
Architecture-based Self-Adaptation in the Presence
of Multiple Objectives

Shang-Wen Cheng David Garlan Bradley Schmerl
School of Computer Science, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

zensoul@cs.cmu.edu david.garlan@cs.cmu.edu schmerl@cs.cmu.edu

ABSTRACT

In the world of autonomic computing, the ultimate aim is to
automate human tasks in system management to achieve high-
level stakeholder objectives. One common approach is to capture
and represent human expertise in a form executable by a computer.
Techniques to capture such expertise in programs, scripts, or rule
sets are effective to an extent. However, they are often incapable
of expressing the necessary adaptation expertise and emulating the
subtleties of trade-offs in high-level decision making. In this
paper, we propose a new language of adaptation that is suffi-
ciently expressive to capture the subtleties of choice, deriving its
ontology from system administration tasks and its underlying
formalism from utility theory.

Categories and Subject Descriptors

D.2.m [Software Engineering]: Miscellaneous – architecture-

based self-adaptive system, autonomic computing.

General Terms

Management, Performance, Design, Security, Languages

Keywords

Self-adaptation, repair language, strategy, tactic, choice, utility,
preference, trade-off

1. INTRODUCTION
In the world of autonomic computing, the ultimate aim is to
automate human tasks in system management to achieve high-
level stakeholder objectives. One common approach is to capture
and represent human expertise in a computer-executable form,
such as a shell script, a Java program, or even a set of rules in a
rule engine like JESS. The script or program may be deployed as
part of the managed system or with an external mechanism that
monitors and adapts the system, and the prescribed adaptation is
carried out in response to conditions on the managed system.

In previous work [2][3], we developed a software architecture-
based self-adaptation framework, called Rainbow, which uses

external mechanisms and a software architecture model to monitor
a managed system, detect problems, determine a course of action,
and carry out the adaptation actions. Rainbow relies on existing
capabilities in the managed system to allow system states to be
extracted and changes to be effected. Using a software architec-
ture model allows the adaptation engineer to abstract away
unnecessary details of the managed system. The software
architecture of a system is the structure of its components, their
interrelationships, and principles and guidelines governing their
design and evolution over time [4]. It allows an engineer to obtain
a global system perspective, explicitly capture system properties
and constraints, and leverage existing, proven architectural
analysis techniques to determine problems and remedies.

Furthermore, using architecture modeling at both the design- and
run-time allows us to generalize the adaptation mechanisms and
expertise of Rainbow across classes of systems that share similar
design assumptions and constraints. That is, we can leverage the
notion of software architectural styles [8] to reuse adaptation
mechanisms across different system instances of the same style [2].
This approach potentially empowers software engineers to apply
and tailor Rainbow to a wide variety of existing systems without
significant redevelopment effort.

Our initial Rainbow prototypes managed the target system based
on prescribed scripts. From that experience, we have discovered
that capturing human expertise as programs or scripts can be quite
effective to adapt a system for a single quality dimension, such as
performance or security. Furthermore, combined with the
architecture model, an adaptation script can be analyzed against
the style of the managed system, i.e., the design constraints that
establish the envelope of allowed structure and behavior, to
ensure that the script correctly modifies the system.

However, when more than one dimension must be considered for
adaptation, representing the choices and trade-offs in a program,
or alternatively, as expert system rules, becomes unwieldy, if not
impractical. Not only does the number of cases grow intractable,
but updating and maintaining consistency between the trade-off
preferences quickly becomes unmanageable. In short, a program-
matic or rule-based approach is insufficient for expressing the
necessary adaptation expertise and emulating the subtleties of
trade-off decisions in the presence of multiple objectives.

In this paper, we propose a new language of adaptation for which
we derive the ontology from system administration tasks and base
the underlying formalism on utility theory. We hypothesize and
illustrate with example that this language is sufficiently expressive
for adaptation expertise and overcomes the subtleties of high-level
human adaptation decision.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEAMS’06, May 21–22, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

To appear in Proceedings of the ICSE 2006 Workshop on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS), Shanghai, China, May 21-22, 2006.

2. MOTIVATING NEWS WEBSITE
To help motivate the adaptation language, consider a fictitious
news website, Z.com, which serves graphical news content to its
customers. As illustrated in Figure 1 below, Z.com uses a load
balancer to balance requests across a pool of replicated servers,
the size of which is dynamically adjusted to balance server
utilization with service response time. In other words, from a
system management point of view, Z.com has the objective to
serve news contents to its customers within a reasonable response
time range while keeping the cost of the server pool within its
operating budget. From time to time, due to highly popular
events, Z.com experiences spikes in news requests that it cannot
serve adequately, even at maximum pool size. To prevent losing
customers, Z.com opts to serve minimal textual content during
such peak times in lieu of providing zero service to its customers.

