an adaptation manager needs to provide as an
OMNeT++ module.

An OMNeT++ module consists of a C++ class and a NED file
that defines the simulation module type.* SWIM provides a class

2 A server is considered active if it has finished booting and can process requests.
30ne current limitation of SWIM is that only one server can be booting at a time, and
no server can be removed while another one is booting.

4Due to space constraints, it is not possible to cover details of OMNeT++ here. We
refer the interested reader to the OMNeT++ manual [22].

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

Tactic+ ReactiveAdaptationManager::evaluate() {

MacroTacticx pMacroTactic = new MacroTactic;

Models pModel = getModel();

const double dimmerStep = 1.0 / (pModel—>getNumberOfDimmerLevels() — 1);

double dimmerFactor = pModel—>getDimmerFactor();

double spareUtilization = pModel—>getConfiguration().getActiveServers() —
pModel—>getObservations().utilization;

bool isServerBooting = pModel—>getServers() > pModel—>getActiveServers();

double responseTime = pModel—>getObservations().avgResponseTime;

if (responseTime > RT_THRESHOLD) {
if (lisServerBooting
&& pModel—>getServers() < pModel—>getMaxServers()) {
pMacroTactic—>addTactic(new AddServerTactic);
} else if (dimmerFactor > 0.0) {
dimmerFactor = max(0.0, dimmerFactor — dimmerStep);
pMacroTactic—>addTactic(new SetDimmerTactic(dimmerFactor));
}
} else if (responseTime < RT_THRESHOLD) { // can we increase dimmer or remove servers?
only if there is more than one server of spare capacity
if (spareUtilization > 1) {
if (dimmerFactor < 1.0) {
dimmerFactor = min(1.0, dimmerFactor + dimmerStep);
pMacroTactic—>addTactic(new SetDimmerTactic(dimmerFactor));
} else if (lisServerBooting
&& pModel—>getServers() > 1) {
pMacroTactic—>addTactic(new RemoveServerTactic);
}
}
}

return pMacroTactic;

Listing 1: Adaptation manager as simulation module.

BaseAdaptationManager that handles the interaction with the
other modules in the simulation. An adaptation manager simply
needs to extend this class and implement the method evaluate().
The self-adaptation loop has a period defined with the configuration
parameter evaluationPeriod.’ In each period, the monitor mod-
ule updates the model, and then invokes the evaluate() method
of the adaptation manager. This method returns a pointer to an
instance of Tactic, which is then passed to the execution man-
ager. SWIM does not require separating the implementations of the
evaluation and planning activities, but that can be done if desired.

Listing 1 shows the implementation of a simple reactive adapta-
tion manager that tries to maintain the average response time below
a threshold using the least number of servers, and serving the most
optional content. The logic of this adaptation manager is as follows.
If the observed average response time is greater than the threshold,
it adds a server if possible, otherwise, it decreases the dimmer. If
the response time is below the threshold and there is more than
one server of active spare capacity, it increases the dimmer, but if
the dimmer is already at its maximum, it removes a server if possi-
ble. The evaluate() method in this case returns a MacroTactic,
which implements a composite pattern for tactics [8]. Although
not used in this example, all the tactics contained by this tactic are
executed in parallel, so that it is possible to add a server and change
the dimmer setting simultaneously, for example. A MacroTactic
can be empty if no adaptation is needed. Line 3 shows how the code
gets access to the model to get all the information needed to make
the adaptation decision.

Although OMNeT++ modules are written in C++, it is possi-
ble to use wrappers to invoke adaptation managers developed in

SConfiguration parameters are defined in an . ini file (see Section 4.1).

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

other languages as long as they can be invoked synchronously from
evaluate(). Although the execution of the simulation stops while
the adaptation manager is performing the evaluation, SWIM mea-
sures the time evaluate() takes to execute, and then simulates
events as if the evaluation would have been performed in parallel
with the system running. This is important for evaluating the effect
decision delays have on the effectiveness of self-adaptation.

