
Reasoning about Sensing Uncertainty and its Reduction
in Decision-Making for Self-Adaptation

Javier Cámaraa, Wenxin Pengb, David Garlana, Bradley Schmerla

aCarnegie Mellon University. 5000 Forbes Ave. Pittsburgh, PA 15213, USA
{jcmoreno,garlan,schmerl}@cs.cmu.edu

bGoogle Inc. 1600 Amphitheatre Parkway Mountain View, CA 94043, USA
wenxinp@google.com

Abstract
Adaptive systems are expected to adapt to unanticipated run-time events using im-
perfect information about themselves, their environment, and goals. This entails
handling the effects of uncertainties in decision-making, which are not always
considered as a first-class concern. This paper contributes a formal analysis tech-
nique that explicitly considers uncertainty in sensing when reasoning about the
best way to adapt, together with uncertainty reduction mechanisms to improve
system utility. We illustrate our approach on a Denial of Service (DoS) attack
scenario and present results that demonstrate the benefits of uncertainty-aware
decision-making in comparison to using an uncertainty-ignorant approach, both
in the presence and absence of uncertainty reduction mechanisms.

1. Introduction

Complex software-intensive systems are increasingly relied on in our society
to support tasks in different contexts that are typically characterized by a high
degree of uncertainty. Self-adaptation [17, 28] is regarded as an effective way
to engineer systems that are resilient to run time changes despite of the different
uncertainties present in their execution environment (e.g., system loads, resource
availability, interaction with human actors), goals, or even in the system itself
(e.g., the existence and location of faults).

Having inaccurate or missing information could lead a self-adaptive system to
make bad decisions that make the system behave worse, rather than improve the
system. However, despite the fact that these uncertainties can have a significant
negative impact on run-time system behavior [26] (and ultimately, on goal satis-
faction), many approaches to engineering self-adaptation do not explicitly repre-
sent uncertainty or consider it when deciding what actions to take in the system.

Preprint submitted to Science of Computer Programming June 29, 2018

Moreover, for many systems there are tactics that could be employed by self-
adaptive systems to reduce uncertainty so that they could make better decisions.
For example, introducing CAPTCHA1 into a web system could reduce uncer-
tainty about whether clients are bots or humans and therefore might be part of
a Distributed Denial of Service (DDoS) attack, and an autonomous drone could
get closer to a target to get a better image to reduce uncertainty about potential
targets. Without explicitly considering uncertainty, a self-adaptive system would
not be able to reason about whether to use these tactics. Furthermore, these tac-
tics often have associated costs and risks (for example, CAPTCHA can increase
the annoyance of legitimate clients accessing the website, whose sessions are dis-
rupted). Ignoring uncertainty prevents reasoning about whether having the added
information would be worth the cost. Hence, it is important to represent uncer-
tainty to enable systems to reason about the trade-offs of enacting such tactics,
quantifying the benefits of uncertainty reduction, and balancing them against as-
sociated costs when trying to achieve system goals.

One of the most popular patterns to build self-adaptation into software-intensive
systems is IBM’s MAPE-K [29], which integrates activities to monitor, analyze,
plan, and execute adaptations in closed-loop control over a managed software
system. Furthermore, a central knowledge base that typically includes models
about the managed system, its environment, and adaptations, informs the differ-
ent MAPE activities.

According to categorizations carried out by different authors [22, 31, 34], un-
certainty occurs in all activities associated with the MAPE-K loop. In this paper,
we focus on the aleatoric uncertainties (i.e., due to the randomness of events) in-
troduced by inaccuracies in sensor readings (i.e., deviations from the ideal reading
of the sensor), and how its explicit representation and incorporation into reason-
ing mechanisms can improve decision-making in self-adaptation. Furthermore,
we explore when uncertainty reduction tactics are worth using.

Concretely, we investigate three research questions: (RQ1) To what extent can
explicit representation and reasoning about environment sensing uncertainty im-
prove the quality of adaptation decisions?, (RQ2) Under what circumstances does
environment sensing uncertainty awareness improve the quality of decisions?, and
(RQ3) To what extent can environment sensing uncertainty reduction improve the
quality of adaptation decisions both in the presence and absence of uncertainty
awareness?

Uncertainty awareness targets a broad class of problem that is manifest in real
software-intensive systems. For example, reconnaissance or delivery drones (with

1CAPTCHA is a type of challenge-response test used in computing to determine whether or
not the user is human (https://en.wikipedia.org/wiki/CAPTCHA).

2

A B

C1
C2

A B

A B

A B d)

b)

c)

a)

C D

(a)

0 5 10 15 20

0

20

40

60

80

100

x

R
ew

ar
d

A B

(b)
Figure 1: Simple model scenario.

inaccurate or temporarily lost GPS) may need to get as close as possible to a
no-fly zone 2 without violating it (e.g., to minimize the route distance to deliver a
payload), and smart buildings in which sensors may be inaccurate or failure-prone
need to minimize energy consumption without jeopardizing safety-critical system
properties.

To illustrate our approach, consider the simple scenario shown in Figure 1(a),
which exhibits some of the main traits of the class of problems mentioned above.
In this scenario, the system/environment state space is divided into regions A and
B. While region A is to be avoided because we assume that it is out of the de-
sirable operation range of the system, region B represents acceptable operating
conditions. We assume that the sensors employed to monitor some of the vari-
ables that form the system/environment state are not very accurate, and therefore
the monitoring infrastructure cannot determine the exact system/environment state
(which could be any point within the dashed circle).

Figure 1(b) introduces the concept of reward, which is an indicator of how well
the system is meeting its goals (e.g., minimizing malicious users or maximizing
requests served). Every time a system takes some action, it can collect reward
based on how this action impacts the state of the system (and how well the new
state aligns with system goals). The higher the reward, the better the decision is.
In other words, we assume that the system’s target in this scenario is to accumulate
as much reward as possible over time by taking a series of actions.

In this simple scenario, we assume that reward is only associated with metric
x, as shown in Figure 1(b). When x is below 10, there is no reward; when x is
equal to 10, the reward is maximum, and the reward decreases as x moves away
from 10. Thus, the state space of this model is divided in two regions:

Region A: x < 10 Region B: x ≥ 10

We assume that this system can perform a single action to reduce the value

2https://www.faa.gov/uas/where_to_fly/no_drone_zone/

3

of x by an integral amount. Hence, when the system determines that the current
state lies within region B (according to the observed value of x), it should try to
decrease the value of x to maximize reward, making it as close as possible to 10
(but without going below 10). However, the sensor that monitors the value of x is
not very accurate and the system has to make the best possible decision under the
uncertainty that arises due to the inaccuracy of the sensing process. In particular,
if the sensor indicates that the value of x is higher than it really is in states close
to x = 10, there is a risk that the system will reduce the value of x below 10,
incurring a high penalty (due to the fact that no reward will be accrued).

To reduce such risks, decision making in self-adaptive systems needs to be
able to identify regions of the state space where uncertainty has an impact and
what to do in these cases. In this paper, we contribute a formal analysis technique
that enables us to quantify the potential benefits of explicitly considering sens-
ing uncertainty in models and decision-making mechanisms for self-adaptation,
and produce adaptation decisions with worst-case guarantees. The formal under-
pinnings of our proposal are based on model checking of stochastic multiplayer
games (SMGs) [15]. The main idea behind the approach is analyzing the interplay
of a self-adaptive system and its environment in a competitive game. System and
environment are modeled as players whose behavior is independent (reflecting the
fact that processes in the environment – in this case, sensing – cannot be controlled
by the system). The relevance of our contribution resides in its potential for using
our models in adaptive systems to make good decisions about (a) when to model
uncertainty explicitly, and (b) when to take advantage of uncertainty reduction
tactics.

In [12] we introduced a formal reasoning technique that improves decision
making in regions of the state space in which uncertainty makes a difference. In
this paper, we provide more details about this approach. Furthermore, we extend
this technique to reason about when to reduce that uncertainty to improve self-
adaptive system performance.

The remainder of this paper first presents some background on SMGs in Sec-
tion 2. A description of our approach follows in Section 3. This section illustrates
this approach on the simple scenario that we have introduced and provides some
insights about the performance of uncertainty-aware and uncertainty-ignorant de-
cision making, as well as about uncertainty reduction. Next, Section 4 introduces
a more complex self-protecting systems scenario and discusses some results on
comparing uncertainty-aware vs. uncertainty-ignorant decision making, as well as
on uncertainty reduction both in presence and absence of uncertainty awareness.
Section 5 discusses some related work. Section 6 presents some conclusions and
points at directions for future work.

4

2. Background: Model Checking of Stochastic Multiplayer Games

Probabilistic model checking has been successfully used to analyze systems
that operate subject to uncertainty by modeling them as probabilistic systems. It
has been applied in a variety of application domains and scenarios that include
security [19, 35], communication protocols [27], and human-in-the loop adap-
tation [10] to enable quantitative reasoning about probability and reward-based
properties (e.g., resource use, time).

Competitive behavior may also appear in systems when some component can-
not be controlled, and could behave according to different or even conflicting
goals with respect to other components in the system. Self-adaptive systems are
a good example of systems in which the behavior of some components that are
typically considered as part of the environment (non-controllable software, net-
work, human actors) cannot be controlled by the system. In such situations, a
natural fit is modeling a system as a game between different players, adopting a
game-theoretic perspective.

