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ABSTRACT

Virtually all software systems of significant size and longevity
eventually undergo changes to their basic architectural struc-
ture. Such changes may be prompted by new feature requests,
new quality attribute requirements, changing technology, or
other reasons. Whatever the cause, software architecture
evolution is commonplace in real-world software projects.
However, research in this area has suffered from problems of
validation; previous work has tended to make heavy use of
toy examples and hypothetical scenarios and has not been
well supported by real-world examples. To help address this
problem, this paper presents a case study of an ongoing effort
at the Jet Propulsion Laboratory to rearchitect the Advanced
Multimission Operations System used to operate NASA’s
deep-space and astrophysics missions. Based on examination
of project documents and interviews with project personnel,
I describe the goals and approach of this evolution effort,
then demonstrate how approaches and formal methods from
previous research in architecture evolution may be applied
to this evolution while using languages and tools already in
place at the Jet Propulsion Laboratory.
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1. INTRODUCTION

Software architecture is today widely accepted as an essen-
tial means of designing software systems effectively. However,
one topic that existing approaches to software architecture
do not address well is software architecture evolution. Soft-
ware architecture evolution is a phenomenon that occurs in
virtually all software systems of significant size and longevity.
As a software system ages, it often needs to be structurally
redesigned to support new features, incorporate new technolo-
gies, adapt to changing market conditions, or meet new ar-
chitectural quality requirements. In addition, many systems
over the years tend to accrue a patchwork of architectural
workarounds, makeshift adapters, and other degradations
in architectural quality, requiring some sort of architectural
overhaul to address.

At present, however, software architects have few tools
to help them plan and carry out these kinds of architecture
evolution. Currently, such evolution is usually planned and
carried out ad hoc, with only informal planning. However,
informal planning has limitations, and large-scale software
evolutions are complicated by numerous uncertainties and
conflicting concerns that make such planning difficult. Many
of today’s large-scale software evolutions are plagued by
unnecessary backtracking, rollbacks, and other symptoms of
inadequate or inaccurate planning. Some of these problems
might be alleviated if software architects had better guidance
when planning evolutions, in the form of tools and models
for architecture evolution planning.

While there is a sizeable body of research literature on
software maintenance and evolution generally, little work has
been devoted to this common problem of architecture evolu-
tion. In previous work [13], we sought to address this gap.
There, we discussed the phenomenon of software architecture
evolution and presented a model to support architects in
planning such evolutions. Our approach is based on captur-
ing architectural expertise about classes of evolutions and
developing tools to facilitate reuse of this expertise.

One significant obstacle in our research thus far, as well as
that of other researchers working in the area, has been the
challenge of validation. Though we have made considerable
headway in developing a theory of architecture evolution,
finding real-world cases on which to test our model has been
a challenge. Most work in this area has been based on toy
examples and artificial evolutions in laboratory conditions.

This paper presents the result of a collaboration between
Carnegie Mellon University and NASA’s Jet Propulsion Lab-



oratory (JPL) with the aim of understanding the software
architecture evolution that occurs at JPL and assessing the
degree to which our approach to architecture evolution can
be helpful in understanding real-world evolution problems.

The main goals of this work were to (1) understand a
real-world software architecture evolution problem in its nat-
ural context, (2) assess the usefulness of our framework for
software architecture evolution in helping to plan evolutions
and reason about trade-offs, and (3) assess the ease of im-
plementing our approach to software architecture evolution
with off-the-shelf languages and tools. Section 6 will revisit
these goals.

The rest of the paper is organized as follows. Section 2
describes our approach to software architecture evolution
in greater detail. Section 3 describes the design of this
case study. Section 4 begins with a detailed description of
the evolution examined by this case study and goes on to
describe how our approach to architecture evolution was
applied to this case. Section 5 surveys related empirical
research in architecture evolution. Section 6 discusses the
broader conclusions that may be drawn from this case study
and the research contribution that the case study makes.

2. BACKGROUND

2.1 Software Architecture

Software architecture is the subdiscipline of software engi-
neering that pertains to the overall structure of a software
system. Software architects represent software systems in
terms of the high-level elements from which they are made.
The most important kinds of architectural elements are com-
ponents (the computational elements and data stores of a
system) and connectors (interaction pathways among com-
ponents) [5]. At a basic level, a software architecture can
be thought of as an arrangement of components and connec-
tors. In practice, architectural descriptions may be made
more complex by the addition of other kinds of architec-
tural elements, the annotation of architectural elements with
properties to facilitate analysis, and other intricacies.

2.2 Software Architecture Evolution

The problem of understanding software architecture evo-
lution is just beginning to be explored. In previous work,
we developed an approach for understanding and modeling
software architecture evolution, supported by automatable
formal methods [13]. This section provides a brief summary
of this approach; for further details, see the previous paper.

We assume that there is a known start state (the current
state of the architecture) and a known end state (the goal
of the evolution). In practice, this assumption may not
hold. However, other research areas address the problems
of determining the architecture of an existing system and
designing an architecture for a future system (architecture
reconstruction and architectural design, respectively), so we
do not address them. Instead, we are concerned with how to
get from the current state to the target state.