3.2 Adaptation Manager as External Program

SWIM’s TCP-based interface can be used for adaptation managers
that run as an external program. Although this has the drawback
of having to run SWIM in wall-clock time, it has the advantage
of allowing SWIM to be used as a target system for a variety of
adaptation managers, regardless of how they are implemented,
since most languages support communication through TCP sockets.
SWIM has been used in this mode with Rainbow [10] and CobRA [1],
which were developed independently of SWIM.

The protocol used by SWIM is simple and text-based, so it is
even possible to interact with SWIM using a TELNET client. SWIM
listens on port 4242 by default. Once a client (i.e., an external adap-
tation manager) opens a connection to this port, SWIM waits for a
command sent by the client as a text line terminated with a new-
line character. If the command is not recognized or there is an
error executing it, SWIM replies with a text line with the prefix
’error:’, followed by an error message. If the command is an ex-
ecution command, such as ’set_dimmer ©.4’, and it succeeds,
SWIM replies ’OK’. If the command is a probing command, SWIM
replies with a command-dependent answer (an integer or a floating-
point number) in a complete line. For example, if the client sends the
command ’get_dimmer’ after having sent the previous command,
SWIM replies with ’0.4’

Listing 2 shows the implementation of a simple external adap-
tation manager included with the artifact. In this case, the inter-
action with SWIM using its TCP-base interface is encapsulated in
a class SwimClient.® This class has a method to open the connec-
tion to SWIM (e.g., swim.connect("localhost")), and when it is
connected, the other methods use this connection to send the com-
mands and wait for the response from SWIM. Unlike the adaptation
manager implemented as a simulation model, this adaptation man-
ager has to implement the complete self-adaptation loop—the while
loop between lines 2-33. The first part of the code inside the loop
implements the monitor, using the probing commands of the inter-
face to get information about the system, with the local variables
where the results are stored being the model. In the adaptation man-
ager of Listing 1, there is a section of code similar to this, but in that
case it was just for convenience, because SWIM has already updated
the model in that case. Here, however, in addition to convenience it
is a matter of performance, since every invocation of a method of
SwimClient implies a round-trip request to SWIM. The rest of the
code implements the same logic as the example in Section 3.1. The
only difference is that instead of creating a MacroTactic to pass it
on to the execution manager, this adaptation manager directly uses
the effector commands of the SWIM interface, as it does not have a
separate execute activity.

OThis class can be easily reused to implement other adaptation managers, but that is
not necessary.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Gabriel A. Moreno, Bradley Schmerl, and David Garlan

void simpleAdaptationManager(SwimClient& swim) {
while (swim.isConnected()) {
double dimmer = swim.getDimmer();
int servers = swim.getServers();
int activeServers = swim.getActiveServers();
bool isServerBooting = (servers > activeServers);
double responseTime = swim.getAverageResponseTime();

if (responseTime > RT_THRESHOLD) {
if (lisServerBooting
&& servers < swim.getMaxServers()) {
swim.addServer();
} else if (dimmer > 0.0) {
dimmer = max(0.0, dimmer — DIMMER_STEP);
swim.setDimmer(dimmer);
}
} else if (responseTime < RT_THRESHOLD) { // can we incr. dimmer or remove servers?
only if there is more than one server of spare capacity
double spareUtilization = activeServers — swim.getTotalUtilization();

if (spareUtilization > 1) {
if (dimmer < 1.0) {
dimmer = min(1.0, dimmer + DIMMER_STEP);
swim.setDimmer(dimmer);
} else if (lisServerBooting && servers > 1) {
swim.removeServer();
}

}
}

sleep(PERIOD);
}
}

Listing 2: Adaptation manager as an external program.

4 EXPERIMENTS

Running an experiment with SWIM consists of three steps. First,
the simulation has to be configured, setting the duration, the input
trace, and the service time for processing requests, among other
things. Second, the experiments have to be run, and how that is
done depends on whether the adaptation manager is a simulation
module or an external program. Finally, the results obtained are
analyzed. The following sections describe these steps.

