Leveraging Resource Prediction for Anticipatory Dynamic Configuration

Vahe Poladian, David Garlan, Mary Shaw, Bradley Schmerl, Jodo Sousa’
School of Computer Science, Carnegie Mellon University

Information and Software Engineering, George Mason University'
{vahe.poladian, garlan, mary.shaw, schmerl} @ cs.cmu.edu, jpsousa@ gmu.edu

Abstract

Self-adapting systems based on multiple concurrent ap-
plications must decide how to allocate scarce resources to
applications and how to set the quality parameters of each
application to best satisfy the user. Past work has made
those decisions with analytic models that used current re-
source availability information: they react to recent changes
in resource availability as they occur, rather than anticipat-
ing future availability. These reactive techniques may model
each local decision optimally, but the accumulation of deci-
sions over time nearly always becomes less than optimal.

In this paper, we propose an approach to self-
adaptation, called anticipatory configuration that leverages
predictions of future resource availability to improve utility
for the user over the duration of the task. The approach
solves the following technical challenges: (1) how to express
resource availability prediction, (2) how to combine predic-
tion from multiple sources, and (3) how to leverage predic-
tions continuously while improving utility to the user. Our
experiments show that when certain adaptation operations
are costly, anticipatory configuration provides better utility
to the user than reactive configuration, while being compa-
rable in resource demand.

1. INTRODUCTION

Recent self-adaptive systems improve quality of service
despite resource shortage by using models of user prefer-
ences, historical profiles of application resource intensity,
and estimates of current resource availability. Such systems
partially automate various system decisions, such as which
suite of applications to select for a task and how to allocate
scarce resources among concurrent applications with the
objective of best satisfying the individual preferences of the
user. These systems may also guide the adaptation of re-
source-aware applications, when more than one dimension of
quality is of concern to the user, perhaps using a set of pref-
erence functions explicitly specified by the user for a given
task and context.

A common shortcoming in the behavior over time of
such self-adaptive systems arises from their purely reactive
adaptation policies. When dealing with changes in the oper-
ating environment, e.g., changes in resource availability,
these systems make decisions based only on recent data, of-
ten resulting in sub-optimal decisions over time. For exam-
ple,

e Aura ([4][12][15]) achieves dynamic behavior by per-
forming re-configurations, which are costly in terms of
both resource usage and user disruption. Multiple costly
re-configurations in response to several changes add up
to a globally suboptimal utility to the user over time.

¢ (Q-RAM [8] admits tasks and allocates resources among
them based on their utility to the system and resource
demand intensity. Running tasks have a priority over
new ones. If available resource levels are not sufficient,
the system will not admit new tasks, even though there
might be a resource allocation using both running and
new tasks that improves utility.

As these examples demonstrate, making decisions with-
out considering future changes is myopic and prone to be
suboptimal over long term.

Recent results in resource prediction offer an alternative
to reactive adaptation. For example, [13] and [14] have ana-
lyzed a significant number of traces and have concluded that
in many cases, network traffic has good predictability. Us-
ing relatively inexpensive linear time-series models, predic-
tions of network traffic can be done in near real time for a
meaningful future horizon, e.g., a few dozen seconds, or
even minutes. Other sources of predictive information are
also available, e.g., administrator-announced network, CPU
and service outages, recurring patterns of resource usage that
have weekly or daily periods, remaining battery level, and
models of battery drainage.

In this paper, we propose an anticipatory approach to
self-adaptation, which combines the benefits of resource
prediction research into an existing framework of dynamic
configuration. Specifically, we present an enhanced analyti-
cal model of configuration that builds upon existing reactive
models of resource allocation and takes advantage of re-
source predictions from multiple sources. We also present a
set of resource allocation algorithms that leverage predictive
information to the benefit of the user. We demonstrate that
these new algorithms improve upon the earlier reactive algo-
rithms while remaining feasible for real time evaluation.

In this work three main results address key challenges in
engineering a system for anticipatory configuration. First,
we define a mathematical notation for expressing uncertainty
in predictors that is consistent with resource prediction lit-
erature. Next, we define a calculus for combining multiple
predictors to provide aggregate predictions based on multi-
ple sources and types of predictive information. Third, we
present an efficient on-line algorithm of anticipatory con-
figuration that leverages predictive information.

The rest of the paper is structured as follows. Section 2
surveys related work and highlights the novelty of this work.
Section 3 defines important terms, enumerates the require-
ments for anticipatory configuration, and presents our ap-
proach, including a notation for predictors and combining
calculus. In Section 4, we describe the algorithms for antici-
patory configuration and analyze their theoretical running
times. Section 5 presents the results of runtime experiments
comparing several approaches to configuration, including

anticipatory and reactive. The evaluation of our approach
and enumeration of software engineering benefits in Section
6. We summarize the conclusions in Section 7.

2. RELATED WORK

Self-adaptive systems such as Q-RAM [8], Aura
[12][15], and Nemesis [10] incorporate models of user pref-
erences, application behavior, and resource availability in
order to optimize some measure of user satisfaction. Q-
RAM is a general framework for quality of service and re-
source management, while Aura is a configuration (self-
adaptation) infrastructure for ubiquitous computing. Both of
these systems implement a centralized resource arbiter that
makes resource allocation decisions. Nemesis is an experi-
mental operating system that has a centralized resource ac-
counting component, but uses a decentralized congestion
pricing based approach to optimize the allocation of re-
sources among competing concurrent applications.

Unlike the previous three systems that focus on policy of
adaptation, Odyssey [11] and Puppeteer [7], among others,
primarily focus on adaptation mechanisms. They both im-
plement application and operating system mechanisms for
multi-fidelity, resource-aware execution. Odyssey empha-
sizes agile mechanisms for handling both transient and per-
sistent surges and drops in resources,

All of the above systems are purely reactive in adaptation
policies and mechanisms; none of them considers predictions
of future resource availability in decision making.

