
Raindroid – A System for Run-time Mitigation of Android
Intent Vulnerabilities

[Poster]

Bradley Schmerl* Jeffrey Gennari† Javier Cámara* David Garlan*

*{schmerrl,jcmoreno,garlan}@cs.cmu.edu †jsg@sei.cmu.edu
Institute for Software Research Software Engineering Institute

Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213

ABSTRACT
Modern frameworks are required to be extendable as well
as secure. However, these two qualities are often at odds.
In this poster we describe an approach that uses a combi-
nation of static analysis and run-time management, based
on software architecture models, that can improve security
while maintaining framework extendability. We implement
a prototype of the approach for the Android platform. Static
analysis identifies the architecture and communication pat-
terns among the collection of apps on an Android device
and which communications might be vulnerable to attack.
Run-time mechanisms monitor these potentially vulnerable
communication patterns, and adapt the system to either
deny them, request explicit approval from the user, or al-
low them.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: domain-specific archi-
tectures; D.4.6 [Security and Protection]: Information
flow controls, invasive software

General Terms
Security, Design

Keywords
software architecture, security, self-adaptation

1. INTRODUCTION
Software frameworks are used ubiquitously in modern ap-

plications, in the commercial sector and increasingly in the
defense sector as well, because they offer a unique means for
achieving composition and reuse at scale. Achieving security
in framework-based applications, however, can be challeng-
ing because of the close coupling between a framework and

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).
HotSoS’16 Pittsburh, PA, USA
Copyright 2016 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

its plugins: Plugin developers must understand and obey the
constraints in the framework’s security model, which can be
quite complex, in order to achieve security of the resulting
application.

There is an inherent trade-off between constraining what
plugins can do within a framework to achieve goals such
as security, and being open to allow a more diverse ecosys-
tem. The mobile device arena is an interesting case in point.
The Android framework provides flexibility of communica-
tion between apps (plugins that use the Android framework)
that allows other apps to provide alternative core function-
ality (such as browsing, SMS, or email) or to tailor other
parts of the user experience. However, this flexibility also
means malicious apps can be written that take advantage of
this flexibility.

Android uses an event style that allows flexible commu-
nication between apps, where events are called intents. An
intent can be explicitly sent to a known app, or implicitly
sent to any app that may be interested in it. While intents
provide a great deal of flexibility, they are also the source of
a number of security vulnerabilities such as intent spoofing,
privilege escalation, and unauthorized intent receipt [5]. To
some degree, these vulnerabilities can be uncovered by ana-
lyzing apps and performing static analysis to see how intents
are used, what checks are made on senders and receivers of
intents, and so on [13]. However, Android is an extendable
platform that allows users to dynamically download, update,
and delete apps that makes a full static analysis impossible.
Furthermore, static analysis can detect vulnerabilities, but
not actual exploits (which happen at run time), meaning
that false positives could lead to lower flexibility of the An-
droid device, for example by restricting all communication
between apps to mitigate the vulnerability. Therefore, a
combination of static analysis and dynamic adaptation could
help to provide the benefits of security while still allowing
for such flexibility and extendability.

In this poster, we illustrate an approach that combines in-
formation from static analysis with run-time monitoring and
mitigation. In a previous poster [14] we described the def-
inition of an architecture style for analyzing security prop-
erties in Android. In this poster, we build on this work
and describe a prototype for Raindroid, a run-time adap-
tation service for Android that leverages previous work on
architecture-based self-adaptation and static analysis of An-
droid security vulnerabilities.

Android App
Architectural Model

Android App
Processor

Android App
Architectural ModelAndroid App

Architectural ModelAndroid App
Architectural Model

Android Device
Architectural Model

Android
App
Analyzer

Android
App
Analyzer

Android
Security
Analyzer

Android Device
Architectural Model
+ Vulnerability Model

Self-Adaptation
Configurator

Self-Adaptation
Controller

Android Device

Static Analysis

R
u

n
tim

e A
d

ap
tatio

n

1

2

3

4

5

Monitors Mitigations

Figure 1: Combining Static Security Analysis with
Runtime Adaptation

2. APPROACH
Our approach comprises both static analysis elements and

run-time adaptation elements, and is depicted in Figure 1.
An Android App Package (containing the manifest1 for the
application, and the byte code) is processed to produce an
architectural model (1). This can be done in a variety of
ways, including those described in [1] or [13]. The result is
an architectural model of the app, which specifies the run-
time configuration of the components comprising the app
and their connections.