Figure 1. System architecture of Z.com

In this scenario, we learn from the expert system administrator of
Z.com that two kinds of actions (a) and (b) are possible when the
system comes under high load. The administrator may (a) increase
the server pool size until a cost-determined maximum is reached,
at which point the administrator would (b) switch the servers to
serve textual content. If the system load drops, the administrator
may (b) switch the servers back to graphical mode to make
customers happy in combination with (a) reducing the pool size to
reduce operating cost. The decision to adjust pool size and switch
content mode is determined by observing overall high average
response time and peak server load. We want to help Z.com
automate its server management to adjust its server pool size as
well as to switch content between graphical and textual mode.

Note that in reality, a news site like CNN.com may already
support some level of automated adaptation. However, automating
decisions that trade off between multiple objectives to adapt a
system is still not supported in most systems today. For instance,
while it is possible to automate adaptations on performance
concerns (e.g., load balancers), it is much harder to automate
adaptations that address potentially conflicting qualities, such as
performance and security. This work is an important step in that
direction: to allow automation of adaptations that must balance
multiple objectives.

To keep the Z.com example manageable, we will make a few
simplifying assumptions. First, to reduce the problem state space
dramatically, we assume that every replicated server incurs the
unit cost c and serves textual or graphical content uniformly.
Since we care about the customers receiving timely news content,
the most direct way to detect problems is to measure the average
request-response time that customers experience. We assume that

the system can be probed for the average millisecond response
time of service to client requests and that the server infrastructure
enables us to start, stop, and switch the content mode of the
servers within a reasonably short time.

To reason about adaptation, we will distinguish between
observable versus actionable states. Observable states are,
namely, states of the system that we can observe using some
system probing technology. The observable state space is usually
infinite and intractable to adaptation analysis. We need to reduce
this space to make reasoning tractable. State reduction functions
are used to simplify the observable states into actionable states to
facilitate decision-making for adaptation.

In the Z.com example with the state simplification assumptions,
the observable state space has four components—response time in
milliseconds (R: N), server pool size (P: N), server cost in dollars

(C: N), and server content mode as graphics or text (S: {g,t})—

yielding an infinite state space of N×N×N×{g,t}. Assume that,

from interacting with the system administration experts, we have
developed the following reduction functions:

fR(r, LO_T, HI_T) : N×{LO_T}×{HI_T}→{low, med, high} =

 { low if r<LO_T, med if LO_T ≤ r ≤ HI_T, high if r>HI_T }

fC(p, c, BUD_T) : N×N×{BUD_T}→{ under_bud, over_bud } =

 { under_bud if pc ≤ BUD_T, over_bud if pc > BUD_T }

fS(s) : {g, t}→{g, t} (function defined for completeness)

fALL(r, p, c, s, LO_T, HI_T, BUD_T) :

 N×N×N×{g, t}×{LO_T}×{HI_T}×{BUD_T}→

 {low, med, high}×{under_bud, over_bud}×{g, t}

The purpose of a reduction function is to reduce a continuous
range in the state space to a small, discrete set using some
qualitative judgment. In this case, the infinite range of response
time is reduced to three states of low, medium, and high; the cost
and server pool size states are reduced to two states of under_bud
(within budget) and over_bud (over budget). Intuitively, a human
observer evaluating a property of the system would apply such a
judgment to reduce the amount of information to consider. Thus,

fALL reduces the infinite observable state space of Z.com to an
actionable state space of twelve states. In reality, we would expect
many more actionable states, just not infinite.

This small set of actionable states allows us to better understand
the conditions for adaptation. In the Z.com example, four
adaptations are possible: (1) Switch the server content mode from
graphical to textual, (2) switch the server content mode from
textual to graphical, (3) increment the server pool size, and (4)
decrement the server pool size. The application of an adaptation
depends not only on the condition of the system, but also on high-
level objectives from the system stakeholders.

We consider three qualities of concern, or objectives, to the
stakeholders: (A) response time experienced by the customers, (B)
news content quality, and (C) server provision cost to Z.com.
Note that, at some level, these are competing goals, and an
adaptation choice must make an appropriate trade-off between
these three objectives, based on predefined stakeholder prefer-
ences. As a further simplifying assumption, we treat stakeholder
preferences over the objectives to be static once defined in the
adaptation framework.