We start by contemplating the set of potential interme-
diate states between the initial architecture and the target
architecture—the transitional states that the system may
assume as it evolves from its initial form to its target architec-
ture. We represent all the intermediate states, together with
the initial and target states, as nodes in a directed graph.
We then draw an edge from node a to node b if there is an

evolutionary transition from state a to state b. In addition,
we allow nodes and edges to be annotated with an extensible
set of architectural properties that further characterize the
evolution. These properties support analysis of the evolution.

This conceptual setup is fairly simple, but it accomplishes
a few things. First, it allows us to see the different ways that
a system can evolve. In particular, it allows us to consider
the set of possible evolution paths—complete routes from
the initial state to the target state—and consider trade-offs
among them. We can also visualize things like release points
and milestones by demarcating them with node properties.

This setup is also amenable to various kinds of analysis.
One of the simplest such analyses is the analysis of which
evolution paths are possible or legal. One of the basic ele-
ments of our model of architecture evolution, therefore, is
the notion of a path constraint, an analysis indicating which
paths are legal with respect to some rule about the evolution
domain. Formally, a path constraint is a predicate over evo-
lution paths; for each path, a constraint either allows it or
forbids it. An example of a constraint is: “Once a component
is migrated to a data center, it must remain there for the
rest of the evolution.” For any given evolution path, this
constraint will either hold or fail to hold. Another important
class of analyses is path evaluation functions. While a path
constraint provides a judgment about the legality of a path,
a path evaluation function instead provides an assessment of
the quality of a path, for example by estimating its duration
or cost. Evaluation functions can be used to support selec-
tion of ideal paths (i.e., paths that are optimal with respect
to the qualities important to the evolution at hand).

These concepts are fairly simple, but there is a substantial
formal framework supporting them. To formalize path con-
straints, for example, we have developed a formal language
based on linear temporal logic. The use of formal methods
has several advantages, the most important of which are pre-
cision (by using a formal approach, we minimize ambiguity,
which helps to pin down what project stakeholders mean
when they talk about the project) and automation (a formal
approach allows us to develop tools to make it easier to plan
and analyze the evolution).

3. CASE STUDY DESIGN

A case study is a particularly suitable methodology for
studying software architecture evolution. In general, the
primary use of a case study is that it provides a way of
studying a phenomenon in its real-world context. Case stud-
ies are most useful in domains where more robust empirical
methods are impractical. Software architecture evolution
is such a domain; instances of industrial-scale architecture
evolution often take months or years to complete and entail
the expenditure of substantial resources, making controlled
experiments infeasible.

Of course, case studies have significant drawbacks and
limitations as well. In particular, it is more difficult to
generalize the results of a case study than of a study based
on quantitative methods. Section 6 will discuss the issue of
generalizability with respect to this case study.

3.1 Research Questions

The case study was intended to address questions such as:

1. How common is software architecture evolution in a
real-world software organization?



2. How do practicing software architects think about and
deal with the realities of architecture evolution?

3. Do practicing software architects recognize architecture
evolution as a problem?

4. What tools do software architects use to deal with
architecture evolution? Do they find them adequate?

5. Can the approach to architecture evolution that we
have developed in our research help architects to plan
evolution?

6. How easily can our approach be put into practice?

3.2 Subject Selection

A number of factors made JPL a particularly suitable
environment for exploring these questions. First, JPL is a
much older organization than some other kinds of software
organizations one might study (e.g., Internet companies or
open-source projects) and has some very old software sys-
tems, making it a potentially rich vein to mine for evolution
instances. NASA missions can last decades, and software
systems must evolve to support them continuously. Of course,
NASA is by no means unique in having to maintain very
old software systems—similar problems are commonplace in
industries such as telecommunications and banking—but the
longevity and complexity of JPL’s software systems, along
with the accessibility of information on them, made JPL a
suitable venue for exploring software architecture evolution
in practice.

In addition, based on preliminary discussion with JPL
personnel, we were aware of a major, ongoing architecture
evolution that seemed likely to provide a suitable case: the
evolution of the Advanced Multimission Operations System
(AMMOS), the ground software system used for JPL’s deep-
space and astrophysics missions [16]. Section 4 will discuss
this evolution in detail.

Finally, there were pragmatic considerations. Industrial
case studies are often subject to onerous confidentiality agree-
ments that impose serious restrictions on the information
that researchers can share. JPL, by contrast, is a govern-
ment laboratory operated by a university and so is generally
friendly to dissemination of research.

3.3 Case Study Structure

In this case study, I spent ten weeks in the ground systems
engineering section at JPL. The case study proceeded in two
phases.

