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ABSTRACT 

In the world of autonomic computing, the ultimate aim is to 
automate human tasks in system management to achieve high-
level stakeholder objectives. One common approach is to capture 
and represent human expertise in a form executable by a computer. 
Techniques to capture such expertise in programs, scripts, or rule 
sets are effective to an extent. However, they are often incapable 
of expressing the necessary adaptation expertise and emulating the 
subtleties of trade-offs in high-level decision making. In this 
paper, we propose a new language of adaptation that is suffi-
ciently expressive to capture the subtleties of choice, deriving its 
ontology from system administration tasks and its underlying 
formalism from utility theory. 

Categories and Subject Descriptors 

D.2.m [Software Engineering]: Miscellaneous – architecture-

based self-adaptive system, autonomic computing. 

General Terms 

Management, Performance, Design, Security, Languages 

Keywords 

Self-adaptation, repair language, strategy, tactic, choice, utility, 
preference, trade-off 

1. INTRODUCTION 
In the world of autonomic computing, the ultimate aim is to 
automate human tasks in system management to achieve high-
level stakeholder objectives. One common approach is to capture 
and represent human expertise in a computer-executable form, 
such as a shell script, a Java program, or even a set of rules in a 
rule engine like JESS. The script or program may be deployed as 
part of the managed system or with an external mechanism that 
monitors and adapts the system, and the prescribed adaptation is 
carried out in response to conditions on the managed system. 

In previous work [2][3], we developed a software architecture-
based self-adaptation framework, called Rainbow, which uses 

external mechanisms and a software architecture model to monitor 
a managed system, detect problems, determine a course of action, 
and carry out the adaptation actions. Rainbow relies on existing 
capabilities in the managed system to allow system states to be 
extracted and changes to be effected. Using a software architec-
ture model allows the adaptation engineer to abstract away 
unnecessary details of the managed system. The software 
architecture of a system is the structure of its components, their 
interrelationships, and principles and guidelines governing their 
design and evolution over time [4]. It allows an engineer to obtain 
a global system perspective, explicitly capture system properties 
and constraints, and leverage existing, proven architectural 
analysis techniques to determine problems and remedies. 

Furthermore, using architecture modeling at both the design- and 
run-time allows us to generalize the adaptation mechanisms and 
expertise of Rainbow across classes of systems that share similar 
design assumptions and constraints. That is, we can leverage the 
notion of software architectural styles [8] to reuse adaptation 
mechanisms across different system instances of the same style [2]. 
This approach potentially empowers software engineers to apply 
and tailor Rainbow to a wide variety of existing systems without 
significant redevelopment effort. 

Our initial Rainbow prototypes managed the target system based 
on prescribed scripts. From that experience, we have discovered 
that capturing human expertise as programs or scripts can be quite 
effective to adapt a system for a single quality dimension, such as 
performance or security. Furthermore, combined with the 
architecture model, an adaptation script can be analyzed against 
the style of the managed system, i.e., the design constraints that 
establish the envelope of allowed structure and behavior, to 
ensure that the script correctly modifies the system. 

However, when more than one dimension must be considered for 
adaptation, representing the choices and trade-offs in a program, 
or alternatively, as expert system rules, becomes unwieldy, if not 
impractical. Not only does the number of cases grow intractable, 
but updating and maintaining consistency between the trade-off 
preferences quickly becomes unmanageable. In short, a program-
matic or rule-based approach is insufficient for expressing the 
necessary adaptation expertise and emulating the subtleties of 
trade-off decisions in the presence of multiple objectives. 

In this paper, we propose a new language of adaptation for which 
we derive the ontology from system administration tasks and base 
the underlying formalism on utility theory. We hypothesize and 
illustrate with example that this language is sufficiently expressive 
for adaptation expertise and overcomes the subtleties of high-level 
human adaptation decision. 
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2. MOTIVATING NEWS WEBSITE 
To help motivate the adaptation language, consider a fictitious 
news website, Z.com, which serves graphical news content to its 
customers. As illustrated in Figure 1 below, Z.com uses a load 
balancer to balance requests across a pool of replicated servers, 
the size of which is dynamically adjusted to balance server 
utilization with service response time. In other words, from a 
system management point of view, Z.com has the objective to 
serve news contents to its customers within a reasonable response 
time range while keeping the cost of the server pool within its 
operating budget. From time to time, due to highly popular 
events, Z.com experiences spikes in news requests that it cannot 
serve adequately, even at maximum pool size. To prevent losing 
customers, Z.com opts to serve minimal textual content during 
such peak times in lieu of providing zero service to its customers. 