C LB

S1

…

Sk

Server pool

Given the actionable state space and these three objectives, we
can reason about adaptations for Z.com. When the response time
is high, objective A suggests that Z.com will increment its server
pool size (3) if it is within budget; otherwise, Z.com will switch
the servers to textual mode (1). When the response time is low,
objective C suggests that Z.com will decrement its server pool
size (4) if it is near budget limit; objective B suggests that Z.com
will switch the servers to graphical mode (2) if they are not
already in that mode. When the response time is in the medium
range, objective B suggests that Z.com will switch to graphical
mode if it the mode is textual, while the server pool size may
either be incremented to decrease response time or decremented to
reduce cost.

We will now use the described Z.com example to motivate and
explain the concepts in our adaptation language.

3. LANGUAGE FOR SELF-ADAPTATION
To realize automation of system management tasks, we require an
adaptation language with the expressiveness to represent human
expertise and the flexibility and robustness to capture complex
and potentially dynamic preferences. In this section, we describe
the ontology of concepts for such a language and how we derive it
by observing system administration tasks.

3.1 What System Administrators Do
Imagine a system administrator, Carol, who is tasked to manage
the infrastructure at Z.com. It is useful to consider the knowledge,
model, and cognitive tasks involved for Carol to keep Z.com
operational. Under normal conditions, faced with the large
number of system conditions to check, Carol monitors the average
request-response time as the first indicator of problem. At any
time, Carol has various levels of control into the infrastructure,
such as starting or killing a process, to cause changes and bring
the system back to normal. Over time, Carol has packaged
frequently performed sequences of actions into scripts for
convenience and maintenance. Finally, Carol manages the system
infrastructure with the objectives of the company in mind, namely
the three objectives we described above for Z.com.

Let us assume at some point that Carol notices the average
request-response time at Z.com rising above a high threshold.
Note that although we have focused on the performance quality in
our example so far, security compromise and other factors could
also contribute to a rise in system response time. Looking at the
system states, Carol determines from her experience that the rise
in response time should be handled as a performance problem.
She quickly checks the loads on the servers, sees that they are
highly loaded, and concludes that there is a popular news event.
She switches all the servers to textual mode so that the system can
recover and fulfill pending news requests from customers.
Meanwhile, she considers the size of the server pool and the
company operating budget to determine that she can increase the
pool size to serve more requests. With this increase, it turns out
that she can switch the servers back to graphical mode. A
successful adaptation resolves the initially observed problem.

Notice that Carol observes the system to determine the next step
after taking each action. At each decision point, Carol considers
several factors, including how much resource an action would
require, how long the action would take, the extent to which the

action would affect the system, and the relative ranking of the
action against other alternatives.

Realistically, system administrators can encounter any number of
challenging situations. For instance, not every action will succeed.
One may fail in mid-execution, while another may complete
without achieving the expected result. As another example, while
resolving performance problem A, a new security compromise
problem B may preempt it. Finally, multiple problems might
occur simultaneously, in which case the system administrator
would first need to classify and prioritize them on the fly.

Although we may still be unable to automate the more challenging
situations, we can hope to automate the more routine tasks and
reduce the heavy monitoring overhead of system administration.

3.2 Concepts of Self-Adaptation
Based on the description of Carol’s administration of Z.com, we
can derive and generalize a number of concepts for system self-
adaptation.

The individual actions that Carol carries out on the system are the
building blocks of change. In architecture-based self-adaptation,
the action corresponds to the architectural operator provided by
the architectural style of the target system. For example, an action
or architectural operator might be to kill a running process.

Figure 2. An example tactic.

A script of actions that Carol develops would correspond to a
sequence of architectural operators, which form the adaptation
tactic. Switching the server content mode from graphical to
textual would be considered a tactic. More formally, a tactic as
illustrated in Figure 2 is defined in three parts: the conditions of
applicability, a sequence of actions, and a set of intended effects
after execution. The execution semantics of a tactic is as follows:
The adaptation engine chooses a tactic at each cycle, and the tactic
is executed from beginning to end without new observations of
the target system. A tactic completes successfully if no exception
occurs during execution and all the intended effects are achieved;
otherwise, the tactic may be considered to have failed.