4.1 Configuring the Simulation

SWIM has two simulation directories under swim/simulations,
one for each kind of adaptation manager. These directories are
called swim_sa and swim for the adaptation manager as a simula-
tion module and as an external program, respectively. A simulation
is configured with an .ini file like the one shown in Listing 3.
Here, we provide a brief overview of parts relevant to SWIM, but
for more details about the syntax and other options, we refer the
reader to the OMNeT++ manual [22]. A simulation must have at
least one named configuration defined. This example defines a con-
figuration named Reactive in line 51. In line 52, it specifies the
module type name to be used for the adaptation manager. All the
simulation parameters not defined by a configuration are taken
from the [General] section, thus allowing defining multiple simi-
lar configurations without repeating configuration entries. The first
part in this section (lines 2-17) contains boilerplate configuration
for the recording of results. Line 19 specifies the network for the
simulation, which is a specification of how the different simulation
modules are connected. The SWIM_SA network is the one used when
the adaptation manager is a simulation module.

N
&

o
&

IS
23

Bon W
28 %

s
&

IS
& 8

@
gz

SWIM: An Exemplar for Self-Adaptation for Web Applications

[General]
num-—rngs = 3

save results in sqlite format

output—vector—file = ${resultdir}/${configname}—${runnumber}.vec
output—scalar—file = ${resultdir}/${configname}—${runnumber}.sca
outputscalarmanager—class = "omnetpp::envir::SqliteOutputScalarManager"
outputvectormanager—class = "omnetpp::envir::SqliteOutputVectorManager"

non—default statistics rercording
initialServers.param—record—as—scalar = true
«.maxServers.param—record—as—scalar = true
+.bootDelay.param—record—as—scalar = true
+numberOfBrownoutLevels.param—record—as—scalar = true
~evaluationPeriod.param—record—as—scalar = true
«responseTimeThreshold.param—record—as—scalar = true
+maxServiceRate.param—record—as—scalar = true

network = SWIM_SA
result—dir = ../../../results/SWIM_SA

simulation input and duration

source.interArrivalsFile = ${trace = "traces/wc_day53—r0—105m—I170.delta",
"traces/clarknet—http—105m—I70.delta"}

sim—time—limit = 6300s

warmup—period = 900s

adaptation loop period
~evaluationPeriod = 60

adaptation manager params
= numberOfBrownoutLevels = 5
=responseTimeThreshold = 0.75s

server pool configuration
~maxServers = 3
~initialServers = 3

server config
=.server«.server.threads = 100
=x.server«.server.timeout = 10s
==.servers.server.brownoutFactor = 0.1

for plotting, use latency as iteration variable even if no iteration is needed

=bootDelay = ${latency = 0, 60, 120, 180, 240} # deterministic boot times

#«.bootDelay = truncnormal(${latency = 0, 60, 120, 180, 240}, ${stddev=($latency)/10}) # random
boot times

service time configuration
=« server=.server.serviceTime = truncnormal(0.030s,0.030s)
««.server«server.lowFidelityServiceTime = truncnormal(0.001s,0.001s)

[Config Reactive]
~adaptationManagerType = "ReactiveAdaptationManager”

Listing 3: Simulation configuration file.

The user traffic to the applications is simulated by replaying
request traces. The property source. interArrivalsFile (line 23)
defines the path to the trace file. When a property is assigned mul-
tiple values, as in this case, it defines a (possibly named) iteration
variable, allowing the definition of experiments that include multi-
ple runs with different parameters. We will come back later to this
when we introduce another iteration variable.

Line 24 specifies the duration of the simulation, which in this
case matches the duration of the input trace. Line 25 defines a
warm-up period of 900 seconds, during which the simulation runs
normally, but no statistics are collected. This is useful for adaptation
managers that, for example, have filters or estimators that require
some priming,.

The period of the self-adaptation loop is defined in line 28. Al-
though this does not affect an adaptation manager running as an
external program, it does determine the period with which sta-
tistics are recorded in the results. Lines 31-32 are parameters for

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

the adaptation manager. Some adaptation managers use a discrete
number of dimmer levels, and that number can be set here.” The
responseTimeThreshold parameter defines the threshold below
which the average response time must be kept.