During the first few weeks, the focus was gathering informa-
tion. I spent most of this phase reviewing project documents
and speaking with personnel to familiarize myself with the
elements of AMMOS and the plan for evolving them. This
phase was descriptive and exploratory in character; the main
goal was to understand the context of architecture evolution
at JPL and learn how engineers think about and deal with
architecture evolution. The first phase chiefly addressed re-
search questions 1-4 from the list above. A secondary goal
was to prepare for the second phase of the case study by
selecting a specific evolution to study.

In the second phase of the case study, I applied our archi-
tecture evolution research to model the selected evolution.
This phase was evaluative in character; the goal was to assess
how easily and how usefully our approach could be applied
in a real-world setting. It addressed research questions 5-6.

3.4 Case Selection

During the first phase of the case study, an number of spe-
cific evolution instances were under consideration for detailed
study in phase 2. I worked with my project contacts at JPL
to select the most appropriate choice. Among the options
were past evolutions (those that had been finished and whose
outcome was known); current evolutions (those which were
ongoing); and future evolutions (those under consideration
for the future). We ultimately selected an evolution that was
in progress. Picking a current evolution had the advantage
of being of greatest relevance to JPL. Another advantage
was that there were ample resources for learning about the
evolution; it was easy to find project personnel who could
share accurate, timely information about evolution plans.
If we had selected a past evolution, documentation would
have been harder to find, and few personnel would have
been familiar enough with the evolution to provide useful
information. If we had selected a future evolution for which
few firm plans had been made, we would have had to engage
in substantial speculation to construct an evolution graph.

Another important choice was the scope of the evolution, in
terms of both time (i.e., a long evolution versus a short one)
and breadth (i.e., the evolution of a small subsystem versus
the evolution of a large chunk of AMMOS). The evolution
we selected was relatively small in both dimensions; that is,
the second phase of the case study focused on a modestly
sized subsystem of AMMOS and modeled evolution plans
only a couple of years into the future. Though we could have
picked a larger scope, time constraints would have made it
difficult to gather sufficient information to produce a useful
model—one that was more than a superficial overview. A
more narrowly scoped example than the one we selected, on
the other hand, would have shown changes too minor to be
interesting.

The specific evolution instance we selected had several
other advantages. First, it had an explicit initial software
architecture, and the target architecture was also fairly well
understood. Second, it presented interesting trade-offs and
questions that might be usefully addressed by architecture
evolution analysis. Third, I had good access to staff who
were familiar with the system and the evolution, who could
provide architectural information beyond that available in
documentation.

4. RESULTS

4.1 Case Description

One reason that software evolution happens often at JPL
is that not only must software support long missions, but
also software often must support many different missions.
Each JPL mission has plenty of custom software written for
it, but most missions also make use of multimission software—
software shared among several missions. JPL takes a sort of
product line approach to multimission software; it develops
software for multimission use, then adapts it for each mission.
As new missions make use of a multimission platform, the
platform must evolve to support the new capabilities and
qualities that the new missions require. Over a long period
of time, a multimission system can change drastically, ulti-
mately to the point where it bears little resemblance to its
ancestral form.

The best example of such a multimission system at JPL,
and the one examined in the case study, is the Advanced



Multimission Operations System (AMMOS). AMMOS is
the ground software system used for JPL’s deep-space and
astrophysics missions [16]. It was developed beginning in
1985, with the goal of providing a common platform to allow
mission operators to manage ground systems at lower cost
than would be possible by building mission-specific tools,
without compromising reliability or performance [14]. The
system has been used for many prominent NASA missions
and continues to be used today.

Architecturally, AMMOS is a system of systems; though
it functions as a coherent whole with a unified purpose, it is
composed of disparate elements, each with its own engineers,
users, and architectural style. Among the systems making up
AMMOS are elements responsible for uplink and downlink
of spacecraft telemetry, for planning command sequences, for
processing spacecraft telemetry, for navigation, and so on
[16].

AMMOS has served JPL well for many missions, but it is
an aging system, and its architectural limitations are becom-
ing apparent [23]. The architecture is resistant to evolution
and expensive to maintain. The current system suffers from
architectural inconsistencies and redundancies and lacks a co-
herent overarching architecture. Requirements changes often
necessitate modifications that span many subsystems, and
the system relies on large amounts of “glue” code—adapters
and bridges connecting different parts of the system in an
ad hoc way that makes maintenance difficult.

Now, ongoing architecture modernization efforts aim to
address these quality problems by rearchitecting AMMOS
in a way that makes use of modern architectural styles and
patterns [23, 27]. This will allow easier, less expensive main-
tenance and evolution of AMMOS in the future and also
facilitate easier customization of AMMOS for individual
missions. The goal is to develop a modern deep-space infor-
mation systems architecture that supports the qualities of
composability, interoperability, and architectural consistency.

4.2 Evolution Details

The second phase of the case study focused specifically
on the AMMOS element responsible for mission control,
data management and accountability, and spacecraft analysis
(MDAS). The MDAS element has a number of responsibili-
ties, but one of the most important is to process, store, and
display telemetry and other mission data from deep-space
operations. Prior to the Mars Science Laboratory (MSL)
mission, this responsibility was fulfilled by an assortment of
different subsystems: the Data Monitor and Display assem-
bly; the Tracking, Telemetry, and Command system; and
a number of others [17]. For the MSL mission, a new sys-
tem was developed to supplant this complex of systems: the
Mission Data Processing and Control System (MPCS).