The mental model of all the possible actions that Carol can take
corresponds to a set of strategies. Intuitively, a strategy embodies
a flow of actions over a sizable time frame and scope, with
intermediate decision points, to fix a type of system problems,
while a tactic embodies a small sequence of actions to fix a
specific problem in a localized part of the system. More formally,

tactic switchToTextualContent() {

 condition {

 responseTime() > HI_T

 }

 action {

 svrs = {select s : ServerT | s.active()};

 forall s : svrs {

 s.setTextualMode(true);

 }

 }

 effect {

 responseTime() < HI_T and

 forall s : ServerT | s.active() •
 s.isTextualMode()

 }

}

a strategy is defined as a tree of tactics that tackles common
quality issues, with conditions describing each branch. Intermedi-
ate system observation occurs after each tactic is executed in order
to decide what successive branch to take in the strategy tree. This
branch decision is called tactic matching. Though we will not
discuss it in depth in this paper, we derive the syntax of a strategy
from Dijkstra’s Guarded Command Language [7], which provides
an intuitive condition-action construct with repetition capability,
supporting our defined notion of the strategy.

Carol’s decision to treat an observed system condition as a
performance versus a security problem corresponds to strategy

selection. For humans, this process combines heuristics, trade-
offs, and experience. To emulate and automate this process, the
adaptation framework must be able to capture sufficient heuristics
and trade-off information to allow the strategies to be scored and
compared. The company objectives and operational requirements
that Carol considers are important to inform this selection process,
and these correspond to the adaptation objectives and adaptation
utility preferences of the stakeholders. The cost and benefit factors
that Carol considers while choosing actions correspond to the
tactic meta-information. Combined with probability information
associated with the branches in the strategy tree, tactic meta-
information associated with the tactic nodes in the strategy tree
allows the computation of aggregate strategy scores. This is
explained further in Section 3.3.

Failure handling is necessary when something goes wrong during
the execution of an action. Preemption occurs when a more
important problem arises that takes priority over the problem
currently under investigation.

Together, the architectural operator, tactic, strategy, strategy
selection, tactic matching, adaptation objective, adaptation utility
preference, tactic meta-information, failure handling, and
preemption form the core concepts of self-adaptation. The
operator, tactic, and strategy form the basic ontology of the
adaptation language.

3.3 FORMALISM OF SELECTION
To overcome the complexity and subtleties of human decision
when selecting an adaptation, we developed a formalism based on
utility theory to evaluate strategies during an adaptation cycle and
select the best strategy that balances multiple objectives. In the
description below, formal expressions appear between square
brackets following a descriptive prose.

The formalism is developed using set theory, and starts with the
managed system. We model the managed system as a labeled
Kripke structure, also known as a doubly labeled transition

system. A Kripke structure is a type of nondeterministic finite
state machine used in model checking to represent the behavior of
a system. It defines a graph whose nodes represent the reachable
states of the system, whose edges are labeled and represent state
transitions, and where a labeling function maps each node to a set
of atomic propositions that hold true in the corresponding state.

More formally, let Act be a countable set of action symbols and let
AP be a set of atomic propositions, i.e., Boolean expressions over
variables, constants, and predicate symbols. The system can be

represented as a 4-tuple M = (S, I, R, L) with signature, i.e.,
available operations, (Act, AP), where S is a countable set of states,

I ⊆ S is a set of initial states, R ⊆ S×Act×S is a transition relation

that allows for reflexive transitions [∀s∈S •∃a∈Act •(s,a,s)∈R],

and L: S→2AP is a labeling or interpretation function.

Using a utility function reachables: S×Act→PS that returns a set

of states immediately reachable from a state s given an action a,

we define a function prob: S×Act×S→[0,1] that evaluates the

probability of an action a∈Act transitioning the system from a

state s∈S to any of the possible resulting states s’∈S. First we
require the elements in the domain of prob() to be in the transition

relation R [∀(s,a,s’):S×Act×S | (s,a,s’) ∈ dom prob • (s,a,s’)∈R].
We then require the sum of all probabilities of the same non-

deterministic transition a from the same state to add up to 1 [∀s:S

• ∀a:Act • ∑s’∈reachables(s,a) prob(s, a, s’) == 1].

A tactic [t∈T] is defined as a sequence of operations (basic type

[OPERATION]) and corresponds to an action label in M [T⊆Act],

but not all transitions in M necessarily correspond to a tactic. We
define a unique null tactic as a null sequence. We assume that no

spontaneous (τ) transition occurs in the system during an
adaptation process, that is, all transitions in a Kripke model result
from some adaptation actions.

Each tactic is associated with an attribute vector of n elements,
which include both cost attributes such as resource consumed, and
effect attributes such as reduction in response time. Thus, the
attribute vector describes the expected cost and effect incurred
and delivered by a tactic, respectively, when it completes. We
define AV to be a set of such attribute vectors and define a

function to retrieve the attribute vector of a tactic [tAV: T→AV].