The configuration of the pool of servers includes the maximum
number of servers (line 35) and the number of servers active when
the simulation starts (line 36). In addition, there are parameters
that in a real deployment are typically found in the HTTP server
software. These include the number of threads (i.e., concurrent
requests) for each server (line 39), and the timeout for requests in
the queue waiting to be served (line 40). Line 41 specifies the initial
brownout factor for the servers. SWIM can also simulate the time
it takes to boot a server or to provision one from the cloud. This is
accomplished with the bootDelay parameter. In line 44, multiple
values in seconds are assigned to this parameter, defining the itera-
tion variable latency. OMNeT++ creates a simulation run for each
unique assignment of all the iteration variables in a configuration,®
with the last iteration variable defined being the one that iterates
faster across runs. In this example, trace is the outer iteration vari-
able with two values, and latency is the inner iteration variable
with 5 values, and together they define 10 runs. Run 0 uses the first
trace and latency=0, run 1 uses the first trace and latency=60,
and so on. Run 5 is the first one to use the second trace because
the runs 0 through 4 used all the values for the inner iteration
variable. Therefore, run 5 uses the second trace and latency=0,
run 6 uses the second trace and latency=60, and so on. In this
case, the boot delays are deterministic, but it is also possible to
have random boot delays. The example in line 45 indicates that the
value for bootDelay has to be drawn from a normal distribution
(truncated to the non-negative range) with mean equal to latency
and standard deviation equal to one tenth of latency.

The final piece of configuration defines the service time for the
two classes of responses (lines 48-49). The value of the parameter
server.serviceTime is the service time for the responses that in-
clude the optional content, and server.lowFidelityServiceTime
is for responses that do not include the optional content. The ser-
vice time is the time it takes to process a request if there is no wait
or contention when processing it. These values can be obtained
by profiling requests processed in a real system making sure that
only one request is sent at a time. In general, the service time is not
constant but follows some probability distribution. In the example,
a truncated normal distribution defined by the mean and standard
deviation parameters is used.

4.2 Running Experiments

Running a simulation requires selecting which named configuration
defined in the configuration file to use, and which run numbers to
run. Each simulation directory provides a script called run. sh that
accepts the following arguments.

./run.sh config [run-number(s)|all [ini-file]]
The optional argument to select which run to execute can include a

list of comma-separated run numbers without spaces (e.g., 1,3, 4),
or a range or run numbers (e.g., 0-4). The optional third argument

7 brownout is used as the complement of dimmer (i.e., dimmer = 1 — brownout).
8Except when parallel iteration is used [22].
9Detailed instructions for running experiments are provided with the artifact.

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

can be used to specify a different . ini file (the default is swim.ini
and swim_sa.ini in swim and swim_sa respectively).

When the simulation runs, it prints logging information, and
after each run completes, the results are saved in the directory
specified in the configuration file. The next section describe how
to access and analyze the results.

4.3 Analyzing Results

SWIM is configured to save the results of the simulations in SQLite
databases under the directory named results, which is in the
same directory as swim. The results are saved in results/SWIM
for the simulation simulations/swim, and in results/SWIM_SA
for the simulation simulations/swim_sa. There are two results
databases for each run named with the configuration name and the
run number. One of the databases (. sca) has scalar values, such as
the boot delay and the maximum number of servers, and the other
(.vec) has vectors such as the number of active servers at different
times, and the response time for each request.

There are several tools that work with SQLite databases that
can be used to analyze the results. For example, it is possible to
export the tables in the database to plain-text files with comma-
separated values, or use the OMNeT++ IDE to plot charts with the
results. More details, including the database schema for the results
are provided by Hornig [11].

SWIM includes a tool to create plots with the results of the
simulation. This tool is written in R, a language for statistical com-
puting [23], and it provides an example of how to process results,
which can be modified for other purposes. This tool can be invoked
with swim/tools/plotResults.sh and can be used to generate
plots in PDF or PNG format. Figure 2 shows the plot generated for
one of the simulation runs. The top chart plots the average request
rate per evaluation period, as defined in the configuration. The
server charts show the number of active servers with a solid line,
and the total number of servers (both active and booting) with a
dashed line. The difference between the two shows when a server
is booting. The chart in the middle shows the value of the dimmer
at different times. In this case, the adaptation manager uses discrete
dimmer levels that appear as steps in the plot, but it does not have
to be that way. The average response time chart shows a dashed
line representing the response time threshold. Finally, the utility
chart at the bottom of Figure 2 plots the cumulative utility using
the utility function used in a comparative study of predictive self-
adaptation approaches [20]. The utility function used for this plot
can be changed in swim/tools/plotResults.R.