Our approach to analyzing self-adaptation builds on a recent technique for
modeling and analyzing stochastic multi-player games (SMGs) extended with re-
wards [15]. In this approach, systems are modeled as turn-based SMGs, meaning
that in each state of the model, only one player can choose between several ac-
tions, the outcome of which can be probabilistic. Players in the game can follow
strategies for choosing actions in the game, cooperating in a coalition to achieve
a common goal, or competing to achieve their own goals. The algorithms used to
compute these strategies are guaranteed to achieve optimal expected rewards for
the kind of cumulative reward structures that we use in our models.3

In this paper, we illustrate our approach to modeling the SMG using the syn-
tax of the PRISM language [30] for Stochastic Multiplayer Games and Markov
Decision Processes (MDPs). A PRISM SMG model is built as a set of processes
or modules (delimited by keywords module/endmodule, which are encoded as a
set of commands:

[action] guard→ p1 : u1+ . . . + pn : un
Where guard is a predicate over the model variables (which can be either

boolean or bounded-range integers, c.f., Listing 2, line 3). Each update ui de-
scribes a transition that the process can make (by executing action) if the guard
is true. An update is specified by giving the new values of the variables, and has
an assigned probability pi ∈ [0, 1]. Multiple commands with overlapping guards
(and probably, including a single update of unspecified probability) introduce lo-
cal nondeterminism. An example of a simple module definition can be observed

3See Appendix A.2 in [15] for details.

5

in Listing 2.
Moreover, the different player coalitions (player/endplayer keywords) also

have to be specified in the model, indicating which players control the different
processes and actions (when more than one process participate in the action). An
example of such specification can be observed in Listing 1.

Reasoning about strategies is a fundamental aspect of model checking SMGs,
which enables checking for the existence of a strategy that is able to optimize
an objective expressed as a property in a logic called rPATL [15] that is specifi-
cally tailored to checking properties in SMGs. Concretely, rPATL can be used for
expressing quantitative properties of SMGs, and reasoning about the ability of a
coalition of players to collectively achieve a particular goal, like ensuring that the
probability of an event’s occurrence or an expected reward measure meets some
threshold.

rPATL is a CTL-style branching-time temporal logic that incorporates the
coalition operator 〈〈C〉〉, combining it with the probabilistic operator P./q and
path formulae from PCTL [2]. Moreover, rPATL includes a generalization of the
reward operator Rr

./x from [24] to reason about goals related to rewards.
Some typical examples of properties that can be checked in rPATL can be ob-

served in Table 1. The property on top shows boolean formula satisfiability, which
checks the maximum probability of a joint player strategy satisfying some proba-
bility bound in an invariant expressed by a path formula similar to the ones found
in standard CTL (globally, there is not a critical failure). The second property
shows a quantification formula, which is denoted by a question mark in the quan-
tifier, instead of the threshold used in boolean formula satisfiability. In addition to
quantification, an additional difference with the first formula is that in this case,
the property is about the strategy of a single player a, and the rest of the players
of the game are considered adversarial. Moreover, the path formula is about a
liveness property (eventual successful program termination).

The last property shows the use of the quantitative version4 of the rPATL re-
ward operator 〈〈C〉〉Rr

max=?[F φ], which enables the quantification of the maxi-
mum accrued reward r along paths that lead to states satisfying state formula φ
that can be guaranteed by players in coalition C, independently of the strategies
followed by the rest of players.

Our work builds on probabilistic model checking to analyze system perfor-
mance (characterized in terms of utility) when reasoning explicitly about sensing
uncertainty and uncertainty reduction.

4The reward quantifier can also be used for boolean formula satisfiability.

6

Formula Description
〈〈a, b〉〉Pmax≥0.9[G !critical] “Players a and b have a strategy to ensure that the

system will never experience a critical failure with at
least probability 0.9”

〈〈a〉〉Pmax=?[F success] “Value of the maximum probability of eventual suc-
cessful program termination that a strategy by player
a can guarantee, independently of the strategies of
other players.”

〈〈sys〉〉Rutility
max=?[F end] “Value of the maximum utility reward accumulated

along paths leading to an end state that a player sys
can guarantee, regardless of the strategies of other
players.”

Table 1: Example rPATL properties.

3. Approach

In this section, we describe our approach to analyzing uncertainty-aware self-
adaptation, illustrating it on the simple scenario described in the introduction. We
start by introducing the definition of the formal model for the game, including a
description of how reward is collected. Next, we describe the analytical process
followed to quantify the difference between uncertainty-aware and uncertainty-
ignorant decision-making. Finally, we present and discuss the results obtained
from analyzing our simple scenario in two different versions: without and with
uncertainty reduction. The reason for this two-stage presentation is twofold. First,
we show that uncertainty-awareness in decision-making can have benefits on its
own, independently of whether uncertainty reduction mechanisms are available to
the system. Second, this simplifies the presentation and avoids conflating uncer-
tainty reduction and uncertainty awareness, which are different concepts that do
not necessarily coexist in systems.

3.1. Formal Model Definition
In this section, we introduce a model that captures the simple scenario de-

scribed in the introduction. The purpose of the model is to compare uncertainty-
aware adaptation, i.e., decision-making that considers explicitly uncertainty infor-
mation (in this case stemming from inaccuracies in sensing), against uncertainty-
ignorant adaptation that assumes that there is no uncertainty in the information it
employs for decision-making. The model is implemented using PRISM-Games [14],
a tool capable of model checking rPATL properties on stochastic multiplayer
games.

7

The model encodes a game played by an environment and a system player,
and it can be instantiated in two variants: one in which the system player is
uncertainty-aware, and another in which the system is uncertainty-ignorant. The
details of how these variants are used are explained in Section 3.2.
Defining the Players. There are two players in this model: Environment (env)
and System (sys). These two players take turns in performing actions. As shown
in Listing 1, the turn is controlled by the global variable turn. There are two
other global variables: real x represents the actual value of x at a given time (this
variable is initialized by constant INIT X, line 5), whereas obs x represents the
value of x observed by the system (i.e., the value communicated by the inaccurate
sensor to the system). In player definitions shown in lines 1 and 2, labels represent
processes, as well as actions (between brackets) under the control of the player.
1 player sys target system, [act], sensor, [sense] endplayer
2 player env environment, [generate] endplayer
3 const ENV TURN, SYS TURN, INIT X; // Turn and x initialization constants
4 global turn:[ENV TURN..SYS TURN] init ENV TURN; // Used to alternate between players
5 global obs x, real x:[0..20] init INIT X; // Observed and actual values of x

Listing 1: Player definition.
The game is played in alternating turns by the system and the environment

players. In the first turn, the actual value of x (real x) is initialized to INIT X.
Then, a typical cycle of the game works in the following way:

1. The environment process checks that the maximum number of turns has
been exceeded, and if that is not the case, yields the turn to the system
player (Listing 2, line 4).
1 const MAX TURNS;
2 module environment
3 t : [0..MAX TURNS] init 0;
4 [generate] (t<MAX TURNS) & (turn=ENV TURN) −> (t’=t+1) & (turn’=SYS TURN);
5 endmodule

Listing 2: Simple environment model definition.

2. The system senses the value obs x (Listing 3, line 2). The uncertainty in
the sensing process is modeled by a simple probability distribution. In this
case we use 0.5 probability that the sensor reads the value accurately (i.e.,
obs x = real x), and 0.5 probability the reading exceeds the real value of x
by a constant error (i.e., obs x = real x+ error).
1 const error;
2 module sensor
3 [sense] true −> 0.5:(obs x’ = real x) + 0.5:(obs x’ = real x+error);
4 endmodule

Listing 3: Sensor definition.

3. After obtaining the observed value obs x, the system (Listing 4, line 7) can
choose to: (a) do nothing (line 11), or (b) reduce the value of real x, sub-

8

tracting the value of s step from real x (lines 8-10). s step is just the sat-
urated value of a constant step supplied as parameter to the model, which
represents the maximum impact that the system’s actuator can make on the
qualities of the system (in this case, on the value of x). For example, if
step = 3, s step can take values in {1, 2, 3}.
1 const step;
2 formula s step = obs x−step >= 10 | obs x < 10 ? step : obs x − 10;
3 // s step is the saturated value of step (decrement/actuation on variable x): it is set to the

minimum of (step, x−10)
4
5 module target system
6 expected x:[0..20] init 0;
7 new info:[0..1] init 0;
8 [sense] (new info=0) & (turn=SYS TURN) −> (new info’=1); // 2. Sense
9 [act] (new info=1) & (turn=SYS TURN) −> // 3.a. Act

10 (real x’=real x−s step>=0?real x−s step:0) & (new info’=0) &
11 (expected x’=obs x−s step>=0?obs x−s step:0) & (turn’=ENV TURN);
12 [] (new info=1)&(turn=SYS TURN) −> // 3.b. Do nothing
13 (expected x’=obs x) & (turn’=ENV TURN) & (new info’=0);
14 endmodule

Listing 4: Simple system model definition.
Note that in the listing above, expected x encodes the expected value of x
from the perspective of the system after its turn is completed (the expected
value of x is built on the value of obs x).

The cycle repeats until the maximum number of turns played by the system
and the environment is reached. However, we assume in the rest of the discussion
a single-turn game for the sake of clarity (i.e., the game ends after the environment,
and then the system play one turn each). This is achieved by setting the constant
MAX TURNS = 1 in our game model.
Collecting Reward. There are three types of rewards in this model. We use each
of them to emulate different types of adaptation (Listing 5):

1. rU: reward collected if the system has the accurate information to make a
decision, i.e., when system knows real x.