MPCS was originally developed as a testing platform mod-
eled after the ground data systems for the Mars Exploration
Rovers; later it was promoted to support operations for MSL
[8]. Engineers are now adapting and refining the architecture
of MPCS for multimission use.

MPCS has an event-driven message bus architecture. All
the major components of the system communicate via a
Java Message Service message bus [8]. This promotes loose
coupling of software components without compromising relia-
bility. Components can attach to or detach from the message
bus freely (by subscribing to or publishing the appropriate
kind of event), provided that they adhere to application

protocols and do not violate architectural constraints, allow-
ing for plug-and-play reconfiguration of the system. The
components are Java-based and platform-independent; the
interfaces by which they communicate are based on XML.

This event-driven, bus-mediated architecture gives MPCS
architectural flexibility. There is not really any one “MPCS
architecture;” rather, MPCS can be configured in different
ways to achieve different goals. At its most flexible, MPCS is
a loose confederation of tools rather than a cohesive system
with a fixed design. However, MPCS does have a rather
stable infrastructure of core components that are usually
connected in a well-defined way, so we can generally treat
MPCS as a system with a stable platform and fixed variation
points.

An important example of the architectural variability
of MPCS is that it is deployed with different configura-
tions in different environments. MPCS is used in several
environments—not only mission operations, but also flight
software development; system integration; and assembly, test,
and launch operations (ATLO)—and there are significant
differences in architectural configuration among them [8].
For flight software development, for example, MPCS can be
used to issue commands to the flight software under develop-
ment; in operations, commanding features are delegated to a
different system called CMD, which is external to AMMOS.

The most important components of MPCS are:

e The aforementioned message bus.

e The telemetry processing subsystem of MPCS, called
chill down (chill is a code name for MPCS [29], and
down is for downlink). This component takes as in-
put an unprocessed telemetry stream from a spacecraft
(or other telemetry source, such as a simulation envi-
ronment), performs frame synchronization and packet
extraction, and processes packets to produce event ver-
ification records and data products [2].

e The commanding component of MPCS, called chill_
up (up for uplink) [7, 9]. This component transmits
commands to the flight software (or simulation envi-
ronment). Currently chill_up is used only in the flight
software development and ATLO environments, not in
operations.

e The MPCS database, a MySQL database used for
storing telemetry and other information, such as logs
and commanding data [9]. This database is queried by
a number of analysis components.

e The monitoring interface, chill_ monitor, used for real-
time display of telemetry [7, 9]. There are generally
many instances of chill monitor for one MPCS instance,
as many mission operators may be monitoring telemetry
at once.

e Various MPCS query components with names like
chill_get_frames and chill_get_packets, which output
data from the database in a standard format [9].

Together, these components effectively form a standard work-
flow. Commands are issued by chill_ up and conveyed to the
flight software (or simulation environment), which carries
out the commands; the flight software produces telemetry,
which is processed by chill_ down. The chill down component
stores the processed telemetry to the MPCS database (where



it is queried by the MPCS query components) and transmits
messages about the processed telemetry to the message bus
(where it is displayed by chill_ monitor). Although MPCS can
be configured in many different ways, this workflow describes
the way MPCS is used most of the time.

This architecture is expected to serve adequately for the
MSL mission. However, as MPCS is developed for reuse in
future missions, engineers must evolve the system to improve
qualities such as performance and usability, support addi-
tional capabilities, and better integrate with other ground
data systems. The case study focused on two proposed fea-
tures of MPCS that project architects hoped to introduce in
future versions: integrated commanding (ICMD) and time-
lines.

ICMD is motivated by the NASA principle “test like you
fly.” That is, NASA aims to make testing environments as
similar as possible to actual spaceflight operations. As we
have seen, a salient architectural characteristic of MPCS
is that it takes different forms in different environments.
There are important architectural differences between the
testing environment (ATLO) and the spaceflight operations
environment. The ICMD effort aims to bring the operations
environment more in line with the ATLO environment.

The main difference between the testing and operations
configurations of MPCS is commanding. In ATLO, the chill_
up component of MPCS is responsible for issuing commands
to the spacecraft. In operations, the responsibility of issuing
commands is excised from MPCS entirely; instead, the CMD
system is responsible for commanding. ICMD will change
the operations environment to look more like ATLO; the
chill up component of MPCS will issue commands in all
environments.