Security vulnerabilities in Android often occur through
the interaction of apps, however, and so this model needs
to be combined with models of other apps on the device
to produce an Android Device Architectural Model (2).
This model can then be analyzed for security vulnerabilities
using a number of techniques, such as architectural data flow
analysis [8, 15] and model checking [13] (3). The output
from this analysis is a set of locations and behaviors in the
model that are potential vulnerabilities.

This information is passed to a Self-Adaptation Configu-
rator that decides how to monitor the apps, conditions that
indicate how to detect that a vulnerability is being exploited,
and mitigations to prevent, secure, or advise users about po-
tentially dangerous interaction (4). These steps, 1 - 4 , can
be done statically before an app is installed on a device.

The information (as well as the architectural model) is
used by a Self- Adaptation Controller (5) that uses the
monitors to detect at run time security problems and de-
cide mitigations to perform. This controller is based on the
Rainbow architecture-based self-adaptation framework that
we have successfully used in a variety of areas [9, 2].

3. ANDROID ARCHITECTURE STYLE
A key step in this approach is to create a formal archi-

tectural model of the Android framework in order to have
a basis for modeling the structures and constraints in An-
droid, and to permit analysis of security vulnerabilities and
exploits. To do this, we have developed an architectural
style in Acme [7], that represents intent interactions and
permissions in Android. An example of an architectural
model for a simple PhotoStream app is shown in Figure 2.

1The manifest describes the classes for the app, the permis-
sions, the allowed communications and permissions

Figure 2: PhotoStream App Model in Acme

The style represents explicit intents as direct connections be-
tween Android components, separating them from implicit
intents that are communicated through the intent bus.

Components in an app are grouped together so that per-
mission usage within the app can be checked by static analy-
sis (e.g., components of an app can only use the permissions
granted to the app) and verified dynamically. Other apps
on a device are represented in their own groups, also con-
nected to the intent bus. Modeling apps, permissions, and
intents in this way allows us to write constraints that check
for privilege escalation and other data flow vulnerabilities in
the model. The model can be used to capture information
from static analysis of apps, and is also used for run-time
monitoring. For example, if static analysis detects a poten-
tial vulnerability in the intent to use the photo resources sent
by the PhotoStreamActivity in Figure 2, run-time monitors
can be placed in that activity to check that photos are sent
only to applications that have the appropriate permissions.

4. RAINBOW FOR SELF-ADAPTATION
In prior work, we have shown that architectural models

work well for reasoning about (a) whether a run-time sys-
tem is exhibiting its designed quality attributes and (b) the
best adaptations to perform on the system that trade-off
among the different quality attributes when those quality
attributes are not being met. These notions for run-time
adaptation are embodied in a framework called Rainbow
[6, 3]. The Rainbow framework uses software architectures
and a reusable infrastructure to support self-adaptation of
software systems. Figure 3 shows the adaptation control
loop of Rainbow. Probes are used to extract parameters
from the target system that update the model via Gauges,
which abstract and aggregate low-level information to detect
architecture- relevant events and properties. The architec-
ture evaluator checks for satisfaction of constraints in the
model and triggers adaptation if any violation is found, i.e.,
an adaptation condition is satisfied. The adaptation man-
ager, on receiving the adaptation trigger, chooses the “best”
strategy to execute, and passes it on to the strategy execu-
tor, which executes the strategy on the target system via
effectors.

The best strategy is chosen on the basis of stakeholder
utility preferences and the current state of the system, as

Model
Analyzer
Model

Analyzer

System
Layer

Target System

Translation
Infrastructure

System API
Probes

Resource
DiscoveryEffectors

Models Manager

Gauges

Model
Analyzer

Adaptation
Manager

Strategy
Executor

Adaptation Layer

Figure 3: Rainbow Self-Adaptation Framework

reflected in the architecture model. The underlying decision
making model is based on decision theory and utility; vary-
ing the utility preferences allows the adaptation engineer to
affect which strategy is selected. Each strategy, which is
written using the Stitch adaptation language [4], is a multi-
step pattern of adaptations in which each step evaluates a
set of condition-action pairs and executes an action, namely
a tactic, on the target system with variable execution time.
A tactic defines an action, packaged as a sequence of com-
mands (operators). It specifies conditions of applicability,
expected effect and cost-benefit attributes to relate its im-
pact on the quality dimensions. Operators are basic com-
mands provided by the target system.