NWS [16] and RPS [1] are tools for gathering and ana-
lyzing available resource information. [3] presents a com-
prehensive overview of linear time series models used in
prediction. Using tools such as NWS and RPS, studies in
[13][14]1[17] have demonstrated that: (1) resources have
good predictability and (2) when resources are predictable,
relatively inexpensive linear models with autoregressive
(AR) components work as well as other more complex pre-
dictors. It is conjectured, e.g. in [13], that resource predic-
tion can be done online, using software running on routers.

Anticipatory configuration is similar to online stochastic
combinatorial optimization (OSCU) problems such as pack-
age routing and vehicle dispatch ([2][6]). While the problem
domains are different, each dynamic configuration algorithm
has an analog in OSCU. The Reactive, Perfect, and Expecta-
tion algorithms in dynamic configuration are respectively
called Local, Offline, and Expectation in OSCU.

3. APPROACH

We now introduce the problem of anticipatory dynamic
configuration, discuss the specific technical challenges that
we addressed in this work, and describe our approach. Be-
cause anticipatory configuration builds on an earlier model
of reactive configuration, we briefly review the pertinent
details of that model first.

3.1 Terminology

Following [15], we define the set of computational de-
vices, applications, and resources available to a user in a

location as the environment. Applications and devices pro-
vide services, which are abstract descriptions of the applica-
tion capabilities, identified by service type, e.g. “play video”,
“edit text”, “browse web”. A specific application on a spe-
cific device is called a supplier. Users carry out fasks to
work on their everyday projects, e.g., plan a vacation, pro-
duce a report, or review a video clip. A task specifies the
use of one or more simultaneous services for the duration of
the activation of the task. Each task might be activated sev-
eral times, possibly in different locations.

Applications use computational resources (such as CPU
cycles, network bandwidth, disc, memory, and battery en-
ergy) to provide service to the user. In many environments
resources are scarce and can change over time. Some appli-
cations are resource and fidelity aware, able to provide lower
level of service in one or more quality of service (QoS) di-
mensions while consuming fewer resources. Lower quality
service allows the user to make progress on his task, al-
though his satisfaction from the task might be lower.

A suite of applications that can satisfy a task is called a
supplier assignment. There might be multiple candidate
assignments for a task in an environment, because each ser-
vice in the task might be satisfied by alternative available
applications. A resource allocation is a set of resource vec-
tors, one per supplier in an assignment. Each of these vec-
tors specifies the maximum amount of a resource that the
application should consume. A QoS set-point is a vector of
QoS levels that the application should meet. A configura-
tion is a triple of supplier assignment, resource allocation
and QoS set-points.

The problem of configuration is to find a configuration
that maximizes user’s utility. Utility depends on the suppli-
ers in the assignment as well as QoS set-points.

In the earlier model of configuration [12], utility is an in-
stantaneous measure of a user’s satisfaction. That model
works reactively, by considering only snapshots of current
resource availability in the resource allocation and configu-
ration selection. As resource availability changes, the reac-
tive model performs reconfiguration, changing the previous
configuration if there is gain in instantaneous utility. Thus
the solution in the reactive model maximizes instantaneous
utility in a series of locally optimal decisions.

In contrast, an anticipatory model of configuration con-
siders future resource availability predictions, and chooses
sequences of configurations over the duration of the task,
and maximizes the expected value of utility accrued over the
duration of the task.

3.2 Challenges

The principal goal in this work is to improve the quality
of service to the user in an existing framework of dynamic
configuration by leveraging resource predictions. To do so,
we must address the following three requirements:

R1. Define a measure of accrued utility that captures the
temporal dimension of anticipatory configuration.

To make globally optimal decisions, the utility function
of the user needs to be enhanced. The enhanced notion of
utility should: (1) incorporate the temporal dimension of the

anticipatory configuration and guide globally optimal deci-
sion-making, (2) represent a user’s satisfaction with service
quality over a period of time, while capturing the relevant
attributes of a task, as before, and (3) allow for comparison
of anticipatory and reactive configuration models.

R2. Express and combine predictive information about
future resource availability from multiple predictors.

One part of the challenge here is to express predictive in-
formation in a way that is consistent with existing prediction
literature. Second part of the challenge is to aggregate pre-
dictions from multiple sources.

R3. Design efficient on-line algorithms for anticipatory
configuration that improve expected utility for the user.

The new algorithms for anticipatory configuration must
make online decisions under uncertainty. Such algorithms
must balance the runtime resource overhead and latency with
optimal decision making. These algorithms should demon-
strate improvement over those in the reactive model under
reasonable assumptions of predictor accuracy.

3.3 Utility
3.3.1 Utility in the Reactive Model

Utility is a measure of user satisfaction with respect to
the running state of the systems. In the model of reactive
configuration, the system is concerned with instantaneous
utility (IU), which has three parts: affinity for applications,
preference for quality of service, and penalty for switching.
The first part in the instantaneous utility allows the user to
express his preference for specific applications. For exam-
ple, the user might specify that among video players he
strongly prefers Windows Media Player, but might also be
happy with QuickTime or RealOne Player by giving scores
to each of these choices. Furthermore, he might also accept
any other video player, but score them below either Quick-
Time or RealOne.

The second part in the utility is collection of preference
functions and weights that allow the user to express a desired
level of service in each QoS dimension as well as trade-offs
among different dimensions. Using a preference function for
each QoS dimension, the user specifies how much he values
improvement or deterioration of service along that dimen-
sion. Using a scalar weight, the user specifies how important
that dimension is relative to others.

The third part in the utility allows the user to specify
penalties for disruptive changes. This is to discourage the
system from switching currently running applications, unless
the gain in utility is sufficiently large. For each service in
the task, switching of applications is penalized by a scalar
amount.

The instantaneous utility is combination of the three
parts. Appendix A has the formal expression of IU.

3.3.2 Utility in the Anticipatory Model

In the model of anticipatory configuration the objective
of the system is to maximize the accrued utility. We use a
discrete time model by dividing the duration of the task into
T equal windows, and index each using variable t, 0 <t < T.
Let Seq denote a sequence of T- configurations, one per

each window in the duration of the task: Seq = {Seqy,
Seq;,...,Seqr.;}, where each Segq; is a configuration chosen to
run during period s. The accrued utility (AU) of the se-
quence Seq is defined as:

T-1
AU (Seq) = IU (Seq,,9) + D 1 IU (Seq,,Seq,)

where in the expression of the instantaneous utility we
include both the current and previous configuration. In other
words, the accrued utility over a time period is the sum of
instantaneous utilities during that time period.