A preference vector is defined in correspondence to the tactic
attribute vector, using utility curves to map the value of each
attribute to a score in the range [0,1]. A utility function then
computes the weighted sum of the utilities across the attribute

vector, yielding a scalar utility value [Upref: AV→N]. The utility

curves capture the extent to which the users will be happy with
particular values of each attribute. The overall utility function
represents the relative priority of the attributes over one another.

A strategy [g∈G] is defined as a tree over a set of vertices V,

corresponding to the set of tactics [V⊆T], and a set of paired

vertices E, where pred(e) gives the predecessor vertex of e∈G and
succ(e) gives the successor vertex of e, with a condition function

[C: E→PAP] and a probability function [P: E→[0,1]] over E. In

relation to the managed system M, the condition on every branch

can be mapped to corresponding state propositions [∀e∈E •

∃a1,a2∈Act | a1==pred(e) ∧ a2==succ(e) • ∃s1,s2,s3∈S |

(s1,a1,s2)∈R ∧ (s2,a2,s3)∈R • C(e)⊆ L(s2)]. To allow an

aggregate expected value to be computed meaningfully over the
entire tree, the probabilities at each branch level must sum to 1

[∀v∈V • sum{e∈E | pred(e)==v • P(e)}==1]. Finally, to model
unexpected conditions under which no tactic at a particular branch
level might apply, we define for every branch level a null tactic
branch that is applicable any time no condition indicated by C()

matches [∀v∈V • ∃e∈E | pred(e)==v • C(e)=={} ∧ succ(e)==<> ∧

∀e’∈E | pred(e’)==v ∧ e!=e’ • C(e’)!={} ∧ succ(e’)!=<>].

Using the probabilities and the attribute vector of each tactic in a

strategy tree, we can compute the aggregate attribute vector, EΑΑΑΑ()

[EΑΑΑΑ: G→AV], over the strategy at the root tactic. The algorithm to

compute EΑΑΑΑ(g) consists of two parts, one for the cost-based
attribute elements, and the other for the effect-based attribute

elements. We concatenate the vectors EΑΑΑΑ_cost(X) and EΑΑΑΑ_effect(X) to

form EΑΑΑΑ(X).

Given a strategy with the root tactic X, its children A, B, etc., with
corresponding probabilities pA, pB, etc., we recursively compute:

EΑΑΑΑ_cost(X) = Agg_AVcost(X) =

 tAVcost(X)+(pA×Agg_AVcost(A) + pB×Agg_AVcost(B) + …)

EΑΑΑΑ_effect(X) = Agg_AVeffect(X) =

 pA × Agg_AVeffect(A) + pB × Agg_AVeffect(B) + …

Finally, we can select from the set of available strategies one that

yields the maximum utility value [maxg∈G{Upref(EΑΑΑΑ(g))}].

By formalizing the notions of strategy and tactic in terms of an
underlying finite state model, we form a clean mathematical
model to allow analysis against an abstract managed system.
Assuming that the managed system is modeled with sufficient
fidelity, we can check whether defined tactics correspond properly
to transition actions in the Kripke model and ensure that
branching conditions of defined strategies derive from corre-
sponding state propositions.

More importantly, the utility theoretic basis of strategy selection
allows tactics with different attributes and strategies that tackle
different problems to be compared on even footing. Utility theory
also gives us the assurance that trade-off is dynamically comput-
able between possibly conflicting interests, provided we can elicit
and capture preferences adequately from the stakeholders as well
as estimate the probabilities on strategy branches with accuracy.
Preference elicitation and probability estimation are two
hypotheses that warrant proof through future case studies.

In the next section, we illustrate the strategy selection using this
language formalism.

4. ADAPTATION SELECTION EXAMPLE
In this section, we will illustrate the adaptation selection using the
Z.com example system. We start with the three high-level,
potentially competing objectives and derive from those a set of
utility preferences. We illustrate the definition of adaptation
tactics with their attribute vectors and demonstrate strategy
selection using the defined utility preferences.

The two primary groups of stakeholders in the Z.com example are
the customers and the provider. The customers care about quick
response time of their news requests and high content quality (i.e.,
graphical over textual). The provider, while aware of the
customers’ quality preferences, is constrained by the infrastructure
cost to provide the service. To summarize the objectives:

1. Response time: low, medium, or high
2. Quality: graphical or textual
3. Budget: under or over

Note that these three stakeholder objectives suggest three
corresponding attributes that are important to select an adaptation.
In addition, since response time is one of the objective attributes,
and it is affected by the amount of time required to complete a
tactic, we also need to consider disruption as a cost attribute. We
will use an ordinal scale of 1 to 5 to express degree of disruption.