 

Figure 1. System architecture of Z.com 

 

In this scenario, we learn from the expert system administrator of 
Z.com that two kinds of actions (a) and (b) are possible when the 
system comes under high load. The administrator may (a) increase 
the server pool size until a cost-determined maximum is reached, 
at which point the administrator would (b) switch the servers to 
serve textual content. If the system load drops, the administrator 
may (b) switch the servers back to graphical mode to make 
customers happy in combination with (a) reducing the pool size to 
reduce operating cost. The decision to adjust pool size and switch 
content mode is determined by observing overall high average 
response time and peak server load. We want to help Z.com 
automate its server management to adjust its server pool size as 
well as to switch content between graphical and textual mode. 

Note that in reality, a news site like CNN.com may already 
support some level of automated adaptation. However, automating 
decisions that trade off between multiple objectives to adapt a 
system is still not supported in most systems today. For instance, 
while it is possible to automate adaptations on performance 
concerns (e.g., load balancers), it is much harder to automate 
adaptations that address potentially conflicting qualities, such as 
performance and security. This work is an important step in that 
direction: to allow automation of adaptations that must balance 
multiple objectives. 

To keep the Z.com example manageable, we will make a few 
simplifying assumptions. First, to reduce the problem state space 
dramatically, we assume that every replicated server incurs the 
unit cost c and serves textual or graphical content uniformly. 
Since we care about the customers receiving timely news content, 
the most direct way to detect problems is to measure the average 
request-response time that customers experience.  We assume that 

the system can be probed for the average millisecond response 
time of service to client requests and that the server infrastructure 
enables us to start, stop, and switch the content mode of the 
servers within a reasonably short time. 

To reason about adaptation, we will distinguish between 
observable versus actionable states. Observable states are, 
namely, states of the system that we can observe using some 
system probing technology. The observable state space is usually 
infinite and intractable to adaptation analysis. We need to reduce 
this space to make reasoning tractable. State reduction functions 
are used to simplify the observable states into actionable states to 
facilitate decision-making for adaptation. 

In the Z.com example with the state simplification assumptions, 
the observable state space has four components—response time in 
milliseconds (R: N), server pool size (P: N), server cost in dollars 

(C: N), and server content mode as graphics or text (S: {g,t})—

yielding an infinite state space of N×N×N×{g,t}. Assume that, 

from interacting with the system administration experts, we have 
developed the following reduction functions: 

fR(r, LO_T, HI_T) : N×{LO_T}×{HI_T}→{low, med, high} = 

 { low if r<LO_T, med if LO_T ≤ r ≤ HI_T, high if r>HI_T } 

fC(p, c, BUD_T) : N×N×{BUD_T}→{ under_bud, over_bud } =  

 { under_bud if pc ≤ BUD_T, over_bud if pc > BUD_T } 

fS(s) : {g, t}→{g, t} (function defined for completeness) 

fALL(r, p, c, s, LO_T, HI_T, BUD_T) :  

 N×N×N×{g, t}×{LO_T}×{HI_T}×{BUD_T}→ 

 {low, med, high}×{under_bud, over_bud}×{g, t} 

The purpose of a reduction function is to reduce a continuous 
range in the state space to a small, discrete set using some 
qualitative judgment. In this case, the infinite range of response 
time is reduced to three states of low, medium, and high; the cost 
and server pool size states are reduced to two states of under_bud 
(within budget) and over_bud (over budget). Intuitively, a human 
observer evaluating a property of the system would apply such a 
judgment to reduce the amount of information to consider. Thus, 

fALL reduces the infinite observable state space of Z.com to an 
actionable state space of twelve states. In reality, we would expect 
many more actionable states, just not infinite. 