3.4 Supplier (Application) Profiles

Applications use resources to provide service. Typically,
providing a better level of service requires the use of more
resources. Using historical profiling [9], it is possible to find
an application’s resource requirement for each level of qual-
ity of service. An application profile is an enumeration of
resource and QoS vector pairs, where the resource vector is
the required level of resources for providing the level of ser-
vice specified by the QoS vector.

In the anticipatory configuration model we continue to
assume that application profiles are static, i.e. they are com-
puted using offline profiling, don’t change over time, and are
sufficiently accurate.

3.5 Resource Availability Predictions

3.5.1 Resource Availability in the Reactive Model

In the reactive models of configuration, only the current
level of resource availability is modeled.

The anticipatory model explicitly incorporates predic-
tions of future resource availability. Next we discuss the
details of resource prediction.

3.5.2 Resource Prediction

Ideally, a prediction for the available level of a resource
is a probability density function for a future time of predic-
tion s and the current time, z. For each possible level r of the
resource, the function predicts the probability that the re-
source will be at that level at time ¢. Thus, the available
level of resource R at time s is a random variable, R,. To
capture the fact that the prediction is made at time #, we use
the following notation: R, which is the conditioning of the
random variable R, based on the information available at
time ¢.

A generalized predictor for resource R at time ¢, 0 <t <
T, is a set of probability density functions, one for each s, s>
t, of the random variable Ry,.

In practice, a predictor might not provide the complete
distribution of the resource for all future times s. For exam-
ple, a prediction from one source might be that with 100
percent probability, the available resource level can not ex-
ceed a certain threshold. Another source might predict a
surge or drop in the resources around a specific time.

3.5.3 Types of predictors

We define three types of resource predictors: linear re-
cent history, relative move, and bounding predictors.

A linear recent history predictor is any predictor that
uses recent history and a linear time-series model to predict

the next value in the series of resource availability. This
predictor is motivated by existing literature [3]. We consider
autoregressive (AR) models of low orders. Moving Average
(MA) and auto-regressive moving average (ARMA) models
can be easily handled in a similar manner by the anticipatory
configuration algorithms.

Formally, an autoregressive linear recent history predic-
tor of order p for resource R is an equation of the form:

Riw=@iri+or+...+ Op Vipr1 t Zio
where r; are the previous p observations of the resource (the
small letters indicate that these numbers are not random), ¢;
are parameters of the model and are known at prediction
time, and Z ,,; is a normal random variable with mean 0 and
variance o, Z,,; ~ N(0, o).

Notice that the prediction we have is only one step ahead.
However, we can easily express R, using R, ;;, the previ-
ous p-1 observations, and Z ., an additional normal random
variable which is independent of Z ;.

There might be opportunities for prediction that are not
captured by a linear predictor. For example, by observing
resource demand changes (surges and drops) and correlating
these with calendar information, it might be possible to pre-
dict such changes and their length in the future.

The second, relative move predictor predicts step-up or
step-down changes in resource availability. Formally, a rela-
tive move predictor is a set of tuples <s, M>, where s is the
time of prediction and M is the possibly random magnitude
of the predicted move. For the purposes of this work, we
will assume that M is normally distributed, M ~ N(u,0). For-
mally, if rm is a relative move predictor, then rm = {<s,M>}.

The third, bounding predictor specifies the maximum and
minimum possible level of resource availability for a union
of time intervals. A bounding predictor is motivated by the
availability of various sources of information, such as the
maximum bandwidth specification of a DSL line, signal
strength and type of WiFi network. In case of CPU, the
maximum available level is available from hardware specifi-
cation and from the power saving settings.

3.5.4 Predictor Calculus

We now define a calculus for combining multiple predic-
tors into an aggregate prediction. Let L denote the set of all
linear predictors, RM denote the set of relative move predic-
tors, B denote the set of bounding predictors. We define
operations on predictors as follows.

Boosting of two linear predictors: if // and [2 are predic-
tors in L, then I3 =[] x I2 is a linear predictor. The term
boosting refers to the machine learning technique that allows
improved prediction or classification by combining multiple
predictors or classifiers. Simple averaging is boosting, al-
though a good booster should reduce the prediction error by
finding correlations among the predictors.

Concatenation of two relative move predictors: if rml
and rm2 are predictors in RM, then rm3 = rml - rm2 is also a
relative move predictor. If rml and rm2 have conflicting
predictions, i.e. one of the predictions in rm/ is for the same
time period as another prediction in rm2, we can simply
combine those two predictions by adding the random moves.

Otherwise, the predictions are combined by taking the union
of the two sets of predictions.

Addition of a relative move predictor to a linear predic-
tor: if rml is in RM and [] is in L, then gpl =11 + rml is a
generalized predictor that combines the relative moves pre-
dicted by rml into the linear prediction of /1.

Bounding of a generalized predictor by a bounding pre-
dictor: if gpl is a generalized predictor and b/ is a bounding
predictor in B, then gp2 = gpl |l bl is a generalized predic-
tor that is the bounding of gp/. Bounding limits the support
of any probability density function to the interval specified
by b1.

Intuitively, a linear predictor finds short-term correla-
tions in the recent history of resource availability. A relative
move predictor finds periodic patterns of resource increases
or decreases that are not reflected in the recent history. The
effect of a relative move is in addition to the prediction of a
linear predictor (hence justifying the operation of addition).
A bounding predictor limits the range of resource availabil-
ity.

Let’s see the predictor calculus in action by the way of a
simple example. Suppose [/ and [2 are linear predictors,
rml and rm2 are relative move predictors and b/ is a bound-
ing predictor. Then /1 x 2 + rml - rm2 || bl = {(11 x I2) +
(rml - rm2)} 1l b1. In other words, we first apply all boost-
ing operations to obtain one linear predictor. Next we apply
all the concatenation operations until one relative move pre-
dictor remains. Then we perform addition with the only re-
sulting linear predictor and the only resulting relative move
predictor. After that, we apply as many bounding operations
as there are bounding predictors.