Given our understanding of stakeholder objectives, we can derive
a simple set of utility preferences over these four attributes:

1. Response time: 1 if low, 0.5 if medium, 0 if high

2. Quality: 1 if graphical, 0.5 if unchanged, 0 if textual
3. Budget: 1 if under or unchanged, 0 if over
4. Disruption: 1 if 1, 0.75 if 2, 0.5 if 3, 0.25 if 4, 0 if 5

Furthermore, we assign relative weights to these four attributes to
enable the evaluation of an overall utility value. Let’s assume that
Z.com considers response time the most important, followed by
budget, then content quality, and finally disruption. This yields a
relative weight of 0.4 for response time, 0.3 for budget, 0.2 for
content quality, and 0.1 for disruption.

As described in the scenario, four adaptations are possible and can
be fulfilled with three tactics, one of which is shown in Figure 2.
The switchToTextualContent() tactic uniformly switches the
server content mode from graphical to textual. A corresponding
tactic switchToGraphicalContent() achieves the opposite effect.
An adjustServerPoolSize(int) tactic, not shown here, increments
or decrements the server pool size by an integral count.

Associated with each of these three tactics is an attribute vector,
each consisting of the four previously described attributes:
[disruption, response, quality, and budget].

• switchToTextualContent()
[disruption: 3; response: low;
 quality: textual; budget: unchanged]

• switchToGraphicalContent()
[disruption: 3; response: medium;
 quality: graphical; budget: unchanged]

• adjustServerPoolSize(int kdelta)
[disruption: 1; response: low if kdelta>4, medium if

 0≤kdelta≤4, high if kdelta<0; quality: unchanged;
 budget: under if (k+kdelta)*c < BUD_T, else over]

For space reasons, we will simplify the illustration of strategy
selection by defining two placeholder strategies, each consisting
of the first and the third tactic. This eliminates an additional step
to calculate the aggregate attribute vectors and focuses our
discussion on the attribute- and utility-based strategy selection.

Figure 3. Two simple placeholder strategies.

Figure 3 shows the two placeholder strategies, each defined using
the respective tactic. Each strategy starts out with the root tactic t0,
which labels a condition-action pair, followed by a do block that
defines the next level of tactics. In this simple example, the next

strategy SwitchToTextualContent() {

 t0: (responseTime() > Resp_Time_Threshold)

 -> switchToTextualContent(m) ;

 do {

 t1: (responseTime() <

 Resp_Time_Threshold) -> done ;

 }

}

strategy AdjustServerPoolSize(int kdelta) {

 t0: (responseTime() > Resp_Time_Threshold)

 -> adjustServerPoolSize(kdelta) ;

 do {

 t1: (responseTime() <

 Resp_Time_Threshold) -> done ;

 }

}

level is simply the strategy completion case followed by the

terminating keyword, done.

Let’s assume that Z.com hits a peak load period, and the system
state falls into an actionable state in which the response time is
high, the infrastructure cost is under budget, and the content mode
is graphical. In this case, both strategies are applicable, one to
change the content mode to textual, and the other to increase the
size of the server pool. So we need to score the strategies to
determine which one is most appropriate given the stakeholder
utility preferences.

Given the specified tactic attribute vectors, the two strategies have
aggregate attribute vectors as follows:

• SwitchToTextualContent () [disruption: 3, response:
low, quality: textual, budget: unchanged]

• AdjustServerPoolSize (5) [disruption: 1, response: me-
dium, low: unchanged, budget: over]

Applying the weighted utility evaluation over the attributes of
these two strategies results in the following:

• SwitchToTextualContent ():
U = 0.1(0.5) + 0.4(1) + 0.2(0) + 0.3(1) = 0.75

• AdjustServerPoolSize (5)
U = 0.1(1) + 0.4(1) + 0.2(0.5) + 0.3(0) = 0.60

The utility scores indicate SwitchToTextualContent() as the better
adaptation strategy, given the current system conditions. Note that
if Z.com attributed a lower weight to budget, or higher weight to
disruption, or swapped the importance of disruption versus
budget, then the other strategy would score higher.

Using utility evaluation, we can essentially choose a strategy by
considering four dimensions and accounting for trade-offs across
those using additional input of user preferences over outcomes.
Although this example shows simple binary or ternary preference
utility functions, one can define much more complicated utility
curves and benefit from this computational technique of selection.

5. RELATED WORK
Our Rainbow approach consists of a framework that monitors and
manages the target system in an adaptation cycle. It maintains the
software architecture of the target system as the run-time analysis
model. The adaptation language proposed in this paper allows
adaptation actions and pertinent decision criteria to be represented
in a form that the framework can carry out to manage the target
system. This section discusses related work in these three areas.