2. rEU: reward collected if the system can only sense obs x and the system is
unaware of the uncertainty, i.e., the system assumes that obs x is an accurate
reading.

3. rEU uncertain: reward collected if the system can only see obs x, but is
aware of the uncertainty. In this case, the system knows that there is a 0.5
probability that obs x is not accurate and it calculates the reward factoring
in this probability.

9

1 formula rU = (real x<10? 0:200−10∗real x);
2 formula rEU = (expected x<10? 0:200−10∗expected x);
3 formula rEU uncertain = 0.5∗rEU+0.5∗rU;
4
5 rewards ”rEU uncertain” // Expected instantaneous utility reward (uncertainty−aware adaptation)
6 (turn=ENV TURN) & (t>=1) :rEU uncertain;
7 endrewards
8
9 rewards ”rEU” // Expected instantaneous utility reward (uncertainty−ignorant adaptation)

10 (turn=ENV TURN) & (t>=1) : rEU;
11 endrewards
12
13 rewards ”rU” // Real Instantaneous utility reward
14 (turn=ENV TURN) & (t>=1) : rU;
15 endrewards

Listing 5: Simple model reward structure definition.

3.2. Analytical Approach
To compare the uncertainty-aware vs. uncertainty-ignorant adaptation, we use

rPATL specifications that enable us to analyze:

1. Rreal: The maximum utility that the system can obtain when it has the ac-
curate information (in our scenario, when the system tries to maximize the
reward based on real x). We can get this value by generating a strategy for
the property:

〈〈sys〉〉RrU
max=?[F t = MAX TURNS] (1)

2. Ru−ignorant:The maximum utility that adaptation is able to obtain without
factoring in uncertainty. To obtain this value, we proceed in two steps:

(a) First, we generate a strategy using the following property that quanti-
fies the maximum expected accrued reward that the system “believes”
it can guarantee based on its beliefs (there is no uncertainty in the ex-
pected value of x because the value of obs x is accurate):

〈〈sys〉〉RrEU
max=?[F t = MAX TURNS] (2)

(b) We verify Property 1 under the generated strategy for Property 2. This
quantifies the real utility achieved (based on the value of real x), under
the strategy generated based on the beliefs of the system (i.e., the value
of x is obs x, and it coincides with the real one).

3. Ru−aware:The maximum utility that the adaptation is able to obtain when
considering uncertainty. To quantify this value, we proceed in two steps:

10

(a) First, we generate a strategy using the following property that quanti-
fies the maximum expected accrued reward that the system “believes”
it can guarantee based on its beliefs. However, in this case the sys-
tem is aware that the probability of real x = obs x is only 0.5, so the
strategy generated already accounts for the possibility of inaccurate
readings. This is encoded in the reward rEU uncertain in Listing 5
(line 5), which makes use of the corresponding formula defined in line
3.

〈〈sys〉〉RrEU uncertain
max=? [F t = MAX TURNS] (3)

(b) We verify Property 1 under the generated strategy for Property 3.
This quantifies the real reward under the strategy for uncertainty-aware
decision-making.

Experiment and observations for the simple scenario. For our experiment,
we collected the value of reward for uncertainty-aware and uncertainty-ignorant
adaptation with both sensor error and actuator impact step taking values in {1, 3}.
The range of values for x explored is {0, . . . , 20}.

−2 0 2 4 6 8 10 12 14 16 18 20 22

0

20

40

60

80

100

x

R
ew

ar
d

Error=3, Step=1

Uncertainty-aware
Uncertainty-ignorant

−2 0 2 4 6 8 10 12 14 16 18 20 22

0

20

40

60

80

100

x

R
ew

ar
d

Error=1, Step=3

Uncertainty-aware
Uncertainty-ignorant

−2 0 2 4 6 8 10 12 14 16 18 20 22

0

20

40

60

80

100

x

R
ew

ar
d

Error=3, Step=3

Uncertainty-aware
Uncertainty-ignorant

Figure 2: Simple model scenario results.

Figure 2 compares the reward obtained by uncertainty-aware and uncertainty-
ignorant adaptation (i.e., Ru−aware and Ru−ignorant, respectively). In the figure, x
indicates the value of the variable before actuation. Looking at the results, we can
make the following observations:

1. When in a “safe” region, uncertainty does not matter. When the value of
x is in region B (x ≥ 10), and not close to the threshold x = 10, the re-
ward obtained is not affected by uncertainty in any way, since there is no
risk that the system will modify the value below the threshold, leading to a
loss of reward. In practice, both uncertainty-aware and uncertainty-ignorant
adaptations will choose to reduce the value of x to obtain more reward. This

11

can be observed in Figure 2, in which the reward obtained by both adapta-
tion variants get closer in value as x moves to higher values, away from the
threshold x = 10. Similarly, when the system is in region A (x < 10) uncer-
tainty does not make any difference, since there is nothing that the system
can do to collect more reward. So, both adaptation variants will behave in
the same way.

2. When close to the boundary between regions, uncertainty-aware adapta-
tion performs better. When the system is in region A, but in values that are
close to the boundary between regions A and B, there is a chance that the
system will make a sub-optimal decision due to the uncertainty in sensing.
Concretely, in the uncertainty-ignorant variant of adaptation, the system can
determine that it is safe to reduce the value of x by a given amount based on
the value of obs x (when in reality, the value of x will go below 10 and re-
ward will not be collected). This penalizes uncertainty-ignorant adaptation
with respect to the uncertainty-aware variant, which is already accounting
for the likelihood of an undesirable outcome, and is more conservative when
choosing to reduce the value of x. Figure 2 shows how the different choices
of adaptation variants lead to increased rewards in uncertainty-aware adap-
tation when the value of x is close to the boundary between regions.

3. The difference between adaptation approaches is greater when sensor error
is paired with actuator impact. As sensor error increases, we would ex-
pect to see uncertainty-ignorant adaptation’s reward progressively decrease.
However, this is only true if sensor error is paired with higher actuator im-
pact values, since otherwise the limited scope of the actuator mitigates the
potentially detrimental effects that making the wrong choice would have on
reward. For instance, if error = 3, but step = 1, the plot in Figure 2 (left)
shows that there is little performance difference between the two variants of
adaptation. This is because, even if uncertainty-ignorant adaptation makes
the wrong choice, e.g., when x = 12, the actuator can at most reduce x to
11, incurring only a light penalty. However, if we consider the same value
of x = 12 when step = 3 (center, right), the difference in reward between
approaches is much more pronounced because in situations in which reduc-
ing x is the wrong choice, it is more likely that x will go under the threshold
x = 10, incurring a higher penalty. Moreover, it is worth noticing that
higher error for the same level of actuation does not necessarily mean that
the outcome is always going to be worse. Once the error threshold neces-
sary to take the wrong decision is crossed, the decision (and its outcome)
are not going to change. This can be observed if we contrast the results of
the center and right plots on the figure.

12

Experiments and observations for the simple scenario with uncertainty re-
duction. In the prior set of experiments, the self-adaptive system only had the
option of making a more conservative choice in regions in which uncertainty
made a difference. Often, there are opportunities to obtain more information
to reduce that uncertainty (e.g., adding more probes, or increasing the rate at
which probes collect information). To explore this situation, we extend our sim-
ple scenario model above with a tactic for uncertainty reduction that eliminates
the uncertainty in the sensor. In the new model, before the execution of the un-
certainty reduction tactic, the probability distribution of observing the real value
of x remains the same as in the original model, i.e., P (real x = obs x) = 0.5,
and P (real x = obs x+ error) = 0.5. However, when the tactic is executed,
the observed value of x (obs x) becomes equal to the real value (real x), i.e.,
P (real x = obs x) = 1, and P (real x = obs x+ error) = 0. We also extend our
game model to be played in two turns, instead of one, so that the uncertainty
reduction tactic can be used and its benefits exploited in the next turn.

−2 0 2 4 6 8 10 12 14 16 18 20 22

0

50

100

150

200

x

R
ew

ar
d

Error=3, Step=1

Uncertainty-aware
Uncertainty-ignorant

Uncertainty-ignorant-noUR
Uncertainty-aware-noUR

−2 0 2 4 6 8 10 12 14 16 18 20 22

0

50

100

150

200

x

R
ew

ar
d

Error=3, Step=1

Uncertainty-aware
Uncertainty-ignorant

Uncertainty-ignorant-noUR
Uncertainty-aware-noUR

−2 0 2 4 6 8 10 12 14 16 18 20 22

0

50

100

150

200

x

R
ew

ar
d

Error=3, Step=3

Uncertainty-aware
Uncertainty-ignorant

Uncertainty-ignorant-noUR
Uncertainty-aware-noUR

−2 0 2 4 6 8 10 12 14 16 18 20 22

0

50

100

150

200

x

R
ew

ar
d

Error=3, Step=3

Uncertainty-aware
Uncertainty-ignorant

Uncertainty-ignorant-noUR
Uncertainty-aware-noUR

Figure 3: Simple model with uncertainty reduction: results with no cost for uncertainty reduction
(left) and cost associated to increasing the value of x (right).