Figure 1 shows resource predictions using 3 curves. The
middle curve is the expected value (mean) of the predicted
level of the resource. The top curve is one standard devia-
tion above the mean and the bottom curve is one standard
deviation below the mean. This predictor was obtained by
the addition of a relative move predictor (rm/) to a linear
predictor (7).

Relative Move Predictor Added to ALinear Predictor

130 r="u

20 N\ praaat A
N e

Ve \ R i RN

2 RS/ .

§7O \&WMW

I60 \)/ \)\,

50 W ,\)\
TS

L e A e e e e s L s B e B s s s

Figure 1: The mean and one standard deviation band of
the sum of linear and relative move predictors. The Y axis
is in abstract units of resource.

3.6 The Formal Optimization Problem

Informally, the optimization problem at hand is one of
choosing a sequence of configurations over the duration of
the task, such that the expected value of accrued utility is
maximized given the aggregate knowledge of all resource
predictors. There are two constraints to the optimization
problem: (1) the level of quality of service of each supplier is
bound by the supplier’s historical QoS vs. resource profile,
and (2) the sum of resource demands of the suppliers in the
running configuration in each time period can not exceed the
actual resource supply.

Let Set(Seq) be the set of all possible configuration se-
quences. Let QoSProfy,,, denote the QoS vs. resource pro-
file for the supplier identified by supp. Let rry, denote the
actual resource availability vector for each time period s, 0 <
s<T. Let Seq denote a sequence of configurations: Seq =
{Seqy, Seq,,...,Seqr.;}, where each Seq; specifies a supplier
assignment. Then the objective of anticipatory configuration
is to maximize:

arg max E[IU (Seq,,9)+ Zz:ll IU (Seq ,, Seq _,)}

Seqge Set (Seq)

given the knowledge of all the resource predictors and sub-
ject to the following constraint for each s, 0 < s<T:

Z QOSpVOf Supp (fSupp) < Hrrsls
Suppe Seq g
The inequality in the above constraint is understood for
each resource dimension separately and must hold for any
combination of quality set-point choices (denoted by of fs,,,)
among the suppliers of Seq;.

4. ALGORITHMS AND ANALYSIS

An algorithm for anticipatory configuration should
maximize the expected accrued utility over the duration of
the task. At each time step, an algorithm decides which as-
signment of the suppliers to choose as well as how to allo-
cate resources among them. First we describe some prereq-
uisite computation. Next, we describe two different algo-
rithms for anticipatory configuration.

4.1 Prerequisite Algorithms

4.1.1 Resource sieve and resource scenarios

For tractability purposes, we discretize the available lev-
els of resources. For each resource, we enumerate the possi-
ble available levels of that resource. Then we consider the
Cartesian combinations of the available levels of all the re-
sources. We call this the resource sieve. And we call each
point in the sieve a resource scenario.

For example, if the environment includes one laptop, and
one of the resources under consideration is the CPU of the
laptop, then the possible available levels of the CPU can be
anywhere from 0 to 100 percent of the maximum, in 4 per-
cent increments.

Another resource of interest, downstream TCP band-
width, might have 13 levels: 100, 150, 200, 250, 300, 350,

400, 500, 600, 700, 800, 900, 1000 (all in kbps). These lev-
els are based on the available suppliers and their resource
intensity for various levels of quality of service.

With two resources, CPU and bandwidth, as described
above, the resource sieve will have 26 * 13 = 338 resource
scenarios. We generate resource scenarios using an ad-hoc
enumeration and call this algorithm GenResourceSieve.

4.1.2 Supplier assignments

For each service in a task, there may be multiple avail-
able suppliers in the environment that can satisfy that ser-
vice. For example, for a “play Video” service, on a typical
Windows system there might be as many as 4 applications to
choose from: Windows Media Player, RealOne Player, Ap-
ple QuickTime, iTunes. The same applies for browsers, e-
mail readers, text editors, compilers, etc.

Recall that a supplier assignment is an assignment of one
application for each service in the task. A task can have
multiple supplier assignments. We generate all possible sup-
plier assignments using ad-hoc enumeration and call this
algorithm GenSuppAssignments.

We now present three lemmas that help in computing in-
stantaneous utility and designing the algorithms:

Lemma I: affinity for applications depends only on the
choice of a supplier assignment and does not depend on the
level of available resources in the past, present, or future.

Lemma 2: the switching penalty depends only on the
supplier assignments in the previous and in the current time
period.

Lemma 3: QoS utility depends only on the current as-
signment of suppliers and current resource availability.

These lemmas follow directly from the definition of in-
stantaneous utility. Armed with these three lemmas, we per-
form the following computations.

Penalty(SA1, SA2): for each pair of candidate supplier
assignments, SA1 and SA2, compute the penalty in the hypo-
thetical situation when switching from SA1 to SA2 by com-
plete enumeration of all pairs and store the result in a two-
dimensional array.

SuppPrefScore(SA): for each candidate supplier assign-
ment, SA, compute the portion of instantaneous utility that is
due to application preference and store the results in a one-
dimensional array.

OptInstQoS(SA, RS): for each supplier assignment, SA,
and each resource scenario, RS, compute the optimal re-
source allocation among the suppliers in SA when the cur-
rent level of resources is given by RS. Also determine the
QoS set-points for each supplier and the resulting utility.
The mrmd algorithm in [8] solves the resource allocation
problem all resource scenarios at once, using dynamic pro-
gramming. The running time of the algorithm is proportion-
ate to the size of the resource sieve.

4.2 Algorithms For Anticipatory Configuration

The first algorithm, OptAccUtilPerfect, maximizes actual
accrued utility in the case when resource predictions are
known precisely. The second, OptAccUtilExpectation, ex-

plicitly deals with uncertainty in resource predictions and
works by maximizing the expected accrued utility.