5 CONCLUSION

In this paper we have presented SWIM, a simulator of web applica-
tions. SWIM addresses several issues that researchers face when
developing and evaluating self-adaptation approaches for web ap-
plications, namely the difficulty or cost of deploying multi-server
applications, not being able to replicate conditions, and the time it
takes to run experiments. SWIM can simulate tens of servers in a
single computer without any special configuration other than spec-
ifying how many servers are needed. In addition, SWIM can exactly
replicate run-time conditions between runs, enabling the compar-
ison of different approaches. When used with a self-adaptation

Gabriel A. Moreno, Bradley Schmerl, and David Garlan

» 60

2

8 40

3

o

© 20

3

il 1
1 1

gz 1

> 1

3 1

1.00 ” ”———
0.75 HH—_”
0.50

0.25

dimmer

0.00

resp. time (s)
ENGC

3000 -

utility

2000 -

um

1000 -
o

0- 7 i i I I i
1000 2000 3000 4000 5000 6000
time (s)

Figure 2: Generated plot of simulation results.

manager built as a simulation module, SWIM can simulate hours of
web traffic in a few minutes. The exemplar is available as a Docker
image (https://hub.docker.com/r/gabrielmoreno/swim/) for easy de-
ployment on different platforms, and its source code is available at
https://github.com/cps-sei/swim.

ACKNOWLEDGMENTS

Copyright 2018 ACM. All Rights Reserved. This material is based
upon work funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon Uni-
versity for the operation of the Software Engineering Institute, a
federally funded research and development center, by AFRL and
DARPA under agreement number FA8750-16-2-0042, by the Office
of Naval Research under grants N000141612961 and N00014172889,
and by the National Science Foundation under award CCF-1618220.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of the AFRL, ONR, DARPA, NSF, or the U.S. Government.
DM18-0083

REFERENCES

[1] Konstantinos Angelopoulos, Alessandro V. Papadopoulos, Vitor E. Silva Souza,
and John Mylopoulos. 2016. Model predictive control for software systems with

https://hub.docker.com/r/gabrielmoreno/swim/
https://github.com/cps-sei/swim

SWIM: An Exemplar for Self-Adaptation for Web Applications

(3

[4

[10

[11

[12

(13

[14

[15

=

=

]

CobRA. In Proceedings of the 11th International Workshop on Software Engineering
for Adaptive and Self-Managing Systems - SEAMS ’16. ACM Press, Austin, Texas,
35-46. https://doi.org/10.1145/2897053.2897054

Martin F. Arlitt and T. Jin. 2000. A workload characterization study of the 1998
World Cup Web site. IEEE Network 14, 3 (2000), 30-37. https://doi.org/10.1109/
65.844498

Martin F. Arlitt and Carey L. Williamson. 1996. Web server workload character-
ization. Proceedings of the 1996 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems - SIGMETRICS 96 24 (may 1996),
126-137. https://doi.org/10.1145/233013.233034

Tao Chen and Rami Bahsoon. 2017. Self-Adaptive Trade-off Decision Making for
Autoscaling Cloud-Based Services. IEEE Transactions on Services Computing 10, 4
(jul 2017), 618-632. https://doi.org/10.1109/TSC.2015.2499770

Shang-Wen Cheng, David Garlan, and Bradley Schmerl. 2009. Evaluating the
effectiveness of the Rainbow self-adaptive system. In 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems. IEEE, 132-141.
https://doi.org/10.1109/SEAMS.2009.5069082

J Cito and H C Gall. 2016. Using Docker Containers to Improve Reproducibility in
Software Engineering Research. In 2016 IEEE/ACM 38th International Conference
on Software Engineering Companion (ICSE-C). 906-907.