13

Figure 3 shows the analytical results of our simple scenario with uncertainty
reduction. The plots on the left show the results of scenarios in which there is no
cost associated with side effects of executing the uncertainty reduction tactic. In
contrast, the plots on the right show the results for scenarios in which the execution
of the uncertainty reduction tactic causes the value of variable x to be incremented
by step. This increment results in reward loss (note that reward is maximum when
x = 10, and it decreases as the value of x increases). This side effect models po-
tentially adverse side effects that uncertainty reduction tactics may cause in real
scenarios (e.g., reducing uncertainty about potentially malicious clients by exe-
cuting a CAPTCHA disrupts the experience of legitimate users accessing a web
infrastructure). All four plots also show the results without uncertainty-reduction
tactics both for uncertainty-aware and uncertainty-ignorant decision-making to
provide better context. The results in the figure reveal the following:

1. Uncertainty-aware adaptation always performs as well as, or even better
than, uncertainty-ignorant adaptation. Independently of whether there is
uncertainty reduction available. This observation is in line with our ex-
pectations, and is consistent with observations (1) and (2) described in the
results for the simple scenario without uncertainty reduction.

2. Uncertainty-aware adaptation can exploit uncertainty-reduction to its ad-
vantage. We can observe in the two plots on the right how uncertainty-
aware adaptation improves with uncertainty reduction when it gets close to
the boundary between regions A and B. This is also aligned with our ex-
pectations, since uncertainty awareness enables decision-making to factor
in the benefits of reducing uncertainty in the overall outcome of the game.

3. Uncertainty reduction is ignored by uncertainty-ignorant adaptation when
there is a cost to it. When there is a cost, the uncertainty reduction tactic
is not selected because uncertainty-ignorant decision-making cannot detect
the advantage of reducing uncertainty. This can be observed in the bottom-
right plot vs. the bottom-left plot in which there is a positive delta in reward
for uncertainty-ignorant adaptation combined with uncertainty reduction for
x ∈ {10, 13}. This result is analogous to prior work we carried out on
latency-aware adaptation [11]. When comparing latency-aware adaptation
with latency-ignorant adaptation, we observed that ignoring latency infor-
mation disabled the ability to select low-latency tactics because they were
perceived as less beneficial than others with higher or equal impact on qual-
ity, but higher latency. In the same way, ignoring uncertainty masks the
potential benefits of uncertainty reduction tactics.

4. Uncertainty reduction does not always improve uncertainty-aware adap-
tation. This can be explained by the fact that uncertainty-awareness al-

14

ready accounts for the uncertainty, so reducing uncertainty may not al-
ways be worth the cost it entails, when compared with the reward bene-
fit that the reduced uncertainty can provide. Actually, it is worth noting
that uncertainty-aware adaptation with uncertainty reduction can do slightly
worse than without it in specific cases. In particular, when there is cost for
uncertainty reduction (top, right plot) there is an area in which there is some
chance of using uncertainty reduction, incur the cost, but not obtaining any
benefit because the actuation impact step is too small to incur in the penalty.

4. Case Study: Denial of Service Attack (DoS)

In this section, we describe our approach on a more complex scenario where
an enterprise web infrastructure similar to the Znn.com system experiences a DoS
attack [35]. When web infrastructure experiences unusually high traffic, the cause
of the high traffic might be malicious (e.g., the system is experiencing a DoS at-
tack) or legitimate (some content has suddenly become popular - e.g., the slashdot
effect). Treating legitimate users as DoS attackers by mistake, and applying tac-
tics like blocking their requests for accessing the website, could be detrimental
to business. Thus, uncertainty about such situations should be considered when
applying defensive adaptation strategies to the system, evaluating carefully the
benefit and cost of different adaptation choices, possibly including actions that
can reduce uncertainty.

To facilitate understanding of the DoS scenario, we structure our model in a
similar way to the simple model described earlier and make the following assump-
tions:

1. The space is divided into two regions: (i) DoS, in which we assume that the
system is experiencing an attack, and (ii) Non-DoS, in which any anoma-
lous activity that the system may experience is not related to a DoS attack
(e.g., the system is experiencing low response due to a normal high-load
environment).

2. Regions are associated with specific metrics. The system’s state is deter-
mined by a single metric that captures the estimated percentage of malicious
clients accessing the system (mc). This is an abstract metric used as a proof
of concept. We assume that if mc is above a given threshold, the system is
in the DoS region of the state space; otherwise the system is considered to
be in the Non-DoS region.

3. The system does not know the real value of the variables being measured.
The observable value of the metric mc may not reflect its real value.

15

4. Uncertainty in sensing is represented by a probability distribution. We em-
ploy a normal distribution to model the observed percentage of malicious
clients mc.

5. The uncertainty-aware version of the system has knowledge about the prob-
ability distribution function that captures uncertainty in sensing. To sim-
plify the problem, we assume that the system has knowledge of the prob-
ability distribution function that represents how observed values are gener-
ated during the sensing process. In the real world, this knowledge may be
obtained for instance, from historical data.

The two main extensions with respect to the simple scenario presented earlier
are: (i) a richer set of actions or tactics that the system can carry out to influence
state variables including those that reduce uncertainty, and (ii) a more sophisti-
cated notion of reward that factors in metrics along more than one dimension of
concern.

• Tactics. In our simple synthetic scenario, the system can either do nothing
or act on the value of x by decreasing it. In the real world, a system may
have a richer variety of adaptation actions or tactics to respond to run-time
events. In this model, we divide tactics in two categories:

– Tactics that reduce uncertainty. This kind of tactic can reduce uncer-
tainty (in our scenario the uncertainty associated with the sensing of
system metrics). This type of tactic often comes at a cost. For ex-
ample, introducing CAPTCHA can reduce uncertainty about the mali-
ciousness of clients accessing the system (by determining which ones
are controlled by bots), but it will increase the annoyance of legiti-
mate users, who find their activities disrupted by the challenge they
are presented with.

– Tactics that do not reduce uncertainty. Tactics that do not reduce
uncertainty like blackholing clients (i.e., dropping their incoming re-
quests) do not provide any new information (e.g., about who is con-
trolling the clients). Decisions of whether to exercise these tactics are
therefore highly dependent on the quality of the information available
to the system (i.e., the observed values of metrics).

• Reward Model. In the simple scenario, the reward was related to only one
dimension. However, in this scenario there are two dimensions of concern:
security and user experience. We assume them to be of equal importance,
although this is not necessary for our model. Security is directly related to

16

the metric percentage of malicious clients mc (lower is better). User experi-
ence is also affected by the system’s choice of applying different tactics. For
example, introducing CAPTCHA will increase the difficulty of legitimate
users accessing system services and therefore increase their annoyance. We
consider therefore user annoyance (ua) as an additional metric for the user
experience dimension of concern. Note that blackholing clients may also
have detrimental side effects when it blocks legitimate traffic by mistake
and leads to bad user experience. This is more likely to happen when there
is high uncertainty about the maliciousness of the clients accessing the sys-
tem.

4.1. Formal Model Definition
This section provides a high-level description of the game model for the DoS

scenario.5 The scenario is modeled as a stochastic game involving two players
that represent the system (sys) and the environment (env) (Figure 4):
• The system player consists of two processes or modules that represent the
target system and the gauge that collects observed values of the mc metric.
These two modules are synchronized by a shared action [gauge].
• The environment player consists of the generator and environment modules,

which are synchronized via the [generate] shared action.
When the game starts, the environment player first generates the real value of

the mc ([generate]), and it yields the turn to the system player. Next, the system
player gauges mc ([gauge]), producing its observed value. The system player then
infers the region of the state space (DoS or Non-DoS) based on the observed sys-
tem metric, chooses one of the available tactics to execute ([blackhole], [captcha],
or chooses not to do anything), and returns the turn to the environment.

Defining players and global game variables. The game contains three global
variables: (i) real mc is real percentage of malicious clients, ranging from [0,100],
represents the real system metric, (ii) obs mc is the observed percentage of mali-
cious clients, and (iii) std mc (or σmc) is the standard deviation associated with the
perceived percentage of malicious clients. Note that obs mc and std mc together
describe the uncertainty function for the observed system metric. Listing 6 shows
the definition of players, turns, and global variables.
1 player sys target system, [blackhole], gauge, [gauge], [captcha] endplayer
2 player env generator, [generate], environment endplayer
3 const ENV TURN=1, SYS TURN=2;
4 global turn:[ENV TURN..SYS TURN] init ENV TURN; // Used to alternate between players
5 global std mc : [0..100]; //Observed standard deviation of malicious clients
6 global obs mc:[0..100]; //observed percentage of malicious clients

5A full listing of the model is available in [5].

17

Legend

sys((system(player)

gauge

target(system

new_info=0
Turn=SYS_TURN

new_info=1
Turn=SYS_TURN

true

2.[gauge]

env (environment(player)

generator

environment

new_info=0
turn=ENV_TURN

true

1.[generate]

1.[generate]

3.a([captcha]
3.b([blackhole]

2.[gauge]

malicious(
clients(state(
variables

real
(real_mc)

observed
(obs_mc)

[((]

Player(scope

Module((process)

State

Variable

Reads/Writes

Transition

Action
3.c([]((do(nothing)

Figure 4: DoS scenario game model overview.

7 global real mc:[0..100]; //real percentage of malicious clients

Listing 6: Player definition.

Generating the Real Value of Metric. generator is a module that is responsible
for generating the real value of metric (real mc) during every turn of the environ-
ment (Listing 7).6

1 module generator
2 [generate] true−>(real mc’=real mc);
3 endmodule

Listing 7: Module definition for generator.