4.2.1 Algorithm for No-Uncertainty Prediction

In the simplest case of anticipatory configuration, we as-
sume that the resource predictors are error-free. Under this
unrealistic assumption, the predictions are exact resource
paths into the future for the duration of the task and as time
goes by, this proves to be true. The benefits of considering
this case are two-fold: (1) we would like to find out if antici-
patory configuration is ever better than reactive configura-
tion and (2) we create a shared routine that can be invoked in
hind-sight for comparison purposes.

Prediction in this case is a vector of snapshots: RS(s),
where 0 <s < T and each RS(s) is a resource scenario.

We find a sequence of configurations that maximize the
accrued utility using dynamic programming. Let’s define
PartMaxAU(j,s) to be the maximum partial accrued utility
possible if the task were to run starting from time period s till
time period T and if supplier assignment with index j were
chosen to run at time s. To demonstrate how the dynamic
programming algorithm would work, we show the terminal
condition and the recursive rule:

e PartMaxAU(j,T-1) = OptlnstQoS(j,RS(T-1) +
SuppPrefScore(j), because 7-1 is the last time period.

¢ PartMaxAU(j,s) = maxy { OptlnstQoS(j, RS(s)) +
SuppPrefScore(j) + Penalty(j,k) + PartMaxAU(k,s+1)}.

The first three terms in the last sum are pre-computed
and together add up to the instantaneous utility possible
when choosing to run supplier assignment j in period s. The
fourth term is the future partial accrued utility from time
period s+1 till the end of the task if supplier assignment with
index k is chosen next. In addition to recording the maxi-
mum utility, we also record the value of k for which that
maximum is achieved.

The dynamic programming algorithm will start from time
period 7-1 to compute PartMaxAU(j,T-1) and work back-
wards in time in a simple loop to compute PartMaxAU(j,s).
The maximum of PartMaxAU(],0) over all possible supplier
assignments j will be the maximum possible accrued utility
for the task. The sequence of supplier assignments is also
recorded. We call this algorithm OptAccUtilPerfect.

Next we analyze the runtime complexity of the algorithm.
To help in this analysis, we define the following variables:

e nServices, the number of services in the task,

e nAltSupp, the typical number of alternative suppliers for
each service type,
nResources, the number of resources,
nResPoints, the number of different resource points for
a typical resource,

® nRSieve, the size of the resource sieve or the number of
different resource scenarios. This number is
O(nResPoints™ nResources).

® nSA, the number supplier assignments. This number is
O(nAltSupp” nServices).

® 1nQoS, the number of maximum different possible QoS
points among all suppliers,

e T, the duration of the task or the number of time periods.

Here are the running times of the prerequisite algorithms:
GenSuppAssignments is O(nSA *nServices),
GenResourceSieve is O(nRSieve),

Penalty is O(nSA *nSA),
SuppPrefScore is O(nSA),

OpUtil is O(nQoS*nRSieve*nSA),
OptAccUtilPerfect is O(nSA *nSA*T).

After adding the running times of the above algorithms,

the following two terms dominate all the others:
® O(nQoS*nRSieve*nSA) + O(nSA*nSA*T).

We conclude that the running time is pseudo-polynomial
with respect to the inputs of the problem. We argue that this
algorithm is feasible for online computation.

<double, int> OptAccUtilFullSearch (int t,int s,
Vector RPath (0..s),
Vector Seqg(-1..s-1),
Vector RPred(s+1..T-1)) {
<RSim[],Prob[]> = SimRScenario(s+1,
RPath (0..s), RPred(s+1..T-1));
for each a in SA {
Seq(l..s+l) = Seq(l..s), SAl[al;
double instUtil = OptInstQoS(a, RPathl[s]) +
SuppPrefScore (a) + Penalty(a, Seqg(s-1));
double expUtilFuture = 0;
if (s < (T-1)) // termination condition
for each rs in RSim {
RPath(0..s,s+1l) = RPath(0..s),RSim[rs];
<U,next> = OptAccUtilFullSearch (t,
s+1, RPath(0..s+1),
Seq(-1..s), RPred(s+2..T-1)) ;
expUtilFuture += Prob[rs] * U;
}
// find + record max of expUtilFuture
}
return <maxExpAccU, bestSA>;
}
AnticipatoryDynConfig ()
{
Obtain RHistory;
Initialize RPath = RHistory, Seq, RPred;
for s = 0 to T-1 {
<util, a> = OptAccUtilFullSearch (s, s,
RPath(0..s), Seqg(-1l..s-1),
RPred(s+1..T-1);
ExecuteConfig(a, RHistory(0..s), prevSA);
Update RHistory, RPath;
UpdatePred (RPred, RPath[s+1]);
prevSA = a;

Figure 2: The Full Search Anticipatory Algorithm.

4.2.2 Algorithm for Uncertainty in Prediction

In practice, resource predictors are noisy, and an antici-
patory algorithm must handle the noise in the predictors.

Figure 2 shows a generic algorithm that maximizes the
expected value of accrued utility when predictors are noisy.

The algorithm, OptAccUtilFullSearch, simulates likely
paths of resources and computes the expected future accrued
utility along these paths for each candidate supplier assign-
ment. ¢ 1is the current time, s is the time of simulation and is
continually rolled forward, RPath contains actual resource
availability history up to time ¢ and simulated resource his-
tory up to time s, Seq contains supplier assignments that are

selected to run at each time, RPred contains the predictor
objects conditional on information up to time s.

The algorithm first simulates possible resource states and
their probabilities for the next time period. Next it cycles
through all candidate supplier assignments and calculates the
expected future accrued utility in the hypothetical case when
a particular supplier assignment is selected to run in the cur-
rent time period. The expected future utility is calculated in
the inner loop by iterating through the simulated resource
states and computing the probability weighted average of
future expected utility from each state. The instantaneous
utility from running that supplier in the current period is
added to the expected future accrued utility.

The AnticipatoryDynConfig routine is the entry point of
configuration. This routine is responsible for “rolling” time
forward, injecting the system with actual resource availabil-
ity information, executing (starting / stopping) the necessary
applications and setting their runtime state.