Alessio Gambi, Mauro Pezze, and Giovanni Toffetti. 2016. Kriging-Based Self-
Adaptive Cloud Controllers. IEEE Transactions on Services Computing 9, 3 (may
2016), 368-381. https://doi.org/10.1109/TSC.2015.2389236

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&
path=ASIN/0201633612

Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang. 2014.
Adaptive, Model-driven Autoscaling for Cloud Applications. In 11th International
Conference on Autonomic Computing. 57-64. https://www.usenix.org/system/
files/conference/icac14/icac14-paper-gandhi.pdf

David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. 2004. Rainbow: architecture-based self-adaptation with reusable
infrastructure. Computer 37, 10 (oct 2004), 46—54. https://doi.org/10.1109/MC.
2004.175

Rudolf Hornig. 2016. SQLite as a Result File Format in OMNeT++. (2016).
https://summit.omnetpp.org/archive/2016/assets/pdf/OMNET-2016-Session_
3-03-Presentation.pdf OMNeT++ Community Summit 2016.

Gueyoung Jung, Kaustubh R. Joshi, Matti A. Hiltunen, Richard D. Schlichting, and
Calton Pu. 2009. A cost-sensitive adaptation engine for server consolidation of
multitier applications. In Middleware 2009, ACM/IFIP/USENIX, 10th International
Middleware Conference, Jean Bacon and Brian F. Cooper (Eds.). Springer, Urbana,
IL, 163—-183. http://link.springer.com/chapter/10.1007/978-3-642-10445-9_9
Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. 2009.
Self-adaptive and self-configured CPU resource provisioning for virtualized
servers using Kalman filters. In Proceedings of the 6th international conference on
Autonomic computing - ICAC "09. ACM Press, New York, New York, USA, 117.
https://doi.org/10.1145/1555228.1555261

Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic comput-
ing. Computer 36, 1 (2003), 41-50. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1160055

Malik Jahan Khan, Mian Muhammad Awais, Shafay Shamail, and Irfan Awan.
2011. An empirical study of modeling self-management capabilities in autonomic
systems using case-based reasoning. Simulation Modelling Practice and Theory

[16

=
=

[18

[19

[22]

(23]

[24

[27

[28

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

19, 10 (nov 2011), 2256-2275. https://doi.org/10.1016/j.simpat.2011.08.005
Cristian Klein, Martina Maggio, Karl-Erik Arzén, and Francisco Hernandez-
Rodriguez. 2014. Brownout: building more robust cloud applications. In Proceed-
ings of the 36th International Conference on Software Engineering - ICSE 2014. ACM,
New York, New York, USA, 700-711. https://doi.org/10.1145/2568225.2568227
Markus Luckey, Benjamin Nagel, Christian Gerth, and Gregor Engels. 2011.
Adapt Cases: Extending Use Cases for Adaptive Systems. In Proceedings of the 6th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. ACM Press, New York, New York, USA, 30—-39. https://doi.org/10.1145/
1988008.1988014

Gabriel A. Moreno, Javier Camara, David Garlan, and Bradley Schmerl. 2015.
Proactive self-adaptation under uncertainty: a probabilistic model checking ap-
proach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering - ESEC/FSE 2015. ACM Press, New York, New York, USA, 1-12.
https://doi.org/10.1145/2786805.2786853

Gabriel A. Moreno, Javier Camara, David Garlan, and Bradley Schmerl. 2016. Ef-
ficient Decision-Making under Uncertainty for Proactive Self-Adaptation. In 2016
IEEE International Conference on Autonomic Computing (ICAC). IEEE, Wuerzburg,
Germany, 147-156. https://doi.org/10.1109/ICAC.2016.59

Gabriel A. Moreno, Alessandro Vittorio Papadopoulos, Konstantinos Angelopou-
los, Javier Camara, and Bradley Schmerl. 2017. Comparing Model-Based Predic-
tive Approaches to Self-Adaptation: CobRA and PLA. In 2017 IEEE/ACM 12th