Gauging Information. The gauge module is responsible for gauging information.
This process is crucial to our scenario model because it encodes how observed
values of mc are generated from the real values of the variable (i.e., it captures the
source of aleatoric uncertainty in the sensing process). Concretely, the observed
value of metric can be captured as the function:

P (obs mc = y|real mc = x) = 1
σmc

√
2π
e−(x−y)

2/2σmc
2

This probability density function is actually a conditional probability distribu-
tion of the observed value of the metric, given a real value, i.e., P (obs mc|real mc).
In this scenario, we encode this function using six points to simulate this normal

6Note that in this game, we assume that the time frame during which the scenario executes is
relatively short, and therefore we abstract any independent evolution of the environment variables
(e.g., the value of real mc is modified only by system tactics, once the initial conditions of the
game are set). However, this does not constitute a fundamental limitation of the approach, which
can be extended to relax this assumption [32].

18

distribution because the SMG formalism does not support the specification of con-
tinuous probability distributions (Listing 8).
1 module gauge
2 [gauge] true−>0.34:(obs mc’ = (real mc+1∗std mc<=100?real mc+1∗std mc:100))+
3 0.34:(obs mc’ = (real mc−1∗std mc>=0?real mc−1∗std mc:0))+
4 0.14:(obs mc’ = (real mc+2∗std mc<=100?real mc+2∗std mc:100))+
5 0.14:(obs mc’ = (real mc−2∗std mc>=0?real mc−2∗std mc:0))+
6 0.02:(obs mc’ = (real mc+3∗std mc<=100?real mc+3∗std mc:100))+
7 0.02:(obs mc’ = (real mc−3∗std mc>=0?real mc−3∗std mc:0));
8 endmodule

Listing 8: Module definition for gauge.

Selecting Tactics. After the system obtains the information about system metrics,
it can choose a tactic for execution (or do nothing). The model has two variants
that capture two alternative selection strategies:

1. Uncertainty-ignorant. The adaptive system does not have knowledge about
the real value of the metric mc. It is also oblivious to the fact that there is
uncertainty in the gauging process and therefore treats the observed value
as the real information, selecting tactics based on this information.

2. Uncertainty-aware. The system has no knowledge of the real value of mc.
However, the system has knowledge about the uncertainty in the gauging
process and evaluates the expected result considering the probability distri-
bution over different system states and selects tactics based on that.

The adaptation decision is evaluated for the selection of strategies based on
the value of the following set of variables:

1. real mc: Real value of metric mc.

2. emc: Expected percentage of malicious client after executing a tactic, as-
suming that obs mc = real mc.

3. ua: Real value for the metric user annoyance.

4. eua: Expected user annoyance after executing a tactic, assuming that obs mc
= real mc.

5. eua dos: Expected user annoyance after practicing a tactic if the system is
currently at the DoS region.

6. eua normal: Expected user annoyance after executing a tactic if the system
is currently at the Non-DoS region. This variable and eua dos are used to
calculate the expected reward when the system is aware of the uncertainty.

19

These six variables are used to calculate three types of reward (real, expected
by uncertainty-aware, and expected by uncertainty-ignorant decision-making). By
maximizing different types of reward, we can employ our formal model to gener-
ate adaptation decisions for: (a) adaptation based on real information, (b) uncertainty-
ignorant adaptation, and (c) uncertainty-aware adaptation.

real mc Non-DoS DoS
[captcha] -10 -30
[blackhole] -30 -30
ua Non-DoS DoS
[captcha] +10 +10
[blackhole] +50 +10

Table 2: Simple impact specification of
tactics in a DoS adaptation scenario.

Executing Tactics. Table 2 summarizes the
effect of exercising different tactics at differ-
ent system states. For example, blackholing in
both regions (DoS and Non-DoS) reduces the
real mc by 30% but it increases user annoy-
ance by 50% if the system is not in DoS, and by
10% if it is (reflecting the assumption that most
clients will correspond to malicious users7).

Listing 9 shows how the tactic [blackhole] updates the six variables discussed
the previous section. Lines 1-2, 4-5, and 7-8 show the encoding of the formulas
that update all relevant state variables for malicious clients and user annoyance.

All the formulas in these lines follow a common pattern, and are intended
to simply decrease the value of a variable by some delta. The extra code only
checks that the updated value is saturated and does not go beyond the range of
possible values specified by the variable (numerical values in PRISM-games are
always bounded and violating their range in updates results in failures in model
checking). For instance, the formula bh f mc in line 1 can be interpreted as:

I f (real mc+bh mc del ta >= 0) then
I f (real mc+bh mc del ta <= 100) then

bh f mc = real mc+bh mc del ta
e lse

bh f mc = 100 / / Value sa tu ra ted to maximum i n range
else

bh f mc = 0 / / Value sa tu ra ted to minimum i n range

In the formula, bh mc delta is the value for the delta for tactic blackhole on
real mc in Table 2 (which in this case is negative).

Then, ines 12-14 show how the different variables are updated based on the
aforementioned formulas when it is the turn of the system, and there is new infor-
mation available from the gauge.

1 formula bh f mc = real mc+bh mc delta >= 0? (real mc+bh mc delta<=100? real mc+bh mc delta :100):0;
2 formula bh f emc = obs mc+bh mc delta >= 0? (obs mc+bh mc delta<=100? obs mc+bh mc delta : 00):0;
3
4 formula bh f ua non dos = ua+50 >=0 ? (ua+50<=100? ua+50 : 100) : 0;
5 formula bh f ua dos = ua+10 >=0 ? (ua+10<=100? ua+10 : 100) : 0;
6

7In this model, we assume that the effect of tactics is deterministic, although more sophisticated
non-deterministic effects of tactics can be incorporated using languages like the one described
in [9].

20

7 formula bh f ua = (real mc>dos threshold)?bh f ua dos:bh f ua non dos; // Real user annoyance
8 formula bh f eua = (obs mc>dos threshold)?bh f ua dos:bh f ua non dos; // Expected user annoyance
9 ...

10 module target system
11 ...
12 [blackhole] (new info=1) & (turn=SYS TURN)−> (real mc’=bh f mc) & (emc’ = bh f emc)
13 & (ua’=bh f ua)& (eua’=bh f eua) & (eua dos’=bh f ua dos)
14 & (eua non dos’=bh f ua non dos) & (turn’=ENV TURN) & (new info’=0);
15 ...
16 endmodule

Listing 9: blackhole tactic definition.
Collecting Reward. Rewards are calculated based on both user annoyance and
the percentage of malicious clients. In this case, the reward we employ for our
game encodes a simple utility function in which both metrics contribute to the
overall utility calculation with a weight of 0.5 (Listing 10, lines 1-2). We em-
ploy three types of rewards to analyze uncertainty-aware and uncertainty-ignorant
decision-making.

1. rIU (real utility, lines 3-5): This reward is calculated based on utility met-
rics based on the real value of the percentage of malicious clients (real mc)
and user annoyance (formulas uM and uA, defined in Listings 11 and 12,
respectively).

2. rEIU ((expected utility for uncertainty-ignorant decision making, lines 7-
9): Is calculated based on the observable information about the percentage
of malicious clients (obs mc) employing formulas EuM and EuA (defined
in Listings 11 and 12, respectively) and it is unaware of the uncertainty in
sensing.

3. rEIU uncertain (expected utility for uncertainty-aware decision making, lines
11-17): Is also calculated based on the observed value of the metric mc
((obs mc). However, this alternative considers the uncertainty in sensing,
since it draws the values for reward calculation based on all the possibilities
captured in the probability distribution encoded in Listing 10 (lines 12-17).
The value of this reward is computed using the six utility functions that cal-
culate utility based on each of the possible values of mc that correspond to
the points of the discrete probability distribution (EuM pos X, where X is
the number of the point in the discrete probability distribution, ranging from
one to six - Listing 11, lines 18-22).

The calculation of rEIU uncertain is the key of this model. When collecting
reward in uncertainty-aware adaptation, we derive all the potential real values of
metric mc, based on its observed value, and calculate the expected reward based
on the probability distribution of these real values. In other words, the system must

21

have knowledge of the probability distribution of real values of the metric condi-
tioned to its observed value P (real mc | obs mc) to calculate rEIU uncertain.

The observed value (obs mc) is normally distributed given a real value (real mc),
based on the joint probability mass function of two discrete random variables:

P (X = x,Y = y) = P (Y = y | X = x) ∗ P (X = x) = P (X = x | Y = y) ∗ P (Y = y)

1 const double wA=0.5; // Weight for user annoyance utility
2 const double wM=0.5; // Weight for security (malicious clients level) utility
3 rewards ”rIU” // Real Instantaneous utility reward
4 (turn=ENV TURN) & (t>=1) : wM∗uM + wA∗uA;
5 endrewards
6
7 rewards ”rEIU” // Expected Instantaneous utility reward, uncertainty−ignorant
8 (turn=ENV TURN) & (t>=1) : wM∗EuM + wA∗EuA;
9 endrewards

10
11 rewards ”rEIU uncertain” // Expected Instantaneous utility reward, uncertainty−aware
12 (turn=ENV TURN) & (t>=1) :0.34∗(wM∗EuM pos one+wA∗ua pos one)+
13 0.14∗(wM∗EuM pos two+wA∗ua pos two)+
14 0.02∗(wM∗EuM pos three+wA∗ua pos three)+
15 0.34∗(wM∗EuM neg one+wA∗ua neg one)+
16 0.14∗(wM∗EuM neg two+wA∗ua neg two)+
17 0.02∗(wM∗EuM neg three+wA∗ua neg three);

Listing 10: Reward functions.
Listing 11 shows the utility profile for security, based on the values of the

metric for client maliciousness. Moreover, Listing 12 shows the utility profile for
user experience (calculated based on user annoyance ua) and security (calculated
based on percentage of malicious client). Both profiles are defined using an en-
coding similar to the ones described in [35], where a detailed discussion of their
rationale can be found. Table 3 describes the set of points used to define the utility
functions as a simple linear interpolation.