The algorithm computes the maximum expected accrued
utility as defined in section 3.6. However, because of the
liberal use of recursion, the running time of the algorithm is
exponential in 7. Indeed, the algorithm does a complete
scan of all possible simulated resource paths, with a branch-
ing factor proportionate to nSA*nRSim, the latter being the
number of simulated resource state at each recursive step.
Even for small problem sizes the running time of the algo-
rithm can quickly escalate.

We considered several possibilities to overcome this
problem. By memoizing computation results and using dy-
namic programming, we can reduce the running time, but
will need exponential storage space. We can also partially
memorize computation results, rearrange the two loops, and
reduce the branching factor of the recursion, but this will not
reduce the running time below exponential. We also consid-
ered Monte Carlo simulation.

We discovered that reducing the depth of the recursive
search does not affect the optimality of the algorithm dra-
matically, but reduces the running time to less than exponen-
tial. We modify the Full Search algorithm, by limiting the
depth of complete simulations to a configurable parameter.
For the remainder of the search, we obtain an approximation
of future expected accrued utility using the OptAccUtilPer-
fect algorithm over the expected path of the resources. We
call this modified algorithm OptAccUtilExpectation.

S. EXPERIMENTS

We implement the algorithms from Section 4 and the re-
active model. We experimentally compare the algorithms
along two metrics: (1) the actual accrued utility to the user
over the duration of the task and (2) runtime efficiency.

5.1 Experimental Setup

The basis for our experiments is a task of a newspaper
movie critic, who watches clips and writes reviews. This
task has 2 services: video playing and browsing. The user
simultaneously watches streaming clips using a video player
and searches for information using a browser. Both the
browser and the server support levels of data compression

and the server can provide content at varying levels of fidel-
ity (e.g., text-only, images, multi-media). There are three
alternative applications for video playing and three alterna-
tive applications for browsing, generating 8 alternative sup-
plier assignments (nSA).

5.1.1 Input Data

The model requires three inputs: (1) user preferences, (2)
application profiles, and (3) resource availability predictions.
We profile 6 applications: 3 video players and 3 browsers.
As an experimental platform, we use a relatively old IBM
T30 laptop that can operate in power-saving mode and limit
the available CPU level to a percentage of the maximum.
For user preferences, we use synthetic data.

In this case study we consider 2 resources: CPU and
bandwidth. For CPU availability predictions, we use only
relative move and bounding predictors, because the user is in
complete control of his hardware and there are no external
demands on the CPU to require the use of a linear predictor.
Variations in CPU availability come from a number of
sources: (1) whether the laptop is plugged into an outlet or
not, (2) planned background tasks (e.g., virus checker or
backup). For bandwidth prediction, it is appropriate to use a
linear predictor. We combine an autoregressive predictor of
order 5 with several relative move predictors (so a band-
width prediction very much looks like the graph in Figure 1).

We create a resource sieve of about 350 points (nRSieve)
and consider a task of duration 25 (7). Based on these num-
bers, OptAccUTtilFullSearch is not feasible to run online.

5.2 Algorithm Comparisons

5.2.1 Comparisons in Utility to User

We now address the following questions. Under what
conditions is anticipatory configuration better than reactive
configuration? How do we quantify the improvement?

These factors influence whether anticipatory configura-
tion can outperform reactive configuration:

e The magnitude of switching (re-configuration) costs
relative to other components of instantaneous utility,
e Similarity of the profiles of suppliers.

If there are no switching costs, or those costs are very
small, then several locally optimal decisions provably add up
to a globally optimal decision. In that case, reactive configu-
ration is temporally globally optimal.

With respect to the second factor, consider the extreme
case when all the suppliers providing the same service have
identical application profiles, i.e. their resource requirements
for each QoS level are identical. Mathematically, the prob-
lem reduces to having only one supplier assignment, and
there is never a need to switch suppliers to capture better
utility when resources change.

We have observed that suppliers offering the same ser-
vice can have vastly different resource requirements. Appli-
cations from large commercial vendors tend to be feature-
rich and resource-intensive, while open-source applications
tend to be more efficient. Also, different vendors offer dif-
ferent runtime options in their applications, contributing to
the diversity of application resource profiles. Thus, even

with static user preferences, the ranking of the supplier as-
signments changes under different resource scenarios.

Assuming the above factors are satisfied, there are two
reasons why reactive configuration might under-perform
anticipatory configuration. First is thrashing and is likely to
occur when switching penalties are small (but not insignifi-
cant). Oscillating resource paths will force reactive configu-
ration to change supplier assignments and pay switching
penalty frequently. The second reason is lack of amortiza-
tion of switching costs over multiple time windows and is
likely to occur when penalties are relatively high. Reactive
configuration might not find it optimal to switch a configura-
tion when resources change, although doing so will pay in
the long term, if the resources persist at that level.

To investigate these questions, we performed experi-
ments of 1000 trials that compared the actual accrued utility
achieved by 4 different algorithms under the same resource
conditions: OptAccUtilPerfect, OptAccUtilExpectation, Re-
active, and Random. Random randomly selects a supplier
assignment in the beginning of the task and commits to that
assignment throughout the task. As resources change, Ran-
dom can change the resource allocation to maximize QoS
portion of IU. Obviously, Random does not incur penalties
since it can’t switch the suppliers.

We calculated the average accrued utility achieved over
1000 trials for each algorithm. Next, we computed GainRe-
active as the difference between the average utility of Reac-
tive and Random. Similarly, we computed GainAnticipatory
as the difference between the averages of OptAccUtilExpec-
tation and Reactive. We computed Handicap as the differ-
ence between OptAccUtilPerfect and OptAccUtilExpecta-
tion. Since OptAccUtilPerfect is run after the resource
availability is known for the entire duration, it calculates the
maximum possible accrued utility for that resource path.

Comparison of Configuration Algorithms

1.20

080 HHH HE

£

<

g O Handicap
£ 0560 B GainA
E OGainR

)

o

0.40

020 HHHHHHHHHARHHAHAHHAHAAHAAHHHAE

0.00

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Sigma parameter, in percentages

Figure 3: Comparison of the relative gain measures.
The stacks, from lower to upper, are: GainReactive,
GainAnticipatory, and Handicap.