This small set of actionable states allows us to better understand 
the conditions for adaptation. In the Z.com example, four 
adaptations are possible: (1) Switch the server content mode from 
graphical to textual, (2) switch the server content mode from 
textual to graphical, (3) increment the server pool size, and (4) 
decrement the server pool size. The application of an adaptation 
depends not only on the condition of the system, but also on high-
level objectives from the system stakeholders. 

We consider three qualities of concern, or objectives, to the 
stakeholders: (A) response time experienced by the customers, (B) 
news content quality, and (C) server provision cost to Z.com. 
Note that, at some level, these are competing goals, and an 
adaptation choice must make an appropriate trade-off between 
these three objectives, based on predefined stakeholder prefer-
ences. As a further simplifying assumption, we treat stakeholder 
preferences over the objectives to be static once defined in the 
adaptation framework. 
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Given the actionable state space and these three objectives, we 
can reason about adaptations for Z.com. When the response time 
is high, objective A suggests that Z.com will increment its server 
pool size (3) if it is within budget; otherwise, Z.com will switch 
the servers to textual mode (1). When the response time is low, 
objective C suggests that Z.com will decrement its server pool 
size (4) if it is near budget limit; objective B suggests that Z.com 
will switch the servers to graphical mode (2) if they are not 
already in that mode. When the response time is in the medium 
range, objective B suggests that Z.com will switch to graphical 
mode if it the mode is textual, while the server pool size may 
either be incremented to decrease response time or decremented to 
reduce cost. 

We will now use the described Z.com example to motivate and 
explain the concepts in our adaptation language. 

3. LANGUAGE FOR SELF-ADAPTATION 
To realize automation of system management tasks, we require an 
adaptation language with the expressiveness to represent human 
expertise and the flexibility and robustness to capture complex 
and potentially dynamic preferences. In this section, we describe 
the ontology of concepts for such a language and how we derive it 
by observing system administration tasks. 

3.1 What System Administrators Do 
Imagine a system administrator, Carol, who is tasked to manage 
the infrastructure at Z.com. It is useful to consider the knowledge, 
model, and cognitive tasks involved for Carol to keep Z.com 
operational. Under normal conditions, faced with the large 
number of system conditions to check, Carol monitors the average 
request-response time as the first indicator of problem. At any 
time, Carol has various levels of control into the infrastructure, 
such as starting or killing a process, to cause changes and bring 
the system back to normal. Over time, Carol has packaged 
frequently performed sequences of actions into scripts for 
convenience and maintenance. Finally, Carol manages the system 
infrastructure with the objectives of the company in mind, namely 
the three objectives we described above for Z.com. 

Let us assume at some point that Carol notices the average 
request-response time at Z.com rising above a high threshold. 
Note that although we have focused on the performance quality in 
our example so far, security compromise and other factors could 
also contribute to a rise in system response time. Looking at the 
system states, Carol determines from her experience that the rise 
in response time should be handled as a performance problem. 
She quickly checks the loads on the servers, sees that they are 
highly loaded, and concludes that there is a popular news event. 
She switches all the servers to textual mode so that the system can 
recover and fulfill pending news requests from customers. 
Meanwhile, she considers the size of the server pool and the 
company operating budget to determine that she can increase the 
pool size to serve more requests. With this increase, it turns out 
that she can switch the servers back to graphical mode. A 
successful adaptation resolves the initially observed problem. 

Notice that Carol observes the system to determine the next step 
after taking each action. At each decision point, Carol considers 
several factors, including how much resource an action would 
require, how long the action would take, the extent to which the 

action would affect the system, and the relative ranking of the 
action against other alternatives. 

Realistically, system administrators can encounter any number of 
challenging situations. For instance, not every action will succeed. 
One may fail in mid-execution, while another may complete 
without achieving the expected result. As another example, while 
resolving performance problem A, a new security compromise 
problem B may preempt it. Finally, multiple problems might 
occur simultaneously, in which case the system administrator 
would first need to classify and prioritize them on the fly. 

Although we may still be unable to automate the more challenging 
situations, we can hope to automate the more routine tasks and 
reduce the heavy monitoring overhead of system administration. 

3.2 Concepts of Self-Adaptation 
Based on the description of Carol’s administration of Z.com, we 
can derive and generalize a number of concepts for system self-
adaptation. 