As a framework, Rainbow can be customized to support
self-adaptation for a wide variety of system types. Cus-
tomization points are indicated by the cut- outs on the side
of the architecture layer in Figure 3. Different architectures
(and architectural styles), strategies, utilities, operators, and
constraints on the system may all be changed to make Rain-
bow reusable in a variety of situations.

5. RAINDROID
Rainbow provides a bridge between static analysis and

run-time monitoring and adaptation of the Android plat-
form. However, there are a number of challenges that need
to be addressed so that it can be employed in the Android
context. Firstly, we need a method to extract information
from Android devices and to affect the behavior of them that
Rainbow can integrate with. This method needs to leave the
byte code of the application untouched (so that app check-
sums remain unchanged and so the standard play store can
be used). Second, the static analysis required to check for
vulnerabilities is not able to run on the Android platform; it
uses model checking via Alloy[10] that requires resources be-
yond most Android platforms. We therefore need to devise
a method to connect the Android probes and effectors that
we do develop to a remote server that runs the COVERT
analysis and Rainbow decision-making. Third, Rainbow was
primarily designed as a reactive self-adaptive system that
runs independent of the target system. For security pur-
poses, Rainbow needs to be preemptive, quickly detecting
potentially bad situations and stopping them if necessary.
Finally, because of the need for running the analysis and
decision-making on a remote host, we need a method of self-
adaptation that works in disconnected mode (i.e., when the
Android device is not connected to the network, or the server
is otherwise unreachable)[11].

To address these challenges we are in the process of de-
veloping Raindroid, a service on Android that connects An-

droid to Rainbow. Raindroid consists of two components:

• An Android application that provides a service to con-
nect to Rainbow. Currently, Raindroid is targeted to
the scenario of Android intents (as described above).
Information gathered from apps in Android is sent via
this service to Rainbow. For example, events such as
apps starting or sending intents are sent to Raindroid.
These events are sent to Rainbow for further analy-
sis. Rainbow effects changes on the Android device by
communicating to Raindroid the allowed communica-
tion paths (those that have been determined safe), and
postures that describe how to handle other (suspicious)
intents. Postures are coarse-grained policies describing
what should be done when particular events occur. We
currently have implemented three postures related to
intents: prevent the intent from being sent, ask the
user of the device to approve, and continue the intent
sending as normal. Rainbow decides the best posture
based on the set of active apps. For example, if a bank-
ing app has been opened, Raindroid will automatically
prevent any non-approved intents from being sent.

• An Xposed module that instruments each Android ap-
plication. The module sends events to Raindroid, and
affects the behavior of intent sending APIs in Android.
Xposed2 is a framework that runs on rooted Android
devices, and modifies the Android kernel to allow third
party plugins to weave their own code into the Android
application. Xposed modules indicate the Java meth-
ods they wish to affect. Currently we intercept the
application start-up methods to report when an app is
started, and methods that send intent (e.g., startAc-
tivity). For the latter, we use this to report the intent
being sent to the Raindroid Service, and to process the
posture that is sent to it from Rainbow.

The challenges of disconnected operation and preemption
are addressed through the notion of postures that are de-
scribed above. Raindroid acts as a proxy to Rainbow, mak-
ing quick decisions and preventing or allowing behavior that
Rainbow has previously analyzed. If the Android device be-
comes disconnected from Rainbow, the posture implementa-
tion is still executed because it runs locally on the Android
device. Similarly, because Raindroid runs on the Android
device and uses Xposed to change method behaviors, it can
run synchronously with the Android application to prevent
or accept certain behaviors. For example, the way that we
change the behavior of the startActivity method of Android
for sending intents is to add the following steps:

1. Report the intent to Raindroid;

2. Wait for the posture to be sent;

3. Implement the posture to prevent the intent from be-
ing sent, open a screen to get approval from the user,
or send the intent as originally intended.

The decision about which posture to invoke is done quickly
(without connection to Rainbow, but based on prior Rain-
bow analysis) and so can be done synchronously with the
Android app.

2http://repo.xposed.info/

5.1 Integration with Rainbow
On the Rainbow side, gauges listen for events from Rain-

bow and process them in the following ways:

Device connection. When a device first connects to Rain-
bow, Raindroid communicates the list of all installed
apps. A gauge then looks up the Acme architecture
model for the app and loads this into Rainbow. If
the architecture model is not found, it generates the
architecture model from the APK for the app using
an Acme converter that takes the graph generated by
COVERT and translates it into Acme.

App start/stop. The model is updated to indicate whether
the app is active or inactive on the device, and is used
to help determine the posture that should be sent.