Timelines are a new data structure proposed for stor-
ing streams of time-oriented data throughout AMMOS. A
“timeline” is exactly that: a linear sequence of events with
associated times, in chronological order. Many of the kinds
of data that JPL handles on a day-to-day basis fit naturally
into this model: telemetry, command sequences, and others.
The timeline proposal defines specific formats for storage
and transmission of timelines and describes the architectural
infrastructure necessary to support them. Timelines are ex-
pected to be useful for many purposes, but one of the most
important is comparison of actual telemetry with expected
telemetry. Mission operators need this capability all the time
(comparing an observation with a theoretical prediction is
one of the most basic requirements in science), but comparing
telemetry streams is a manual, laborious operation today.
Supporting timelines will require substantial architectural
infrastructure. Although the basic idea is not complex, there
are stringent performance requirements; processing timelines
must be very fast. Thus, for example, a special-purpose time-
line database is planned, which will be designed specifically
for efficient storage and retrieval of timelines.

The introduction of timelines will have ramifications for
many AMMOS elements, including MPCS. Currently MPCS
stores telemetry information in a MySQL database. Ulti-
mately this database will be rendered obsolete by the in-
troduction of timelines. After timelines are integrated into
MPCS, telemetry will be stored in an AMMOS-wide timeline
management system, and the MySQL database will eventu-
ally be retired. Other parts of MPCS will also be affected
by the introduction of timelines; for example, the subsystem

for mission planning and sequencing is likely to see changes
as well.

4.3 Representing Architectural Snapshots in
SysML

Our approach to architecture evolution is based on explicit
representation of the set of intermediate evolution states—in
other words, snapshots of the transitional states that the
system will pass through on the way from the initial archi-
tecture to the target architecture (as well as snapshots of
the initial and final states themselves, of course). Repre-
sentations of intermediate architectures are thus one of the
primary artifacts involved in planning architecture evolution.

In previous work, we modeled architecture evolution using
research languages and tools. One of the aims of this case
study was to evaluate the practicality of adapting our ap-
proach to off-the-shelf languages and tools like those used
at JPL. At JPL, the dominant modeling language is SysML,
the Systems Modeling Language, and the dominant model-
ing tool is MagicDraw, a commercial tool that can produce
SysML models. For this case study, I adapted our approach
to architecture evolution to SysML and MagicDraw, to assess
the ease of adapting our approach to off-the-shelf tools.

SysML [25] is a specialization of UML to the domain of sys-
tems engineering. It is defined as a profile of UML. SysML
arose from collaboration, beginning in 2001, between the
Object Management Group and the International Council
on Systems Engineering. It was developed by a coalition of
industry leaders and adopted as a standard in 2006. SysML
is both a restriction and extension of UML. It is an extension
in the sense that it adds new syntax and semantics beyond
that of UML. It is a restriction in that it excludes many of the
elements that do exist in UML, for the purpose of simplifying
the language. SysML takes a subset of the diagram types
from UML and repurposes them for the domain of systems
engineering. The class diagrams of UML, for example, be-
come block definition diagrams (BDDs) in SysML; composite
structure diagrams become internal block diagrams (IBDs).

I used two diagram types in representing evolution states:
BDDs and IBDs. In SysML, a block is the basic unit of
system structure. A BDD shows the blocks that appear in
the model; an IBD shows the internal structure of a block. I
used BDDs to show the kinds of architectural components in
my model and the hierarchical relationships among them; I
used IBDs essentially as conventional software-architectural
diagrams, to show the architectural structure (components,
connectors, etc.) of a system. BDDs and IBDs are both
representations of an underlying model.

I tailored my use of the diagram types to show those aspects
of the architecture whose evolution we hoped to model. For
each evolution state, I produced a complete model and a
fixed set of diagrams, including one IBD showing the detailed
internal structure of MPCS and three IBDs that served as
context diagrams showing how MPCS was deployed in the
three different environments (flight software development,
ATLO, and operations). For this evolution, it was important
to see not only the changes that would occur within MPCS,
but also the changes in how MPCS interacted with other
systems.

Figure 1 shows the IBD depicting the internal structure of
MPCS in the initial state. This is a very data-flow-oriented
representation of MPCS, which is appropriate given its nature.
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Figure 1: IBD showing the internal structure of MPCS in the initial state

Most previous architectural representations of MPCS at JPL
have also depicted data flow connectors prominently [7-9].
In other ways, however, this representation is quite dif-
ferent from previous representations of MPCS. The most
important is that I have drawn the boundary of MPCS more
narrowly than previous representations of the system. There
are several key elements that previous representations have
depicted as components of MPCS but that I have repre-
sented instead as external collaborators of MPCS, namely
configuration-specific components such as the flight software
development simulation environment. This has two advan-
tages. First, it makes it easy to depict MPCS without the
difficulty of somehow representing all the different configura-
tions in which MPCS can be deployed. Previous diagrams
of MPCS have either addressed this issue by introducing
special notation or ignored it by tacitly representing only
one environment. The second advantage is that these extra
components are not generally conceived of as part of MPCS
anyway. Previous diagrams seem to have included them
mainly for convenience and diagrammatic simplicity.
Redrawing the boundary of MPCS in this way does not
eliminate the problem of representing multiple environments;
it merely pushes the problem outward, so we can deal with it
separately. The three different environments in each state are
represented with three IBDs that serve as context diagrams,
showing how MPCS interacts with external collaborators.