The individual actions that Carol carries out on the system are the 
building blocks of change. In architecture-based self-adaptation, 
the action corresponds to the architectural operator provided by 
the architectural style of the target system. For example, an action 
or architectural operator might be to kill a running process. 

  

Figure 2. An example tactic. 

A script of actions that Carol develops would correspond to a 
sequence of architectural operators, which form the adaptation 
tactic. Switching the server content mode from graphical to 
textual would be considered a tactic. More formally, a tactic as 
illustrated in Figure 2 is defined in three parts: the conditions of 
applicability, a sequence of actions, and a set of intended effects 
after execution. The execution semantics of a tactic is as follows: 
The adaptation engine chooses a tactic at each cycle, and the tactic 
is executed from beginning to end without new observations of 
the target system. A tactic completes successfully if no exception 
occurs during execution and all the intended effects are achieved; 
otherwise, the tactic may be considered to have failed. 

The mental model of all the possible actions that Carol can take 
corresponds to a set of strategies. Intuitively, a strategy embodies 
a flow of actions over a sizable time frame and scope, with 
intermediate decision points, to fix a type of system problems, 
while a tactic embodies a small sequence of actions to fix a 
specific problem in a localized part of the system. More formally, 

tactic switchToTextualContent() { 

  condition { 

    responseTime() > HI_T 

  } 

  action { 

    svrs = {select s : ServerT | s.active()}; 

    forall s : svrs { 

      s.setTextualMode(true); 

    } 

  } 

  effect { 

    responseTime() < HI_T and 

    forall s : ServerT | s.active() • 
      s.isTextualMode() 

  } 

} 



a strategy is defined as a tree of tactics that tackles common 
quality issues, with conditions describing each branch. Intermedi-
ate system observation occurs after each tactic is executed in order 
to decide what successive branch to take in the strategy tree. This 
branch decision is called tactic matching. Though we will not 
discuss it in depth in this paper, we derive the syntax of a strategy 
from Dijkstra’s Guarded Command Language [7], which provides 
an intuitive condition-action construct with repetition capability, 
supporting our defined notion of the strategy. 

Carol’s decision to treat an observed system condition as a 
performance versus a security problem corresponds to strategy 

selection. For humans, this process combines heuristics, trade-
offs, and experience. To emulate and automate this process, the 
adaptation framework must be able to capture sufficient heuristics 
and trade-off information to allow the strategies to be scored and 
compared. The company objectives and operational requirements 
that Carol considers are important to inform this selection process, 
and these correspond to the adaptation objectives and adaptation 
utility preferences of the stakeholders. The cost and benefit factors 
that Carol considers while choosing actions correspond to the 
tactic meta-information. Combined with probability information 
associated with the branches in the strategy tree, tactic meta-
information associated with the tactic nodes in the strategy tree 
allows the computation of aggregate strategy scores. This is 
explained further in Section 3.3. 

Failure handling is necessary when something goes wrong during 
the execution of an action. Preemption occurs when a more 
important problem arises that takes priority over the problem 
currently under investigation. 

Together, the architectural operator, tactic, strategy, strategy 
selection, tactic matching, adaptation objective, adaptation utility 
preference, tactic meta-information, failure handling, and 
preemption form the core concepts of self-adaptation. The 
operator, tactic, and strategy form the basic ontology of the 
adaptation language. 

3.3 FORMALISM OF SELECTION 
To overcome the complexity and subtleties of human decision 
when selecting an adaptation, we developed a formalism based on 
utility theory to evaluate strategies during an adaptation cycle and 
select the best strategy that balances multiple objectives. In the 
description below, formal expressions appear between square 
brackets following a descriptive prose. 

The formalism is developed using set theory, and starts with the 
managed system. We model the managed system as a labeled 
Kripke structure, also known as a doubly labeled transition 

system. A Kripke structure is a type of nondeterministic finite 
state machine used in model checking to represent the behavior of 
a system. It defines a graph whose nodes represent the reachable 
states of the system, whose edges are labeled and represent state 
transitions, and where a labeling function maps each node to a set 
of atomic propositions that hold true in the corresponding state. 