The control loop paradigm of adaptation is not unique to Rainbow.
Related researches on self-healing systems generally assume a
control loop of some form to monitor and control a target system
[11][12][14]. IBM’s Autonomic Computing initiative outlines an
architecture where a computing element is managed by an
autonomic manager that monitors the element, analyzes it and its
environment for potential problems, plans actions, and executes
changes in a control loop [10]. The Architecture Evolution
Framework at UCI dynamically evolves systems using a
monitoring and execution loop controlled by a planning loop [6].

The use of external mechanisms and software architecture model
to dynamically monitor and adapt a running system—i.e.,
architecture-based self-adaptation—is also not unique to Rainbow.
A collection of recent work focuses on the use of specific
architectural styles (together with their associated ADLs and

toolsets) to support architecture-based self-adaptation. For
example, Taylor and colleagues support architecture-based run-
time software evolution using hierarchical publish-subscribe style
via C2 [6][12]. Gorlick and colleagues support continuous
observation and dynamic rearrangement using data-flow style via
Weaves [9]. Magee and colleagues use Darwin’s bi-directional
communication links in a proposed distributed self-organizing
system where components coordinate toward a common
architectural structure [11]. In contrast, Rainbow provides
reusable infrastructures generalized across multiple architectural
styles, which can then be tailored to specific classes of systems.

A recent body of work, such as Plastik [1], complements our
Rainbow approach by combining an architecture description
language with a reflective infrastructure to support the specifica-
tion of dynamic change. The capabilities of dynamic adaptation in
such an approach are potentially as flexible as supportable by the
integrated ADL and run-time framework, but such work will still
need a way to represent preference and trade-off information to
enable adaptation choices across multiple objectives.

A few related efforts have influenced or inspired the development
of our adaptation language. Expert systems work gave rise to the
important condition-action constructs found in our strategy
specification. Poladian and colleagues argued a case for multi-
dimensional utility analysis because converting all costs to a
common currency was problematic [13]. We borrowed from this
work in our language to support analysis of choice based on
multi-dimensional adaptation attributes. Finally, policy languages,
such as Ponder [5], have recently been developed to support the
specification of management policies for distributed systems and
networks management. Ponder can capture roles and relationships
of entities in a system, specify security policies, and even support
service related policies. However, policy specifications do not
currently capture explicit preference and trade-off information to
support high-level decision of choices.

6. DISCUSSIONS AND CONCLUSION
By observing commonly performed system administration tasks,
we have extracted a minimal set of concepts—operator, tactic,
strategy—and thus the basic ontology, for an adaptation language
that holds the promise of automating human tasks in system
management. Together with the concepts of strategy selection,
tactic matching, adaptation objective, adaptation utility prefer-
ence, tactic meta-information, failure handling, and preemption,
the adaptation language we have developed has the potential
expressiveness to represent human expertise and the flexibility to
make use of dynamic preferences.

Using utility evaluation that incorporates additional user input of
preferences over outcomes, we can effectively choose a strategy
by making trade-offs across multiple dimensions. The explicit
specification of objective attributes and enumeration of prefer-
ences and relative weights over those attributes not only allow
fine-grained control over selection outcomes, but also provide
traceability of selection decision via a quantitative framework.

One issue of note is the apparently large amount of information to
elicit from the experts and involved parties of the managed
system: the utility curves, weights, attributes, and probabilities.
We observe that system administrators already have to process a
large amount of information when making decisions. We argue
that our efforts simplify the administrator’s job by giving structure

to the large quantity of information, providing placeholders for
them in our framework, and allowing the information to be
supplied incrementally to achieve management automation.

A few concepts in the adaptation language require further work to
flesh out. In particular, it is unclear what the best way is to handle
failure during adaptation execution, or whether it needs to be dealt
with at all if we assumed a continuous adaptation cycle of monitor
and control. Clearly, a proper treatment of failure must ensure that
the adaptation framework can recognize what failure state it is in
and recover from that failure.

Secondly, it is unclear how preemption should be handled. More
generally, when one or more additional problems arise in the
middle of a previous adaptation in progress, how does the
adaptation framework determine whether it is a new problem, or
more manifestations of the existing problem? Furthermore,
preemption implies priority, which would require constructs in the
language to specify problem priority. Thirdly, although the
concepts of strategy and tactic seem intuitively separable, from the
illustration, the astute reader might have raised the same doubt
about whether a formal distinction between the two is necessary.
We are still working to resolve this question.