4.4 Representing the Evolution Graph in
MagicDraw

Intermediate evolution states do not exist in isolation. In
our model of architecture evolution, intermediate states form
the vertices of an evolution graph, whose edges indicate the
transitions that may occur among states.

I wished to represent the entire evolution graph in a single
MagicDraw project, so that it would be possible to write
constraints and analyses over the model using the constraint
and analysis facilities provided by the tool. I thus placed
each intermediate state in its own package. A package is a

UML construct (also available in SysML) that encapsulates
related entities. Placing the intermediate states in different
packages isolates them while still keeping them within the
same project so as to accommodate analyses of the entire
evolution graph. We can represent the packages themselves
in a package diagram; then we can represent the transitions
between them by relationships among packages.

I ultimately produced an evolution graph with seven states,
including the start and end states. The package diagram in
figure 2 shows these states. The mainline evolution path is
the simple, two-transition path from the “Initial” state to the
“ICMD?” state to the “Final” state. The first transition is the
introduction of ICMD, and the second is the introduction of
timelines. However, many alternative paths are possible.

The simplest path is to go directly from the initial state to
the target state, skipping the ICMD evolution entirely—going
straight to the target architecture rather than implement-
ing integrated commanding first and timelines later. This
is reasonable because the timeline evolution interacts with
the ICMD evolution, and in some sense undoes part of it.
The ICMD evolution rewires the commanding components
of MPCS so that they communicate with CMD; the time-
line evolution then rewires these same components again to
communicate with the timeline management system. As is
often the case with evolution paths, there are trade-offs. Go-
ing directly to the target state would be faster and cheaper
than going via the ICMD waypoint. However, it would also
be riskier—not only because of engineering risk due to the
lack of intermediate releases, but also because of the lack of
stakeholder visibility into the state of the system.

The other alternative paths in this graph emerge during the
introduction of timelines. All these alternatives were devel-
oped based on discussions with project personnel and reflect
different evolution options that were under consideration.
Each candidate path has its own set of trade-offs.

All these possibilities, and the complex interactions be-
tween them, appear in figure 2. Each of the packages in fig-
ure 2 contains a complete representation of the architecture
in that state; I have shown only the initial state (figure 1).
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Figure 2: Package diagram showing the evolution graph; states are represented as packages, and transitions

are represented as dependencies (dashed lines)

4.5 Representing Architectural
Transformations

The problem with having a separate representation for each
intermediate state is that it can be a maintenance nightmare.
Naturally, all the states in the evolution look mostly the same,
except for those pieces that are evolving. Thus, modeling
the evolution graph required the production of many nearly
identical packages. I could have created this evolution graph
model very easily by simply cloning the initial state and
modifying it. That is, after first representing the initial state,
I could have copied it, pasted it, and modified it to create the
next state; then done likewise for the next state; and so on.
But maintaining this evolution graph would be painful; fixing
an error common to many states would be very tedious.

Instead of this copy-and-paste approach, I modeled the
structural transformations themselves in such a way that
they could be applied automatically. Rather than generating
intermediate states by hand and applying the evolution steps
by hand, I specified the structural transformations needed to
generate the intermediate states automatically. Then, if the
initial state were to change, the intermediate states could
be regenerated instantly, so fixes would need to be applied
in only one place instead of many. This is analogous to the
way that most revision control systems use delta encoding to
store file versions (storing diffs between versions rather than
a complete copy of every version of every file) or to the way
that video compression works (by storing differences between
frames, taking advantage of the typical similarity of nearby
frames, rather than storing a complete copy of every frame).

This approach accords well with the architecture evolu-
tion framework we have developed in our research, in which
architectural operations capture the structural transforma-
tions involved in evolution steps, as well as other information
to support analysis. The transformations that I employed
in this project fulfilled the same role here (except without
providing metadata to support analysis).

I implemented these transformation specifications as mac-
ros in MagicDraw. MagicDraw supports the definition of
fairly sophisticated macros that can alter both the model
and the presentation of its diagrams. To do so, it exposes
a rich Java API for creating and modifying model elements
and presentation elements. Macros are written in a scripting
language and compiled to Java bytecode.

In principle, one could use a UML transformation stan-
dard such as QV'T for this purpose, rather than a proprietary
API. T used macros rather than QVT for two reasons. First,
MagicDraw has no built-in support for QVT (nor any other
model transformation language), and although there is an
official MagicDraw plug-in for QVT, it is immature and
not well documented. Second, using macros allowed me to
transform not only the model, but also the diagrammatic
presentation of that model. With QVT I would have been
limited to the former; I could have transformed the model au-
tomatically, but still would have had to update the diagrams
painstakingly by hand.

The transformation specification for the entire evolution
graph was 752 lines of code (excluding blank lines and com-
ments) written in the Groovy scripting language.