More formally, let Act be a countable set of action symbols and let 
AP be a set of atomic propositions, i.e., Boolean expressions over 
variables, constants, and predicate symbols. The system can be 

represented as a 4-tuple M = (S, I, R, L) with signature, i.e., 
available operations, (Act, AP), where S is a countable set of states, 

I ⊆ S is a set of initial states, R ⊆ S×Act×S is a transition relation 

that allows for reflexive transitions [∀s∈S •∃a∈Act •(s,a,s)∈R], 

and L: S→2AP is a labeling or interpretation function. 

Using a utility function reachables: S×Act→PS that returns a set 

of states immediately reachable from a state s given an action a, 

we define a function prob: S×Act×S→[0,1] that evaluates the 

probability of an action a∈Act transitioning the system from a 

state s∈S to any of the possible resulting states s’∈S. First we 
require the elements in the domain of prob() to be in the transition 

relation R [∀(s,a,s’):S×Act×S | (s,a,s’) ∈ dom prob • (s,a,s’)∈R]. 
We then require the sum of all probabilities of the same non-

deterministic transition a from the same state to add up to 1 [∀s:S 

• ∀a:Act • ∑s’∈reachables(s,a) prob(s, a, s’) == 1]. 

A tactic [t∈T] is defined as a sequence of operations (basic type 

[OPERATION]) and corresponds to an action label in M [T⊆Act], 

but not all transitions in M necessarily correspond to a tactic. We 
define a unique null tactic as a null sequence. We assume that no 

spontaneous (τ) transition occurs in the system during an 
adaptation process, that is, all transitions in a Kripke model result 
from some adaptation actions. 

Each tactic is associated with an attribute vector of n elements, 
which include both cost attributes such as resource consumed, and 
effect attributes such as reduction in response time. Thus, the 
attribute vector describes the expected cost and effect incurred 
and delivered by a tactic, respectively, when it completes. We 
define AV to be a set of such attribute vectors and define a 

function to retrieve the attribute vector of a tactic [tAV: T→AV]. 

A preference vector is defined in correspondence to the tactic 
attribute vector, using utility curves to map the value of each 
attribute to a score in the range [0,1]. A utility function then 
computes the weighted sum of the utilities across the attribute 

vector, yielding a scalar utility value [Upref: AV→N]. The utility 

curves capture the extent to which the users will be happy with 
particular values of each attribute. The overall utility function 
represents the relative priority of the attributes over one another. 

A strategy [g∈G] is defined as a tree over a set of vertices V, 

corresponding to the set of tactics [V⊆T], and a set of paired 

vertices E, where pred(e) gives the predecessor vertex of e∈G and 
succ(e) gives the successor vertex of e, with a condition function 

[C: E→PAP] and a probability function [P: E→[0,1]] over E. In 

relation to the managed system M, the condition on every branch 

can be mapped to corresponding state propositions [∀e∈E • 

∃a1,a2∈Act | a1==pred(e) ∧ a2==succ(e) • ∃s1,s2,s3∈S | 

(s1,a1,s2)∈R ∧ (s2,a2,s3)∈R • C(e)⊆ L(s2)]. To allow an 

aggregate expected value to be computed meaningfully over the 
entire tree, the probabilities at each branch level must sum to 1 

[∀v∈V • sum{e∈E | pred(e)==v • P(e)}==1]. Finally, to model 
unexpected conditions under which no tactic at a particular branch 
level might apply, we define for every branch level a null tactic 
branch that is applicable any time no condition indicated by C() 

matches [∀v∈V • ∃e∈E | pred(e)==v • C(e)=={} ∧ succ(e)==<> ∧ 

∀e’∈E | pred(e’)==v ∧ e!=e’ • C(e’)!={} ∧ succ(e’)!=<>]. 

Using the probabilities and the attribute vector of each tactic in a 

strategy tree, we can compute the aggregate attribute vector, EΑΑΑΑ() 

[EΑΑΑΑ: G→AV], over the strategy at the root tactic. The algorithm to 

compute EΑΑΑΑ(g) consists of two parts, one for the cost-based 
attribute elements, and the other for the effect-based attribute 



elements. We concatenate the vectors EΑΑΑΑ_cost(X) and EΑΑΑΑ_effect(X) to 

form EΑΑΑΑ(X). 