UM UA
0 : 1.00 0 : 1.00
5 : 1.00 100 : 0.00
20 : 0.80
50 : 0.40
70 : 0.00

Table 3: Utility functions for DoS.

In Listing 11, formula uM (lines 1-6) en-
codes the contribution to utility of the level of
malicious clients (lower is better) based on the
real system metric real mc. The formula en-
codes a simple linear interpolation function us-
ing the points defined on the left column of Ta-
ble 3. In contrast, formula EuM (lines 9-13) encodes contribution to utility in a
similar way, but in this case to the version of expected utility based on the expected
value of the level of malicious clients emc, which assumes that obs mc = real mc.

1 // ’Maliciousness’ utility function based on real mc
2 formula uM = (real mc>=0 & real mc <=5? 1 : 0)
3 +(real mc>5 & real mc <=20? 1+(0.80−1)∗((real mc−5)/(20−5)) :0)
4 +(real mc>20 & real mc <=50? 0.80+(0.40−0.80)∗((real mc−20)/(50−20)) :0)
5 +(real mc>50 & real mc <=70? 0.40+(0.00−0.40)∗((real mc−50)/(70−50)) :0)
6 +(real mc>70 ? 0:0);
7

22

8 // ’Maliciousness’ utility function based on emc (uncerainty−ignorant)
9 formula EuM = (emc>=0 & emc <=5? 1 : 0)

10 +(emc>5 & emc<=20? 1+(0.80−1)∗((emc−5)/(20−5)) :0)
11 +(emc>20 & emc <=50? 0.80+(0.40−0.80)∗((emc−20)/(50−20)) :0)
12 +(emc>50 & emc <=70? 0.40+(0.00−0.40)∗((emc−50)/(70−50)) :0)
13 +(emc>70 ? 0:0);
14
15 //Derive 6 possible mc for uncertainty−aware decision making
16 formula pos one std = obs mc +1∗std mc<=100?obs mc +1∗std mc:100;
17 ...
18 formula EuM pos one = (pos one std>=0 & pos one std <=5? 1 : 0)
19 +(pos one std>5 & pos one std<=20? 1+(0.80−1)∗((pos one std−5)/(20−5)) :0)
20 +(pos one std>20 & pos one std <=50? 0.80+(0.40−0.80)∗((pos one std−20)/(50−20)) :0)
21 +(pos one std>50 & pos one std <=70? 0.40+(0.00−0.40)∗((pos one std−50)/(70−50)) :0)
22 +(pos one std>70 ? 0:0);

Listing 11: Client maliciousness utility calculation (excerpt).
Finally, for uncerainty-aware utility calculation, we derive the six possible val-

ues of mc that correspond to the points in the discrete probability distribution that
we employ to model sensing error. Each of these is computed based on the for-
mulas EuM pos X std (line 16 shows the encoding for position one), where X is
the number of the point in the distribution. The corresponding utility contribution
based on that value of mc is encoded in functions EuM pos X (lines 18-22 shows
the encoding for position one).

In Listing 12 we show the encoding of the user annoyance contribution to
utility. Functions uA and EuA in lines 1-2 compute utility for the real (ua) and
observed (eua) values of ua, respectively (let us recall that eua corresponds to the
expected user annoyance after executing a tactic assuming obs mc = real mc).
1 //User Annoyance utility function
2 formula uA = (ua>=0 & ua <=100? 1−(ua/100):0);
3 formula EuA = (eua>=0 & eua <=100? 1−(eua/100):0);
4 formula EuA non dos = (eua non dos>=0 & eua non dos <=100? 1−(eua non dos/100):0);
5 formula EuA dos = (eua dos>=0 & eua dos <=100? 1−(eua dos/100):0);

Listing 12: User annoyance utility calculation.

Reducing uncertainty. To reduce uncertainty, we incorporate the tactic [captcha]
into the target system module (Listing 13). The tactic can be fired only once (the
tactic command is guarded by the predicate !captcha enabled, which becomes
false once the tactic is fired) and has the effect of setting the value of σmc to zero,
so effect in practice is that the sensor “becomes accurate”. Lines 1-8 encode the
updates to all of the real and observed state variables for malicious clients and user
annoyance (the value of the updates are based on the impacts of tactics specified in
Table 2), and employ a similar pattern to the one described for the tactic blackhole
in Listing 9.
1 formula c f mc = real mc+c mc delta >=0 ? (real mc+c mc delta<=100? real mc+c mc delta : 100) : 0;
2 formula c f emc = obs mc+c mc delta >=0 ? (obs mc+c mc delta<=100? obs mc+c mc delta : 100) : 0;
3
4 formula c f ua normal = ua+60 >=0 ? (ua+60<=100? ua+60 : 100) : 0;
5 formula c f ua dos = ua+30 >=0 ? (ua+30<=100? ua+30 : 100) : 0;

23

6
7 formula c f ua = (real mc>dos threshold)?c f ua dos:c f ua normal;
8 formula c f eua = (obs mc>dos threshold)?c f ua dos:c f ua normal;
9 ...

10 [captcha] (new info=1) & (turn=SYS TURN) & (!captcha enabled)−> (real mc’=c f mc) & (emc’ = c f emc)
11 & (ua’=c f ua)& (eua’=c f eua)
12 & (eua dos’=c f ua dos)&(eua non dos’=c f ua non dos) & (std mc’=0)
13 & (turn’=ENV TURN)&(new info’=0) & (executed’=1) & (captcha enabled’=true);

Listing 13: captcha tactic definition.

4.2. Experiments and Observation
We divide this section in two blocks. The first one explores the results of the

DoS scenario without uncertainty reduction (just [blackhole] tactic), whereas the
second part discusses the DoS scenario in an extended version in which there is an
additional [captcha] tactic available that reduces the uncertainty in the percentage
of malicious clients observed in the system.

DoS without uncertainty reduction. To compare decision-making that incor-
porates uncertainty-awareness, with uncertainty-ignorant adaptation, we use the
analytical process described in Section 3. For our experiment, we employed
a DoS game model on which we only considered the non-uncertainty reduc-
tion tactic (blackhole), collected the value of reward for uncertainty-aware and
uncertainty-ignorant adaptation with a DoS threshold value of 60, and different
sensor standard deviations in the distribution that captures sensing uncertainty for
mc σmc ∈ {10, 20}. The range explored for mc is {0, . . . , 100}.

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

DoS threshold

Percentage of malicious clients (%)

Sy
st

em
U

til
ity

σobs mc=10, DoS threshold=60%

uncertainty-aware
uncertainty-ignorant

0 20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

1

DoS threshold

Percentage of malicious clients (%)

Sy
st

em
U

til
ity

σobs mc=20, DoS threshold=60%

uncertainty-aware
uncertainty-ignorant

Figure 5: DoS scenario results without uncertainty reduction.

Figure 5 shows the result of our experiments. From these results, we can draw
the following observations:8

8We provide a synthetic notation to facilitate the intuition behind every observation. RB de-
notes region boundary, UA and UI are uncertainty-aware and uncertainty-ignorant adaptation, σ
denotes standard deviation,∝ denotes direct proportionality, and UR stands for uncertainty reduc-
tion.

24

1. (¬RB⇒ UA=UI) When far from the region boundary, uncertainty does not
matter. When the value of mc is in region DoS or Non-DoS (mc ≥ 60), and
moves away from the threshold, the utility obtained both by uncertainty-
aware and ignorant adaptations is similar.

2. (RB⇒ UA>UI) When close to the boundary between regions, uncertainty-
aware adaptation performs better. When the system is in region DoS, but
in values that get close to the boundary between regions DoS and Non-
DoS, there is a chance that the system will make a sub-optimal decision due
to uncertainty. Concretely, uncertainty-ignorant adaptation can determine
that it is safe to blackhole clients based by the value of obs mc and might
incur in penalties for blackholing potentially legitimate clients. This penal-
izes uncertainty-ignorant adaptation with respect to the uncertainty-aware
variant, which is already accounting for the likelihood of an undesirable
outcome, and is more conservative when making a decision.

3. (σ ∝ UA-UI) The difference between adaptation approaches is greater
when standard deviation of the sensed value of the variable is higher. As the
standard deviation in sensor inaccuracies increases, we can see how the util-
ity obtained by uncertainty-ignorant adaptation decreases. If we observe the
plots, focusing on the range 60%-90% of percentage of malicious clients,
there is a noticeable drop in the utility obtained by the uncertainty-ignorant
approach in the plot on the right, in which the standard deviation σmc is
twice the one on the left.

Our formal model allows us to see that these observations are consistent with
the results obtained in our simple scenario, reinforcing the evidence indicating that
uncertainty awareness can make a difference in the boundary between regions of
the state space in which system dynamics change.
DoS with uncertainty reduction. We now compare the performance of uncertainty-
aware and uncertainty-ignorant decision-making in the presence of uncertainty
reduction. To carry out our experiments, we considered a model in which the un-
certainty reduction tactic [captcha] is used along with the [blackhole] tactic. The
parameters for our experiment are mc ∈ {0, . . . , 100}, σmc = 20, and a DoS
threshdold ∈ {40, 60}.