4.6 Developing Constraints and Analyses

A useful feature of this style of implementation is that
it allows for straightforward definition of constraints and
analyses, which are important parts of our model of software
architecture evolution. Due to stringent time limitations, I
did not formally define constraints on the studied evolution
nor explore the issues involved in analysis definition in depth,
but the concept is straightforward.

With the entire evolution graph represented in a single
model, we can represent evolution path constraints as con-
straints over the model, which can be expressed in OCL
(the Object Constraint Language, a language for expressing
constraints in UML and related languages [24]). These con-
straints can be automatically checked by the modeling tool.



In principle, it would be straightforward to develop a Magic-
Draw plug-in that allows architects to express constraints in
our path constraint specification language, translates them
to OCL, and checks them against the model, automatically
eliminating illegal paths. However, this is left as future work.

Macros could be used similarly. Macros might be partic-
ularly useful for expressing evaluation functions, as OCL’s
constraint-based approach may be too rigid for analysis of
evolution qualities.

Even though analyses were not a focus of this case study,
it is worth considering the sorts of analyses that would be
important in this domain. Many of the concerns pertaining
to the alternative evolution paths appear to be based on risk.
For example, as I mentioned earlier, the primary argument
against evolving directly from the initial system to the target
system is that it entails substantial risk. Risk is a special
quality that merits special treatment in a theory of software
architecture evolution. Analyzing risk is likely to entail the
construction of a probability model for the evolution, which
would be used to model the likelihood and potential effects
of various contingencies. There is a great deal of existing
work on risk modeling which we could draw on to develop
a model of risk in software architecture evolution. For now,
this remains as future work as well.

Other prominent concerns about this evolution include
time, cost, and collaboration. These are more straightforward
to model, as the time or cost of an evolution path is a simple
function of the time or cost of the transitions that compose
it.

These are all “business” issues rather than technical ones.
But there are also technical constraints in play, and technical
constraints are often simpler to analyze in purely structural
terms than business constraints. In this evolution, we might
have a constraint that there are always complete pathways
by which commands may be uplinked to the spacecraft and
telemetry downlinked; if not, there is a bug in the model.

Thus, even though detailed constraint and analysis defi-
nition was not a focus of this case study, in general terms
it appears that our approach is well suited to capturing the
sorts of constraints and analyses that are relevant to this
case.

S. RELATED WORK

For a survey of research related to architecture evolution
generally, see our previous paper [13]. This section presents
a survey of empirical research in architecture evolution, to
clarify the context and significance of this case study.

Previous work in this area has often relied on artificial
examples—evolutions imagined in general terms but never
carried out. Our previous paper [13] is in this category;
we presented an example in which an ad hoc peer-to-peer
architecture evolves to an architecture based on an off-the-
shelf integration technology such as IBM’s Message Queue
Series Workflow. Although such evolutions do occur, our
description was based on a general understanding of the
domain rather than any specific evolution that we observed
or carried out.

Other researchers have likewise relied on fictitious exam-
ples. A large body of work has been produced by Tamzalit,
Le Goaer, and their colleagues [18-21, 30]. Like us, they seem
to have relied on fictitious examples rather than observing
real evolutions. Several of their papers [19-21] use an exam-
ple of a client—server architecture based on an example given

by Cheng et al. [4]. In a 2007 paper, Le Goaer & Ebraert
[18] give a couple of other examples: a banking application
evolving to accommodate different account types and a chat
application evolving to support two kinds of users. In a more
recent paper, Tamzalit & Mens [30] give yet another example,
which they call EShop: an Internet shop application evolving
to a client—server architecture. All these examples seem to
be artificial; there is no suggestion in the papers that the
evolutions described were carried out or that they were based
on observation of real evolutions.

Other formal approaches to architectural reconfiguration
have been lacking in empirical validation. Wermelinger &
Fiadeiro [31] and Grunske [15] both present approaches for
architecture reconfiguration based on graph transformations,
but neither provides a substantial case study. Spitznagel &
Garlan [28], in their work on connector transformation, car-
ried out a small case study involving enhancing a Java RMI
connector with Kerberos authentication. However, this was a
small example in laboratory conditions, not an observation of
real-world software engineering practice. In addition, Spitz-
nagel’s work focuses specifically on connector transformation
and is not a general theory of architecture evolution.

Erder & Pureur [11] present a real-world case study drawn
from their professional experience in the banking industry.
They present the case of a loan-servicing company that
was migrating from a mainframe system to an event-driven,
service-oriented architecture. However, their case study is
very brief and gives few specifics.

To find substantial case studies, we must look further afield
than the small body of research on architecture evolution
as such. One area of related work is software development
planning approaches such as COCOMO. COCOMO itself
was based on Boehm’s study of 63 software projects, and
the first chapter of his book introducing COCOMO [1] is
a case study of what we would call a software architecture
evolution. COCOMO (or its successor, COCOMO II) has
subsequently been tested in practice numerous times, and a
number of case studies describe and evaluate its application
[6, 10, 22]. However, this area of work is of limited relevance
here. Planning methodologies like COCOMO are focused on
determining the cost of attaining some end state and do not
provide ways of reasoning about sequences of development
or architectural constraints. Research on the effectiveness
of COCOMO and its brethren has little bearing on the
usefulness of architectural approaches to evolution planning.