International Symposium on Software Enﬁineeringfor Adaptive and Self-Managing
Systems (SEAMS). IEEE, 42-53. https://doi.org/10.1109/SEAMS.2017.2

Gabriel A. Moreno, Ofer Strichman, Sagar Chaki, and Radislav Vaisman. 2017.
Decision-Making with Cross-Entropy for Self-Adaptation. In 2017 IEEE/ACM 12th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE, 90-101. https://doi.org/10.1109/SEAMS.2017.7
OMNeT++ 2018. OMNeT++ Simulation Manual. https://omnetpp.org/doc/
omnetpp/manual/. (2018).

R Core Team. 2015. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

Rahul Raheja, Shang-Wen Cheng, David Garlan, and Bradley Schmerl. 2010. Im-
proving architecture-based self-adaptation using preemption. In Self-Organizing
Architectures. Springer-Verlag, 21-37. http://dLacm.org/citation.cfm?id=1880569.
1880572

RUBIS 2009. RUBIS: Rice University Bidding System. http://rubis.ow2.org/.
(2009).

Gabriel Tamura, Norha M Villegas, Hausi A Miiller, Laurence Duchien, and Lionel
Seinturier. 2013. Improving Context-awareness in Self-adaptation Using the
DYNAMICO Reference Model. In Proceedings of the 8th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS ’13).
IEEE Press, Piscataway, NJ, USA, 153-162. http://dl.acm.org/citation.cfm?id=
2663546.2663571

Andras Varga and Rudolf Hornig. 2008. An overview of the OMNeT++ simulation
environment. In Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems Workshop. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications En-
gineering), Marseille, France. http://dl.acm.org/citation.cfm?id=1416222.1416290
Qiliang Yang, Jian Lii, Juelong Li, Xiaoxing Ma, Wei Song, and Yang Zou. 2010.
Toward a fuzzy control-based approach to design of self-adaptive software. In
Proceedings of the Second Asia-Pacific Symposium on Internetware - Internetware
’10. ACM Press, New York, New York, USA, 1-4. https://doi.org/10.1145/2020723.
2020738

https://doi.org/10.1145/2897053.2897054
https://doi.org/10.1109/65.844498
https://doi.org/10.1109/65.844498
https://doi.org/10.1145/233013.233034
https://doi.org/10.1109/TSC.2015.2499770
https://doi.org/10.1109/SEAMS.2009.5069082
https://doi.org/10.1109/TSC.2015.2389236
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/0201633612
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/0201633612
https://www.usenix.org/system/files/conference/icac14/icac14-paper-gandhi.pdf
https://www.usenix.org/system/files/conference/icac14/icac14-paper-gandhi.pdf
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MC.2004.175
https://summit.omnetpp.org/archive/2016/assets/pdf/OMNET-2016-Session_3-03-Presentation.pdf
https://summit.omnetpp.org/archive/2016/assets/pdf/OMNET-2016-Session_3-03-Presentation.pdf
http://link.springer.com/chapter/10.1007/978-3-642-10445-9_9
https://doi.org/10.1145/1555228.1555261
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055
https://doi.org/10.1016/j.simpat.2011.08.005
https://doi.org/10.1145/2568225.2568227
https://doi.org/10.1145/1988008.1988014
https://doi.org/10.1145/1988008.1988014
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1109/ICAC.2016.59
https://doi.org/10.1109/SEAMS.2017.2
https://doi.org/10.1109/SEAMS.2017.7
https://omnetpp.org/doc/omnetpp/manual/
https://omnetpp.org/doc/omnetpp/manual/
https://www.R-project.org/
https://www.R-project.org/
http://dl.acm.org/citation.cfm?id=1880569.1880572
http://dl.acm.org/citation.cfm?id=1880569.1880572
http://rubis.ow2.org/
http://dl.acm.org/citation.cfm?id=2663546.2663571
http://dl.acm.org/citation.cfm?id=2663546.2663571
http://dl.acm.org/citation.cfm?id=1416222.1416290
https://doi.org/10.1145/2020723.2020738
https://doi.org/10.1145/2020723.2020738