Given a strategy with the root tactic X, its children A, B, etc., with 
corresponding probabilities pA, pB, etc., we recursively compute: 

EΑΑΑΑ_cost(X) = Agg_AVcost(X) = 

 tAVcost(X)+(pA×Agg_AVcost(A) + pB×Agg_AVcost(B) + …) 

EΑΑΑΑ_effect(X) = Agg_AVeffect(X) = 

 pA × Agg_AVeffect(A) + pB × Agg_AVeffect(B) + … 

Finally, we can select from the set of available strategies one that 

yields the maximum utility value [maxg∈G{Upref(EΑΑΑΑ(g))}]. 

By formalizing the notions of strategy and tactic in terms of an 
underlying finite state model, we form a clean mathematical 
model to allow analysis against an abstract managed system. 
Assuming that the managed system is modeled with sufficient 
fidelity, we can check whether defined tactics correspond properly 
to transition actions in the Kripke model and ensure that 
branching conditions of defined strategies derive from corre-
sponding state propositions. 

More importantly, the utility theoretic basis of strategy selection 
allows tactics with different attributes and strategies that tackle 
different problems to be compared on even footing. Utility theory 
also gives us the assurance that trade-off is dynamically comput-
able between possibly conflicting interests, provided we can elicit 
and capture preferences adequately from the stakeholders as well 
as estimate the probabilities on strategy branches with accuracy. 
Preference elicitation and probability estimation are two 
hypotheses that warrant proof through future case studies. 

In the next section, we illustrate the strategy selection using this 
language formalism. 

4. ADAPTATION SELECTION EXAMPLE 
In this section, we will illustrate the adaptation selection using the 
Z.com example system. We start with the three high-level, 
potentially competing objectives and derive from those a set of 
utility preferences. We illustrate the definition of adaptation 
tactics with their attribute vectors and demonstrate strategy 
selection using the defined utility preferences. 

The two primary groups of stakeholders in the Z.com example are 
the customers and the provider. The customers care about quick 
response time of their news requests and high content quality (i.e., 
graphical over textual). The provider, while aware of the 
customers’ quality preferences, is constrained by the infrastructure 
cost to provide the service. To summarize the objectives: 

1. Response time: low, medium, or high 
2. Quality: graphical or textual 
3. Budget: under or over 

Note that these three stakeholder objectives suggest three 
corresponding attributes that are important to select an adaptation. 
In addition, since response time is one of the objective attributes, 
and it is affected by the amount of time required to complete a 
tactic, we also need to consider disruption as a cost attribute. We 
will use an ordinal scale of 1 to 5 to express degree of disruption. 

Given our understanding of stakeholder objectives, we can derive 
a simple set of utility preferences over these four attributes: 

1. Response time: 1 if low, 0.5 if medium, 0 if high 

2. Quality: 1 if graphical, 0.5 if unchanged, 0 if textual 
3. Budget: 1 if under or unchanged, 0 if over 
4. Disruption: 1 if 1, 0.75 if 2, 0.5 if 3, 0.25 if 4, 0 if 5 

Furthermore, we assign relative weights to these four attributes to 
enable the evaluation of an overall utility value. Let’s assume that 
Z.com considers response time the most important, followed by 
budget, then content quality, and finally disruption. This yields a 
relative weight of 0.4 for response time, 0.3 for budget, 0.2 for 
content quality, and 0.1 for disruption. 

As described in the scenario, four adaptations are possible and can 
be fulfilled with three tactics, one of which is shown in Figure 2. 
The switchToTextualContent() tactic uniformly switches the 
server content mode from graphical to textual. A corresponding 
tactic switchToGraphicalContent() achieves the opposite effect. 
An adjustServerPoolSize(int) tactic, not shown here, increments 
or decrements the server pool size by an integral count. 

Associated with each of these three tactics is an attribute vector, 
each consisting of the four previously described attributes: 
[disruption, response, quality, and budget]. 