Most important in our future work, we need to perform case
studies to demonstrate the expressiveness of the adaptation
language, the flexibility to capture preferences, and the effective-
ness of the utility-based strategy selection to emulate human
decisions and trade-offs.

7. ACKNOWLEDGMENTS
This work has been informed by many discussions with George
Fairbanks, who helped us to crystallize the news site example, and
Vahe Poladian, who was instrumental in clarifying the language
formalism based on utility theory.

This research was supported by DARPA under grants N66001-99-
2-8918 and F30602-00-2-0616, by the US Army Research Office
(ARO) under grant numbers DAAD19-02-1-0389 ("Perpetually
Available and Secure Information Systems") to Carnegie Mellon
University's CyLab and DAAD19-01-1-0485, and the NASA
High Dependability Computing Program under cooperative
agreement NCC-2-1298. The views and conclusions described
here are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
DARPA, the ARO, NASA, the US government, or any other
entity.

8. REFERENCES
[1] Batista, T., Joolia, A., and Coulson, G. Managing dynamic

reconfiguration in component-based systems. Morrison, R.
and Oquendo, F., eds., Proceedings of the 2nd Workshop on

Software Architecture (EWSA2) (Pisa, Italy, June 13–14,
2005). Springer, Berlin, 2005, 1–17.

[2] Cheng, S-W., Garlan, D., Schmerl, B., Sousa, J. P.,
Spitznagel, B., and Steenkiste, P. Using architectural style as
a basis for self-repair. Bosch, J., Gentleman, M., Hofmeister,
C., and Kuusela, J., eds., Proceedings of the 3rd Working

IEEE/IFIP Conference on Software Architecture (WICSA3)

(Montréal, Québec, Canada, August 25-30, 2002). Kluwer
Academic Publishers, 2002, 45–59.

[3] Cheng, S-W., Huang, A-C., Garlan, D., Schmerl, B., and
Steenkiste, P. Rainbow: architecture-based self-adaptation
with reusable infrastructure. IEEE Computer, 37, 10, Octo-
ber 2004.

[4] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Nord, R., and Stafford, J., eds. Documenting Soft-

ware Architecture: Views and Beyond. The SEI Series in
Software Engineering. Pearson Education, Inc., 2003.

[5] Damianou, N., Dulay, N., Lupu, E., and Sloman, M. The
Ponder Specification Language. Proceedings of Workshop

on Policies for Distributed Systems and Networks (Pol-
icy2001), HP Labs, Bristol, January 2001, 29–31.

[6] Dashofy, E. M., van der Hoek, A., and Taylor, R. N.
Towards architecture-based self-healing systems. Garlan, D.,
Kramer, J., and Wolf, A., eds., Proceedings of the First ACM

SIGSOFT Workshop on Self-Healing Systems (WOSS’02),
(New York, NY, USA, November 18–19, 2002). ACM
Press, 2002, 21–26.

[7] Dijkstra, E. A Discipline of Programming, Prentice, 1976.

[8] Garlan, D., Allen, R. J., and Ockerbloom, J. Exploiting style
in architectural design. Proceedings of SIGSOFT'94 sympo-

sium on the Foundations of Software Engineering, New
Orleans, LA, USA, December 1994.

[9] Gorlick, M. M. and Razouk, R. R. Using Weaves for
software construction and analysis. Proceedings of the 13th

International Conference of Software Engineering (ICSE-
13) (Los Alamitos, CA, USA, May 1991). IEEE Computer
Society Press, 1991, 23–34.

[10] Kephart, J. O. and Chess, D. M. The vision of autonomic
computing. IEEE Computer, 36, 1, January 2003.

[11] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J.
Specifying Distributed Software Architectures. Schafer, W.
and Botella, P., eds, Proceedings of 5th European Software

Engineering Conference (ESEC 95) (Sitges, Spain, Septem-
ber 26, 1995). Springer-Verlag, Berlin, 1995, 137–153.

[12] Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D. S.,
and Wolf, A. L. An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems, 14, 3, May–
June 1999, 54–62.

[13] Poladian, V., Butler, S., Shaw, M., and Garlan, D. Time is
not money: the case for multi-dimensional accounting in
value-based software engineering. Proceedings of the 5th

Int’l Workshop on Economics Driven Software Engineering

Research (EDSER-5), Portland, OR, USA, May 2003.

[14] Wolf, A. L., Heimbigner, D., Carzaniga, A., Anderson, K.
M., and Ryan, N.. Achieving survivability of complex and
dynamic systems with the Willow framework. Proceedings of

the Working Conference on Complex and Dynamic Systems

Architecture, Brisbane, Australia, December 12–14, 2001.