We varied the sigma parameter of the linear predictor
from 1% to 33% of the mean (This parameter determines the
range of the one-standard deviation band around the pre-
dicted mean). Figure 3 shows the resulting graph.

From the graph, we conclude that:

e With accurate prediction, GainAnticipatory exceeds the
GainReactive by a factor of 3-4. As prediction accuracy
falls, GainAnticipatory disappears,

e With accurate prediction, OptAccUtilExpectation per-
forms very close to OptAccUtilPerfect,.

Anticipatory vs. Reactive Tally

N
S

=)
S]

= Avg

—— Max
) \/\/\/ \///\f i

20

percent
]
é By
gz
|
M
D=

Anticipatory Better Than Reactive,

N e A N0 000 R P QD

Sigma parameter, percent

Figure 4: The tally of the percentage of times Antici-
patory is better than Reactive. We show the average,
maximum, and minimum of 4 experiments.

We also tallied the number of beat OptAccUtilExpecta-
tion exceeded Reactive. The results are in Figure 4.

We investigated the effect that the relative magnitude of
the switching penalty has on the algorithms. We confirmed
that when penalties are very small or very large, there is no
substantial difference in the utility of the Anticipatory (Per-
fect or Expectation) and Reactive algorithms. This is consis-
tent with the observation made in the beginning of this sub-
section.

5.2.2 Runtime Efficiency

To evaluate the runtime efficiency of the anticipatory al-
gorithms, we measure the resource (CPU) demand and la-
tency of one configuration decision.

We measure the time it takes to make one configuration
decision using the standard C clock() function. For OptAc-
cUtilExpectation, we vary the depth of recursive simulation
from 2 to 6 (experiments for section 5.2.1 used value of 3).
We use two different CPU speed settings: maximum and
slowest possible. The results in Table 1 show that the la-
tency of one configuration decision is very small.

Table 1: running times of one invocation of the algo-
rithm, OptActUtilExpectation, in milliseconds. The row
labels show the simulation depth, and the column labels

show CPU speed. CPU is 100 percent utilized.
2 3 4 5 6
Max 050 | 1.95| 7.65| 24.20 72.50
Slow | 1.71 6.15| 23.30 | 72.00 | 201.50

The latencies of both OptAccUtilPerfect and Reactive
algorithms are in the nanoseconds and have the same order
of magnitude. For comparison, OptAccUtilExpectation with
simulation depth of 2 is about 40 times slower than either of
the former two. Since the configuration framework has other
overheads (communication, application control), the addi-
tional time required by the anticipatory algorithm is not sig-
nificant.

Anticipatory configuration requires one invocation of the
algorithm during each time period. The resource demand of
the algorithm depends on the size of the time window. This
size depends on a number predictor and application parame-
ters, but is on the order of dozens of seconds. Thus, we con-
clude that the OptAccUtilExpectation algorithm can run in
near-real-time with very little CPU demand.

6. EVALUATION

We now refer to the requirements set earlier in the paper
and discuss how our work has addressed those. Next, we
enumerate the engineering benefits of our work.

6.1 Addressing the Requirements

R1. Define a measure of accrued utility. We have intro-
duced a discrete time model and defined accrued utility as
the sum of instantaneous over the duration of the task. Ac-
crued utility represents user’s satisfaction with the running
state of the task over the entire duration, is backwards com-
patible to the reactive model of configuration and allows
comparisons between algorithms, satisfying this requirement.

R2. Express and combine prediction into the model. We
have formalized three representative predictors and defined a
predictor calculus. The linear recent history predictor is
grounded by resource prediction research and factors in un-
certainty of predictions. The other two predictor types are
motivated by other sources of available information.

R3. Design optimal and efficient algorithms for anticipa-
tory configuration. We have designed and experimented
with two anticipatory algorithms. OptAccUtilPerfect pro-
vides a benchmark for maximum possible accrued utility
when resource predictions are exact, while OptAccUtilEx-
pectation explicitly handles uncertainty in predictors. With
reasonable accuracy of predictors, we have demonstrated
that OptAccUtilExpectation nearly always performs better
than Reactive and the gain in utility is substantial.

We have also demonstrated that OptAccUtilExpectation
is fast and resource efficient, and can be used online on a
resource constrained platform.

6.2 Engineering Benefits

We have presented the design and partial implementation
of a self-adaptive system that leverages resource predictions
for user preference-driven application configuration and re-
source allocation. We argue that our solution addresses a
number of important engineering concerns: (1) combining
multiple sources of predictive information, (2) optimal deci-
sion making under uncertainty, and (3) runtime efficiency.

Our approach defines three predictor types and a calculus
for combining information from multiple sources into a sin-

gle generalized prediction. The model allows expressing
near and long term predictions about resource availability.
To the best of our knowledge, previous adaptive systems
have not considered multiple sources of information.

The second benefit of our approach is demonstration of
improved decision making under uncertainty. Presently,
many systems choose to ignore uncertainty: they operate by
waiting and then reacting. We have argued that when pre-
dictors are sufficiently accurate, system decision making can
be improved despite uncertainty.

Third, our approach addresses runtime efficiency, an im-
portant concern for self-adaptive systems. We have demon-
strated that the anticipatory configuration system can make
decisions on-line, while consuming very little resources.
The result holds even for resource constrained platforms,
making the approach usable in pervasive and mobile envi-
ronments.

6.3 Limitations

Our approach has limitations:

e while linear recent history predictors are empirically
grounded, the other two predictor types are merely plau-
sible. There are no studies that demonstrate the statistical
validity of relative move or bounding predictors,

e the results we have demonstrated are sensitive to the
choice of preference functions. In particular, for antici-
patory configuration to have an edge over the reactive
version, the penalty term in instantaneous utility must sat-
isfy certain bounds,

¢ we have not modeled resources with intertemporal substi-
tution such as battery. This is the subject of future work.

7. CONCLUSION

In this paper we have proposed to leverage research in
resource availability prediction to improve the decision mak-
ing of self-adaptive systems that allocate resources among
concurrent fidelity-aware applications. We have demon-
strated that anticipatory decision making based on predic-
tions of future resource availability improves over an earlier
implemented reactive configuration system, while being re-
source-efficient.