• switchToTextualContent() 
[disruption: 3; response: low; 
 quality: textual; budget: unchanged] 

• switchToGraphicalContent() 
[disruption: 3; response: medium; 
 quality: graphical; budget: unchanged] 

• adjustServerPoolSize(int kdelta) 
[disruption: 1; response: low if kdelta>4, medium if 

 0≤kdelta≤4, high if kdelta<0; quality: unchanged; 
 budget: under if (k+kdelta)*c < BUD_T, else over] 

For space reasons, we will simplify the illustration of strategy 
selection by defining two placeholder strategies, each consisting 
of the first and the third tactic. This eliminates an additional step 
to calculate the aggregate attribute vectors and focuses our 
discussion on the attribute- and utility-based strategy selection. 

 

Figure 3. Two simple placeholder strategies. 

 

Figure 3 shows the two placeholder strategies, each defined using 
the respective tactic. Each strategy starts out with the root tactic t0, 
which labels a condition-action pair, followed by a do block that 
defines the next level of tactics. In this simple example, the next 

strategy SwitchToTextualContent() { 

  t0: (responseTime() > Resp_Time_Threshold) 

    -> switchToTextualContent(m) ; 

  do { 

    t1: (responseTime() < 

         Resp_Time_Threshold) -> done ; 

  } 

} 

 
strategy AdjustServerPoolSize(int kdelta) { 

  t0: (responseTime() > Resp_Time_Threshold) 

    -> adjustServerPoolSize(kdelta) ; 

  do { 

    t1: (responseTime() < 

         Resp_Time_Threshold) -> done ; 

  } 

} 



level is simply the strategy completion case followed by the 

terminating keyword, done. 

Let’s assume that Z.com hits a peak load period, and the system 
state falls into an actionable state in which the response time is 
high, the infrastructure cost is under budget, and the content mode 
is graphical. In this case, both strategies are applicable, one to 
change the content mode to textual, and the other to increase the 
size of the server pool. So we need to score the strategies to 
determine which one is most appropriate given the stakeholder 
utility preferences. 

Given the specified tactic attribute vectors, the two strategies have 
aggregate attribute vectors as follows: 

• SwitchToTextualContent () [disruption: 3, response: 
low, quality: textual, budget: unchanged] 

• AdjustServerPoolSize (5) [disruption: 1, response: me-
dium, low: unchanged, budget: over] 

Applying the weighted utility evaluation over the attributes of 
these two strategies results in the following: 

• SwitchToTextualContent (): 
U = 0.1(0.5) + 0.4(1) + 0.2(0) + 0.3(1) = 0.75 

• AdjustServerPoolSize (5)  
U = 0.1(1) + 0.4(1) + 0.2(0.5) + 0.3(0) = 0.60 

The utility scores indicate SwitchToTextualContent() as the better 
adaptation strategy, given the current system conditions. Note that 
if Z.com attributed a lower weight to budget, or higher weight to 
disruption, or swapped the importance of disruption versus 
budget, then the other strategy would score higher. 

Using utility evaluation, we can essentially choose a strategy by 
considering four dimensions and accounting for trade-offs across 
those using additional input of user preferences over outcomes. 
Although this example shows simple binary or ternary preference 
utility functions, one can define much more complicated utility 
curves and benefit from this computational technique of selection.  

5. RELATED WORK 
Our Rainbow approach consists of a framework that monitors and 
manages the target system in an adaptation cycle. It maintains the 
software architecture of the target system as the run-time analysis 
model. The adaptation language proposed in this paper allows 
adaptation actions and pertinent decision criteria to be represented 
in a form that the framework can carry out to manage the target 
system. This section discusses related work in these three areas. 

The control loop paradigm of adaptation is not unique to Rainbow. 
Related researches on self-healing systems generally assume a 
control loop of some form to monitor and control a target system 
[11][12][14]. IBM’s Autonomic Computing initiative outlines an 
architecture where a computing element is managed by an 
autonomic manager that monitors the element, analyzes it and its 
environment for potential problems, plans actions, and executes 
changes in a control loop [10]. The Architecture Evolution 
Framework at UCI dynamically evolves systems using a 
monitoring and execution loop controlled by a planning loop [6]. 