Figure 6 shows the analytical results of our DoS scenario with uncertainty
reduction. The plot on the right shows the results for DoS threshold values of 60%;
the left plot shows it at 40%. The plots also show the results without uncertainty
reduction tactics both for uncertainty-aware and uncertainty-ignorant decision-
making to provide better context. The results in the figure reveal the following:

1. (UA+UR≥UA) Uncertainty-aware adaptation with uncertainty reduction
always performs as well as, or better than without it. This observation is

25

0 20 40 60 80 100
1.5

2

2.5

3

3.5

4

DoS threshold

Percentage of malicious clients (%)

Sy
st

em
U

til
ity

Adaptation Performance (DoS threshold=60%)

uncertainty-aware-noUR
uncertainty-aware

uncertainty-ignorant
uncertainty-ignorant-noUR

0 20 40 60 80 100

DoS threshold

Percentage of malicious clients (%)

Adaptation Performance (DoS threshold=40%)

uncertainty-aware-noUR
uncertainty-aware

uncertainty-ignorant
uncertainty-ignorant-noUR

Figure 6: DoS scenario results with uncertainty reduction.

in line with our expectations.9 Since uncertainty awareness enables strategy
synthesis to discriminate under which cases it might be beneficial to reduce
uncertainty to obtain other benefits later on, uncertainty-aware adaptation
with uncertainty reduction is expected to perform at least as well as without
it, and better if the conditions allow it. We can observe that this is the case
in both plots, in which uncertainty-aware decision making with reduction
performs better than without it in ranges that correspond to the DoS region
(as we might expect), in which mc ∈ {80, . . . , 90} for DoS threshold 60%,
and mc ∈ {60, . . . , 90} for DoS threshold 40%.

2. (UI+UR≥UI) Uncertainty-ignorant adaptation with uncertainty reduction
also performs as well as, or better than without it. This observation is also
in line with our expectations. Although uncertainty-ignorant adaptation is
not equipped to reason about the impact of uncertainty on goal satisfaction,
adaptation choices can coincide with the ones present in optimal strategies,
even if the selection process has been different. We can observe an in-
stance of this situation in the right-hand side plot of the figure, in which
uncertainty-ignorant adaptation with uncertainty reduction performs simi-

9Note that in our results, we always refer to the capacity of improving performance in decision
making. Actual improvement on system implementations might depend on other factors like the
size of the state space (which might prevent timely run-time reasoning).

26

larly to the uncertainty-aware variant with uncertainty reduction, incorpo-
rating the [captcha] tactic in the strategies used in the range 60-75% of mc.

3. (UA+UR≥UI+UR) Uncertainty-aware adaptation always performs equally
or better than uncertainty-ignorant adaptation when they both use uncer-
tainty reduction. This is also consistent with our expectations. While the oc-
casional improvement experienced by uncertainty-ignorant adaptation de-
rived from uncertainty reduction is purely coincidental, uncertainty-awareness
enables the system to fully exploit the benefits of uncertainty reduction and
avoids making the wrong trade-offs. We can observe this in both plots
(ranges 75-90% in the right-hand side plot, and 80-90% on the left), in
which uncertainty-ignorant adaptation cannot fully exploit the benefits of
uncertainty reduction, compared to the uncertainty-aware variant.

4. (UI+UR≥UA) Uncertainty-ignorant adaptation with uncertainty reduction
can perform better than uncertainty-aware adaptation without uncertainty
reduction. As we might expect, the benefits of uncertainty awareness do
not always surpass those of a richer adaptation tactic repertoire. We can
observe this in our experiments, in which the solution space for uncertainty-
aware adaptation without uncertainty reduction is more constrained than the
space of uncertainty-ignorant adaptation with uncertainty reduction. We can
observe instances of this situation in the ranges 60-90% and 80-86% of the
right and left-hand side plots, respectively, in which the optimal strategy
incorporates [captcha] (when it is available).

In summary, our results show that both uncertainty-aware and uncertainty-
ignorant adaptation can benefit from uncertainty reduction, and they always per-
form equally or better than without it. However, uncertainty-ignorant adaptation
improvements with uncertainty reduction are purely coincidental. In contrast,
uncertainty-aware adaptation improves consistently in the presence of uncertainty
reduction. Our formal model allows us not only to demonstrate these (perhaps in-
tuitive) results, but also to quantify the benefits and provide a basis for reasoning
about when and when not to reduce uncertainty.

5. Related Work

Uncertainty management has been studied by many authors in the field of self-
adaptive systems, but not in managing sensing uncertainty. Possibility theory has
been mainly used in approaches that deal with uncertainty in objectives, helping
to assess the positive and negative consequences of uncertainty [1, 21, 36]. Other

27

approaches employ probabilistic verification and estimates of the future environ-
ment and system behavior for optimizing the system’s operation. These proposals
target mitigation of uncertainty due to parameters over time [3, 4, 20].

Although these approaches have shown promising results in dealing with dif-
ferent types of uncertainty they do not cover uncertainty that is directly caused by
the information that is used as sensing input to the decision-making agent. Such
uncertainty is especially important when the self-adaptive system is managing a
cyber-physical system. In this case, attackers may exploit compromised sensors
and effectors to steer a system into unsafe states that not only have an impact on
the software, but ultimately on the physical context of the system.

The work in [23] is concerned with the estimation and control of linear systems
when some of the sensors or actuators are corrupted by an attacker. The authors
of [18] tackle a similar problem, with a stronger focus on sensing and state esti-
mation in continuous-time linear systems, for which an attacker may have control
over some of the sensors and inject (potentially unbounded) additive noise into
some of the measured outputs. To characterize the resilience of a system against
such sensor attacks, the authors introduce a notion of “observability under attacks”
that addresses the question of whether or not it is possible to uniquely reconstruct
the state of the system by observing its inputs and outputs over a period of time,
with the understanding that some of the available system’s outputs may have been
corrupted by the attacker. The authors of [16] study CPS subject to dynamic sen-
sor attacks, relating them to the system’s strong observability. This work identifies
necessary and sufficient conditions for an attacker to create a dynamically unde-
tectable sensor attack and relates them to system dynamics.

Researchers in artificial intelligence have been working on approaches for rea-
soning under uncertainty for a very long time, compared to other areas like self-
adaptive systems or CPS. There is a wealth of paradigms, algorithms, and tech-
niques that is too vast to summarize in this section. However, notable approaches
to reasoning under uncertainty include the use of probabilistic planners [25] that
deal with aleatoric uncertainty and even epistemic uncertainty via reasoning about
partial observability [13].

Our approach can be regarded as complementary to these works, since it would
enable us to potentially exploit the information provided by these approaches to
improve decision-making and provide worst-case scenario guarantees. In [11]
we reported on an analogous application of this technique to quantify the bene-
fits of employing information about the latency of tactics for decision-making in
proactive adaptation, comparing it against approaches that make the simplifying
assumption of tactic executions not being subject to latency. A general description
of the SMG-based analysis technique for the interplay of a self-adaptive system
and its environment is provided in [6]. None of the works mentioned above can
reason explicitly about the aleatoric uncertainty (or its reduction) in the informa-

28

tion that the system employs for decision making.

6. Conclusions and Future Work

This paper has described an analysis technique based on model checking of
stochastic multi-player games that enables us to quantify the benefits in adapta-
tion performance of factoring sensing uncertainty explicitly into decision-making.
The technical novelty of our approach resides in the definition of patterns to
systematically encode environment sensing uncertainty in adaptation scenarios,
and an analysis method to explore the solution space while factoring in such
uncertainty. This ability shows potential for using our models in adaptive sys-
tems to make good decisions about (a) when to model uncertainty explicitly, and
(b) when to take advantage of uncertainty reduction tactics. Our results show that
although uncertainty-aware adaptation does not guarantee to perform better than
uncertainty-ignorant adaptation in all cases, it does perform at least comparably
in all cases (RQ1), and performs better in boundary regions of the state space in
which the dynamics of the system may change (RQ1 and RQ2). With respect to un-
certainty reduction, our results show that both uncertainty-aware and uncertainty-
ignorant adaptation can benefit from it, and they always perform equally or better
than without it (RQ3). Moreover, uncertainty-ignorant decision-making improve-
ments with uncertainty reduction are purely coincidental and never surpass the
performance of uncertainty-aware adaptation, which in contrast improves consis-
tently in the presence of uncertainty reduction (RQ3). These are relevant findings,
because systems that exhibit variability in the effects of adaptation tactics that
depend on specific run-time conditions may obtain a remarkable benefit in terms
of improved reliability and performance by factoring uncertainty into decision-
making, and incorporating uncertainty reduction mechanisms, if available.

With respect to future work, we plan on extending decision-making under un-
certainty to reason with only partial knowledge about the uncertainty function, and
study the impact on accuracy of the discretization of the probability distribution
of sensing (which currently is sampled using six points). The current version of
our approach assumes that information about the probability distribution for sens-
ing (P (observed value | real value)) is known to the system, so it can derive
P (real value | observed value). A next logical step is to study how systems can
gradually improve their ability of estimating the real state of the system, e.g. by
automatically refining throughout subsequent system executions the knowledge
that the system has about P (real value | observed value). The second avenue
for future work will explore ways to identify regions of the state space where
uncertainty has an impact, and hence reduce the search space and overhead of
reasoning under uncertainty by exploiting the fact that in some regions of the state
space, explicit modeling and management of uncertainty matter more than in other

29

regions in which uncertainty awareness and reduction are not able to improve de-
cision making. We also plan to investigate reasoning about uncertainty reduction
and uncertainty-aware decision-making in human-in-the-loop adaptation, where
human operators may provide information that is inaccurate, continuing the line
started in [10, 7].