Intent sent/received. This information is used to update
the communication paths in the model, and to de-
tect whether vulnerable or unanalyzed paths are being
used. This also helps to decide the posture to be sent
back to Raindroid.

Once the architecture model of the device is loaded into
Rainbow it is then analyzed using COVERT to determine
intents that represent a vulnerability. The list of intents
that are not determined vulnerable are sent to Rainbow,
along with the posture, so that Raindroid has a list of valid
intents and knowledge about what to do if an unknown or
vulnerable intent is detected.

6. EXAMPLE
We demonstrate Raindroid in a scenario that involves dy-

namic code loading. Android apps may dynamically load
code from another site or file on the device, and then through
Java reflection call this new code. Because the code is dy-
namically loaded, it thwarts any static analysis that might
be done. There are a number of reasons that apps use dy-
namic code loading: for example, if apps use third-party
frameworks, these frameworks can provide updates through
dynamic code loading independent of the play store; many
frameworks use dynamic code loading to download and dis-
play advertisements. Work described in [12] shows that An-
droid does not enforce appropriate checks when apps use
external code, and that developers often are not aware of
the risks and do not add their own checking mechanisms.
Thus, this is a significant source of vulnerability in Android.

The Raindroid demonstration involves a custom app that
we developed that loads a piece of code dynamically. This
code accesses the Contacts on an Android device and emails
this information to a third party (the email is sent by sending
an intent to the email app). Static analysis of the original
app does not indicate that this intent is being sent, and so
it is not sent to Raindroid as a member of the allowable set
of intents. When Raindroid detects that the intent is being
sent (and that it is not known), it (a) sends this information
to Rainbow and (b) sends back the appropriate disposition
of the intent based on the posture.

Acknowledgments
This work is supported in part by the National Security
Agency. The views and conclusions contained herein are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the National Security Agency or the U.S. government.

7. REFERENCES
[1] M. Abi-Antoun, S. Chandrashekar, R. Vanciu, and

A. Giang. Are object graphs extracted using abstract
interpretation significantly different from the code? In
SCAM 2014, 2014.

[2] J. Cámara, P. Correia, R. de Lemos, D. Garlan,
P. Gomes, B. Schmerl, and R. Ventura. Evolving an
adaptive industrial software system to use
architecture-based self-adaptation. In SEAMS’13,
2013.

[3] S.-W. Cheng. Rainbow: Cost-Effective Software
Architecture-Based Self-Adaptation. PhD thesis,
Carnegie Mellon University, May 2008. Institute for
Software Research Technical Report CMU-ISR-08-113.

[4] S.-W. Cheng and D. Garlan. Stitch: A language for
architecture-based self-adaptation. Journal of Systems
and Software, Special Issue on State of the Art in
Self-Adaptive Systems, 85(12), December 2012.

[5] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In MobiSys ’11, 2011.

[6] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based self
adaptation with reusable infrastructure. IEEE
Computer, 37(10), October 2004.

[7] D. Garlan, R. T. Monroe, and D. Wile. Acme:
Architectural description of component-based systems.
In Foundations of Component-Based Systems. 2000.

[8] D. Garlan and B. Schmerl. Architecture-driven
modelling and analysis. In Proceedings of the 11th
Australian Workshop on Safety Related Programmable
Systems (SCS’06), 2006.

[9] D. Garlan, B. Schmerl, and S.-W. Cheng. Software
architecture-based self-adaptation. In Autonomic
Computing and Networking. Springer, 2009.

[10] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, 2006.

[11] G. A. Lewis and P. Lago. A catalog of architectural
tactics for cyber-foraging. In Proceedings of the 11th
International ACM SIGSOFT Conference on Quality
of Software Architectures, QoSA ’15, pages 53–62,
New York, NY, USA, 2015. ACM.

[12] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel,
and G. Vigna. Execute This! Analyzing Unsafe and
Malicious Dynamic Code Loading in Android
Applications. In Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS), San
Diego, CA, 2014.

[13] A. Sadeghi, H. Bagheri, and S. Malek. Analysis of
android inter-app security vulnerabilities using
COVERT. In ICSE 2015, 2015.

[14] B. Schmerl, J. Gennari, and D. Garlan. An
architecture style for android security analysis: Poster.
In Proceedings of the 2015 Symposium and Bootcamp
on the Science of Security, HotSoS ’15, pages
15:1–15:2, New York, NY, USA, 2015. ACM.

[15] R. Vanciu and M. Abi-Antoun. Ownership object
graphs with dataflow edges. In 20th Working
Conference on Reverse Engineering (WCRE), 2013.