Our approach presents several engineering benefits, in-
cluding formal treatment of predictors and analysis of im-
proved utility as a function of predictor accuracy. We con-
jecture that other self-* systems (e.g., Rainbow [5]) can po-
tentially benefit from predictive information. This paper has
provided a blue-print for integrating predictive information
in such systems.

8. ACKNOWLEDGMENTS

This work was funded in part by the National Science
Foundation under grants CCR-0205266, CCF-0438929,
CNS-0613823, by DARPA grant N66001-99-2-8918, and by
ETRI Institute in Korea. Authors would like to thank pro-
fessors Anthony Brockwell and Mahadev Satyanarayanan of
Carnegie Mellon and Peter Dinda of Northwestern Univer-
sity for their help in this work.

9. References

[1] P. Dinda. Design, Implementation, and Performance of an Extensible
Toolkit for Resource Prediction In Distributed Systems. IEEE Trans-
actions on Parralel and Dist Syst (TPDS), 17:2, February 2006.

[2] R. Bent and P. Van Hentenryck. Regrets Only! Online Stochastic
Optimization under Time Constraints. Proc 19th National Conf on
Artificial Intelligence (AAAI), 2004.

[3] P. Dinda, D. O'Hallaron. Host Load Prediction Using Linear Models.
Cluster Computing, 3:4, 2000.

[4] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project
Aura: Towards Distraction-Free Pervasive Computing. IEEE Perva-
sive Computing, Volume 21, Number 2, April-June, 2002.

[5] D. Garlan, S. Cheng, et al. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. IEEE Computer, 37:10,
2004.

[6] P. Hentenryck, et al. Online Stochastic Optimization Under Time
Constraints. Working paper, last accessed in February 2007 at
http://www.cs.brown.edu/people/pvh/aor5.pdf.

[7] E. de Lara, D. S. Wallach, W. Zwaenepoel. Puppeteer: Component-
based Adaptation for Mobile Computing. Proc. USENIX Symp on
Internet Technologies and Systems (USITS), 2001.

[8] C. Lee. On Quality of Service Management. PhD Thesis, Carnegie
Mellon University Technical Report CMU-CS-99-165, 1999.

[9] D. Narayanan, J. Flinn, M. Satyanarayanan. Using History to Improve
Mobile Application Adaptation. Proc. 3rd IEEE Workshop on Mo-
bile Computing Systems and Applications (WMCSA), 2000.

[10]R. Neugebauer and D. McAuley. Congestion Prices as Feedback
Signals: An Approach to QoS Management. Proc. ACM SIGOPS
European Workshop, 2000.

[11]B. Noble, et al. Agile Application-Aware Adaptation for Mobility.
Proc. ACM Symp on Operating Systems Principles (SOSP), 1997.

[12] V. Poladian, et al. Dynamic Configuration of Resource-Aware Ser-
vices. Proc IEEE Intl Conf on Software Engineering (ICSE), 2004.

[13]Y. Qiao, J. Skicewicz, P. Dinda. An Empirical Study of the Multis-
cale Predictability of Network Traffic. Proc Intl Symp on High Perf
Dist Computing (HPDC), 2004.

[14] A. Sang and S. Li. Predictability analysis of network traffic. Proc. of
INFOCOM, 2000.

[15]J.P. Sousa, D. Garlan. The Aura Software Architecture: an Infrastruc-
ture for Ubiquitous Computing. Carnegie Mellon Technical Report,
CMU-CS-03-183, 2003.

[16]R. Wolski, et al. The network weather service: A distributed resource
performance forecasting system. J. of Future Generation Computing
Systems, 1999.

[17]R. Wolski, et al. Predicting the CPU availability of time-shared Unix
systems. Proc Intl Symp High Perf Dist Computing (HPDC), 1999.

10. APPENDIX A

In this appendix we reproduce the formal definition of
instantaneous utility originally published in [12]. The text is
copied nearly verbatim.

10.1.1 QoS Preferences

QoS preferences specify the utility function associated
with each QoS dimension. The names of the QoS dimensions
are also part of the shared vocabulary. The utility of service
svc as a function of the quality of service is given by:

[%

de QoS dim(svc)

UQos (sve) =

where for each QoS dimension d of service svc,
F, :dom (d)— (0,11 is a function that takes a value in the

domain of d, and the weight ¢, [0,1] reflects how much the
user cares about QoS dimension d. As an example, video
playing has a QoS dimension of frame update rate. The
function Fjamerae gives utility for various frame rates, and
Cframerare SPECifies the weight of frame rate.

Weighted product specifies an “AND” semantics when
combining QoS dimensions. A utility value of zero in one
dimension indicates that the user is not interested in the con-
figuration even if the quality of other dimensions is high.

10.1.2 Supplier Preferences And Switching Pen-
alty

To evaluate the assignment of specific suppliers, we em-
ploy a supplier preference function, which is a discreet func-
tion that assigns a score to a supplier, based on its type.
Also, we account for the cost of switching from one supplier
to another at run time.

Precisely, the utility of the supplier assignment for a set a
of requested services is:

USupp (a) = Hh:if: ’ F;(;SLH
sveea
where for each service svc in the set a, Fy,. . Supp(svc) ->
(0,1] is a function that appraises the choice of a supplier for
service svc; and the weight c,,.€[0,1] reflects how much the
user cares about the supplier assignment for that service.

The term h:ti“ above (10.1.2) expresses a change pen-

alty as follows:v h,,. indicates the user’s tolerance for a
change in supplier assignment: a value close to 1 means that
the user is fine with a change, the closer the value is to zero,
the less happy the user will be. The exponent x;,. indicates
whether the change penalty should be considered (x,.=1 if
the supplier for s is being exchanged by virtue of dynamic
change in the environment) or not (x,,=0 if the supplier is

being newly added or replaced at the user’s request).

10.1.3 Instantaneous Utility

Overall utility is the product of the QoS preference, sup-
plier preference, and change penalty. Let a’ be the previous
assignment of suppliers and a be the current. Then the in-
stantaneous utility is:

sve

Wa)=]ns Fo| [Fs

svcea de QoS dim(svc)

10