Finally, although there is no fundamental limitation to carrying out run-time
decision-making using our technique, the feasibility of timely decision-making
depends on the specific case study and the computational cost of analyzing the as-
sociated state space. Previous experiences in developing techniques for decision-
making in self-adaptation using probabilistic model checking of MDP and SMG
have shown feasibility in systems similar to the one described in our DoS case
study [8, 32]. In any case, we plan to explore stochastic dynamic programming
techniques to improve scalability. Our previous experience has shown that de-
cision time can be reduced by one order of magnitude with respect to standard
probabilistic model checking in proactive self-adaptation scenarios [33].

Acknowledgements

This material is based on research sponsored by AFRL and DARPA under agreement number
FA8750-16-2-0042 and by the Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a fed-
erally funded research and development center. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of
the AFRL, DARPA, ONR or the U.S. Government. References herein to any specific commer-
cial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mel-
lon University or its Software Engineering Institute. This material has been approved for public
release and unlimited distribution.

References

[1] L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy goals for requirements-driven
adaptation. In 18th Requirements Engineering Conference (RE 2010), pages
125–134, 2010.

[2] A. Bianco and L. de Alfaro. Model checking of probabalistic and nonde-
terministic systems. In P. S. Thiagarajan, editor, FSTTCS, volume 1026 of
LNCS, pages 499–513. Springer, 1995.

30

[3] R. Calinescu et al. Dynamic QoS Management and Optimization in Service-
Based Systems. IEEE Trans. Software Eng., 37(3):387–409, 2011.

[4] R. Calinescu and M. Z. Kwiatkowska. Using quantitative analysis to imple-
ment autonomic IT systems. In 31st International Conference on Software
Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceed-
ings, pages 100–110. IEEE, 2009.

[5] J. Cámara, D. Garlan, W.-G. Kang, W. Peng, and B. Schmerl. Un-
certainty in self-adaptive systems: Categories, management, and per-
spectives. Technical Report CMU-ISR-17-110, Institute for Soft-
ware Research, Carnegie Mellon University, 2017. Available at:
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/CMU-ISR-17-110.pdf.

[6] J. Cámara, D. Garlan, G. A. Moreno, and B. Schmerl. Analyzing self-
adaptation via model checking of stochastic games. In R. de Lemos,
D. Garlan, C. Ghezzi, and H. Giese, editors, Software Engineering for Self-
Adaptive Systems 3, number 9640 in LNCS. Springer. To appear.

[7] J. Cámara, D. Garlan, G. A. Moreno, and B. Schmerl. Evaluating trade-offs
of human involvement in self-adaptive systems. In Managing Trade-Offs in
Self-Adaptive Systems, 2016.

[8] J. Cámara, D. Garlan, B. R. Schmerl, and A. Pandey. Optimal planning for
architecture-based self-adaptation via model checking of stochastic games.
In R. L. Wainwright, J. M. Corchado, A. Bechini, and J. Hong, editors, Pro-
ceedings of the 30th Annual ACM Symposium on Applied Computing, Sala-
manca, Spain, April 13-17, 2015, pages 428–435. ACM, 2015.

[9] J. Cámara, A. Lopes, D. Garlan, and B. R. Schmerl. Impact models for
architecture-based self-adaptive systems. In I. Lanese and E. Madelaine,
editors, Formal Aspects of Component Software - 11th International Sympo-
sium, FACS 2014, volume 8997 of LNCS, pages 89–107. Springer, 2014.

[10] J. Cámara, G. A. Moreno, and D. Garlan. Reasoning about human partic-
ipation in self-adaptive systems. In P. Inverardi and B. R. Schmerl, edi-
tors, 10th IEEE/ACM International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy, May
18-19, 2015, pages 146–156. IEEE Computer Society, 2015.

[11] J. Cámara, G. A. Moreno, D. Garlan, and B. R. Schmerl. Analyzing
latency-aware self-adaptation using stochastic games and simulations. TAAS,
10(4):23:1–23:28, 2016.

31

[12] J. Cámara, W. Peng, D. Garlan, and B. Schmerl. Reasoning about sensing
uncertainty in decision-making for self-adaptation. In Proceedings of the
15th International Workshop on Foundations of Coordination Languages
and Self-Adaptive Systems (FOCLASA 2017), LNCS. Springer, 2018. To
appear.

[13] A. Cassandra, M. Nodine, S. Bondale, S. Ford, and D. Wells. Using pomdp-
based state estimation to enhance agent system survivability. In IEEE 2nd
Symposium on Multi-Agent Security and Survivability, 2005., pages 11–20,
Aug 2005.

[14] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-
games: A model checker for stochastic multi-player games. In N. Piterman
and S. Smolka, editors, Proc. 19th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’13), vol-
ume 7795 of LNCS, pages 185–191. Springer, 2013.

[15] T. Chen, V. Forejt, M. Z. Kwiatkowska, D. Parker, and A. Simaitis. Au-
tomatic verification of competitive stochastic systems. Formal Methods in
System Design, 43(1):61–92, 2013.

[16] Y. Chen, S. Kar, and J. M. F. Moura. Cyber-physical systems: Dynamic sen-
sor attacks and strong observability. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 1752–1756,
2015.

[17] B. H. C. Cheng et al. Software engineering for self-adaptive systems: A re-
search roadmap. In B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, editors, Software Engineering for Self-Adaptive Systems, volume
5525 of LNCS, pages 1–26. Springer, 2009.

[18] M. S. Chong, M. Wakaiki, and J. P. Hespanha. Observability of linear
systems under adversarial attacks. In 2015 American Control Conference
(ACC), pages 2439–2444, July 2015.

[19] T. Deshpande, P. Katsaros, S. Smolka, and S. Stoller. Stochastic game-based
analysis of the dns bandwidth amplification attack using probabilistic model
checking. In Dependable Computing Conference (EDCC), 2014 Tenth Eu-
ropean, pages 226–237, May 2014.

[20] I. Epifani et al. Model Evolution by Run-Time Parameter Adaptation. In
ICSE, pages 111–121. IEEE CS, 2009.

32

[21] N. Esfahani, E. Kouroshfar, and S. Malek. Taming uncertainty in self-
adaptive software. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering,
ESEC/FSE ’11, pages 234–244. ACM, 2011.

[22] N. Esfahani and S. Malek. Uncertainty in self-adaptive software systems.
In R. de Lemos, H. Giese, H. Muller, and M. Shaw, editors, Software Engi-
neering for Self-Adaptive Systems II, volume 7475 of LNCS, pages 214–238.
Springer, 2013.

[23] H. Fawzi, P. Tabuada, and S. Diggavi. Secure estimation and control for
cyber-physical systems under adversarial attacks. IEEE Trans. on Aut. Con-
trol, 59(6):1454–1467, June 2014.

[24] V. Forejt et al. Automated verification techniques for probabilistic systems.
In SFM, volume 6659 of LNCS, pages 53–113. Springer, 2011.

[25] M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporal
planning domains. J. Artif. Int. Res., 20(1):61–124, Dec. 2003.

[26] D. Garlan. Software engineering in an uncertain world. In Future of Software
Engineering Research (FoSER), pages 125–128, 2010.

[27] K. He, M. Zhang, J. He, and Y. Chen. Probabilistic model checking of pipe
protocol. In Theoretical Aspects of Software Engineering (TASE), pages
135–138, 2015.

[28] M. C. Huebscher and J. A. McCann. A survey of autonomic computing -
degrees, models, and applications. ACM Comput. Surv., 40(3), 2008.

[29] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Com-
puter, 36:41–50, 2003.

[30] M. Kwiatkowska et al. PRISM 4.0: Verification of probabilistic real-time
systems. In Proc. of CAV’11, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

[31] S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns. A classification of current
architecture-based approaches tackling uncertainty in self-adaptive systems
with multiple requirements. In Managing Trade-offs in Adaptable Software
Architectures. Elsevier, 2016.

33

[32] G. A. Moreno, J. Cámara, D. Garlan, and B. R. Schmerl. Proactive self-
adaptation under uncertainty: a probabilistic model checking approach. In
E. D. Nitto, M. Harman, and P. Heymans, editors, Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4, 2015, pages 1–12. ACM,
2015.

[33] G. A. Moreno, J. Cámara, D. Garlan, and B. R. Schmerl. Efficient decision-
making under uncertainty for proactive self-adaptation. In S. Kounev,
H. Giese, and J. Liu, editors, 2016 IEEE International Conference on Au-
tonomic Computing, ICAC 2016, Wuerzburg, Germany, July 17-22, 2016,
pages 147–156. IEEE Computer Society, 2016.

[34] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng. A taxonomy of uncertainty
for dynamically adaptive systems. In 7th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, SEAMS, pages
99–108, 2012.

[35] B. R. Schmerl, J. Cámara, J. Gennari, D. Garlan, P. Casanova, G. A. Moreno,
T. J. Glazier, and J. M. Barnes. Architecture-based self-protection: compos-
ing and reasoning about denial-of-service mitigations. In L. A. Williams,
D. M. Nicol, and M. P. Singh, editors, Proceedings of the 2014 Symposium
and Bootcamp on the Science of Security, HotSoS 2014, Raleigh, NC, USA,
April 08 - 09, 2014, page 2. ACM, 2014.

[36] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J. Bruel. RELAX:
incorporating uncertainty into the specification of self-adaptive systems. In
RE 2009, 17th IEEE International Requirements Engineering Conference,
Atlanta, Georgia, USA, August 31 - September 4, 2009, pages 79–88. IEEE
Computer Society, 2009.

34