Outside the research literature, there are plenty of writings
that describe, in practical terms, examples of what we would
call architecture evolution. A number of examples can be
found, for instance, in the IBM Redbooks series, which pro-
vides guidance for practitioners on topics such as migrating
an Oracle database to DB2 [3], or carrying out a version-
to-version WebSphere migration [32]. But such sources are
aimed at characterizing a single evolution domain and do
not relate the example to a general approach to architecture
evolution.

It is unsurprising that there is no data on real-world appli-
cation of architecture evolution tools, as the state of software
engineering practice now is that few organizations use archi-
tectural approaches to evolution at all, let alone in a system-
atic way. Ozkaya et al. [26] interviewed software architects
from a variety of organizations and found that practitioners
do not use architecture-centered practices to manage evo-
lution decisions. The planning that did exist tended to be



short-term; as one interviewee put it, “When I am planning
ahead 6 months, I am being very strategic.” Nonetheless,
respondents did feel that architectural knowledge was impor-
tant to evolution, even if underused currently.

6. CONCLUSION

Section 1 introduced three goals for this work. We revisit
them here and discuss what conclusion may be drawn from
the case study.

1. Understand a real-world software architecture
evolution problem in its natural context. In this
case study, I spent ten weeks at JPL and examined an
ongoing software architecture evolution in its real-world
context. As discussed in section 5, existing work in
software architecture evolution has relied heavily on ar-
tificial and toy examples. While such examples do have
some value in evaluating some of the characteristics
of a model for architecture evolution, they provide no
assurance of the its real-world applicability. By exam-
ining in detail a real-word architecture evolution—and
applying previous research to this natural context—we
can gain some confidence that our model of software
architecture evolution, and the assumptions that we
made in developing it, are compatible with software
architecture as it is practiced in reality.

2. Assess the usefulness of our framework for soft-
ware architecture evolution in helping to plan
evolutions and reason about trade-offs. In inter-
views and discussions with JPL personnel, I found that
it was indeed the case, as assumed, that architects cur-
rently lack tools to aid them in planning architecture
evolution. The dominant use of architecture modeling
tools at JPL is to represent existing systems, not to
plan evolution. Planning for evolution is accomplished
chiefly via requirements documents and informal ar-
chitectural sketches of target states; there is no tool
support for architectural planning. Second, many of
the people I spoke to were interested in better tool sup-
port for architecture evolution. Architecture evolution
was generally recognized as an important problem, and
one for which little support existed. Finally, an impor-
tant result of this case study was that our approach
to architecture evolution was able to capture many of
the real-world architectural concerns relevant to this
evolution instance.

3. Assess the ease of implementing our approach
to software architecture evolution with off-the-
shelf languages and tools. Our previous work in
this area has used research languages and tools almost
exclusively [12]. This case study shows that benefits
in evolution planning can be achieved even without
special-purpose, custom tools. Our approach can be
adapted to languages and tools already in place at or-
ganizations like JPL—such as SysML and MagicDraw—
in a straightforward manner. This bodes well for the
adoptability of our approach.

6.1 Generalizability

External validity is a serious methodological challenge
for any case study. Generalization of case studies is quite
different from generalization of studies based on statistical

sampling from a population; in a case study, the goal is
analytic, rather than statistical, generalization.

The results of the case study accord well with the assump-
tion that architecture evolution is common. An important
threat to validity is that JPL may differ materially from
the population of software organizations to which we might
like to generalize. JPL may have special qualities that make
evolution particularly common there, such as the need for
long-lived, multimission software. At a minimum, though,
this case study shows that architecture evolution is quite
common in at least some kinds of software development en-
vironments, and it gives some insight into the circumstances
under which significant architecture evolution occurs (e.g.,
when a software system is long-lived but future requirements
changes are difficult to anticipate).

The usefulness and adoptability results face similar threats
to external validity. For example, there may have been some-
thing special about the modeling tools that JPL uses (SysML
and MagicDraw) that make them particularly suitable for
implementing our approach. This seems unlikely, however.
The most popular modeling language in software engineering
is UML, and the SysML modeling in this case study could
have been done in UML just as easily. Similarly, other major
commercial modeling tools used in software engineering have
comparable features to MagicDraw.

6.2 Future Work

Time constraints limited the depth of the evaluation of our
approach to software architecture evolution. Some aspects
of our approach could not be evaluated at all; in particular,
there was little time to consider constraints and analyses
more than superficially. It is hoped that in future work, more
complete evaluation will be possible.

More generally, further empirical work is needed to develop
additional insight into the way software architecture evolution
happens in the real world and to understand the kinds of
tools architects need to plan evolution effectively, as well
as to examine other domains in which software architecture
evolution occurs.
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