The use of external mechanisms and software architecture model 
to dynamically monitor and adapt a running system—i.e., 
architecture-based self-adaptation—is also not unique to Rainbow. 
A collection of recent work focuses on the use of specific 
architectural styles (together with their associated ADLs and 

toolsets) to support architecture-based self-adaptation. For 
example, Taylor and colleagues support architecture-based run-
time software evolution using hierarchical publish-subscribe style 
via C2 [6][12]. Gorlick and colleagues support continuous 
observation and dynamic rearrangement using data-flow style via 
Weaves [9]. Magee and colleagues use Darwin’s bi-directional 
communication links in a proposed distributed self-organizing 
system where components coordinate toward a common 
architectural structure [11]. In contrast, Rainbow provides 
reusable infrastructures generalized across multiple architectural 
styles, which can then be tailored to specific classes of systems. 

A recent body of work, such as Plastik [1], complements our 
Rainbow approach by combining an architecture description 
language with a reflective infrastructure to support the specifica-
tion of dynamic change. The capabilities of dynamic adaptation in 
such an approach are potentially as flexible as supportable by the 
integrated ADL and run-time framework, but such work will still 
need a way to represent preference and trade-off information to 
enable adaptation choices across multiple objectives. 

A few related efforts have influenced or inspired the development 
of our adaptation language. Expert systems work gave rise to the 
important condition-action constructs found in our strategy 
specification. Poladian and colleagues argued a case for multi-
dimensional utility analysis because converting all costs to a 
common currency was problematic [13]. We borrowed from this 
work in our language to support analysis of choice based on 
multi-dimensional adaptation attributes. Finally, policy languages, 
such as Ponder [5], have recently been developed to support the 
specification of management policies for distributed systems and 
networks management. Ponder can capture roles and relationships 
of entities in a system, specify security policies, and even support 
service related policies. However, policy specifications do not 
currently capture explicit preference and trade-off information to 
support high-level decision of choices. 

6. DISCUSSIONS AND CONCLUSION 
By observing commonly performed system administration tasks, 
we have extracted a minimal set of concepts—operator, tactic, 
strategy—and thus the basic ontology, for an adaptation language 
that holds the promise of automating human tasks in system 
management. Together with the concepts of strategy selection, 
tactic matching, adaptation objective, adaptation utility prefer-
ence, tactic meta-information, failure handling, and preemption, 
the adaptation language we have developed has the potential 
expressiveness to represent human expertise and the flexibility to 
make use of dynamic preferences. 

Using utility evaluation that incorporates additional user input of 
preferences over outcomes, we can effectively choose a strategy 
by making trade-offs across multiple dimensions. The explicit 
specification of objective attributes and enumeration of prefer-
ences and relative weights over those attributes not only allow 
fine-grained control over selection outcomes, but also provide 
traceability of selection decision via a quantitative framework. 

One issue of note is the apparently large amount of information to 
elicit from the experts and involved parties of the managed 
system: the utility curves, weights, attributes, and probabilities. 
We observe that system administrators already have to process a 
large amount of information when making decisions. We argue 
that our efforts simplify the administrator’s job by giving structure 



to the large quantity of information, providing placeholders for 
them in our framework, and allowing the information to be 
supplied incrementally to achieve management automation. 

A few concepts in the adaptation language require further work to 
flesh out. In particular, it is unclear what the best way is to handle 
failure during adaptation execution, or whether it needs to be dealt 
with at all if we assumed a continuous adaptation cycle of monitor 
and control. Clearly, a proper treatment of failure must ensure that 
the adaptation framework can recognize what failure state it is in 
and recover from that failure. 

Secondly, it is unclear how preemption should be handled. More 
generally, when one or more additional problems arise in the 
middle of a previous adaptation in progress, how does the 
adaptation framework determine whether it is a new problem, or 
more manifestations of the existing problem? Furthermore, 
preemption implies priority, which would require constructs in the 
language to specify problem priority. Thirdly, although the 
concepts of strategy and tactic seem intuitively separable, from the 
illustration, the astute reader might have raised the same doubt 
about whether a formal distinction between the two is necessary. 
We are still working to resolve this question. 

Most important in our future work, we need to perform case 
studies to demonstrate the expressiveness of the adaptation 
language, the flexibility to capture preferences, and the effective-
ness of the utility-based strategy selection to emulate human 
decisions and trade-offs. 
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