
Proactive Self-Adaptation under Uncertainty:
a Probabilistic Model Checking Approach

Gabriel A. Moreno
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
gmoreno@sei.cmu.edu

Javier Cámara
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
jcmoreno@cs.cmu.edu

David Garlan
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
garlan@cs.cmu.edu

Bradley Schmerl
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
schmerl@cs.cmu.edu

ABSTRACT
Self-adaptive systems tend to be reactive and myopic, adapt-
ing in response to changes without anticipating what the
subsequent adaptation needs will be. Adapting reactively
can result in inefficiencies due to the system performing a
suboptimal sequence of adaptations. Furthermore, when
adaptations have latency, and take some time to produce
their effect, they have to be started with sufficient lead time
so that they complete by the time their effect is needed.
Proactive latency-aware adaptation addresses these issues
by making adaptation decisions with a look-ahead horizon
and taking adaptation latency into account. In this paper we
present an approach for proactive latency-aware adaptation
under uncertainty that uses probabilistic model checking for
adaptation decisions. The key idea is to use a formal model
of the adaptive system in which the adaptation decision is
left underspecified through nondeterminism, and have the
model checker resolve the nondeterministic choices so that
the accumulated utility over the horizon is maximized. The
adaptation decision is optimal over the horizon, and takes
into account the inherent uncertainty of the environment
predictions needed for looking ahead. Our results show that
the decision based on a look-ahead horizon, and the factoring
of both tactic latency and environment uncertainty, consid-
erably improve the effectiveness of adaptation decisions.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous—self-adaptive
systems

General Terms
Design, Management, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
Latency-aware, proactive, probabilistic model checking, self-
adaptation

1. INTRODUCTION
Software-intensive systems are increasingly expected to

operate under changing conditions, including not only vary-
ing user needs and workloads, but also fluctuating resource
capacity and degraded or failed parts. Furthermore, con-
sidering the scale of systems today, the high availability
demanded of them, and the fast pace at which conditions
change, it is not viable to rely mainly on humans to recon-
figure, and change systems as needed. Self-adaptive systems
aim to address this problem by incorporating mechanisms
that allow them to change their behavior and structure to
adapt to changes in themselves and in their operating envi-
ronment [11, 43].

Current self-adaptive systems tend to be reactive and my-
opic. Typically, they adapt in response to changes without
anticipating what the subsequent adaptation needs will be.
Furthermore, when deciding how to adapt, they focus on
the immediate outcome of the adaptation. In general, this
would not be a problem if adaptation tactics were instanta-
neous, because the system could adapt swiftly to changes,
and consequently, there would not be a need for preparing
for upcoming environment changes. However, many adap-
tation tactics are not instantaneous; that is, there is a lag
between when a tactic is initiated and when the effect is
produced. We call this time tactic latency. For example,
adapting a system to shed load by producing results with-
out including optional elements may be achieved quickly if
it can be done by changing a simple setting in a component,
whereas spinning up an additional server to share the load
may take on the order of minutes.

Such delays are not only prevalent in modern IT systems,
but are also intrinsic in other domains requiring self- adapta-
tion. For example, some tactics used in self-adaptive wireless
sensor networks may require updating the firmware of the
nodes [39], an operation that can take more than a minute
for updating a single node [35]. Also, in a cyber-physical
system, a GPS may be turned off as a power-saving tactic;
however, turning it back on is not an instantaneous adapta-

tion because the time to first fix may be about a minute [33].
In such situations, adapting reactively can result in ineffi-

ciencies due to the system performing a suboptimal sequence
of adaptations. For example, the system may adapt to han-
dle a transient change, only to have to adapt back to the
previous configuration moments later. If the cost of per-
forming those two adaptations is higher than their benefit,
the system would be better off not adapting at all. How-
ever, reactive approaches that decide based on immediate
outcomes cannot avoid such inefficiencies. This issue is exac-
erbated when tactics are not instantaneous. First, it may be
possible that by the time the tactic completes, the situation
that prompted the change has already subsided. Second, it
may happen that starting an adaptation tactic prevents the
system from reacting to subsequent changes until the tactic
completes, rendering some adaptations infeasible for some
period of time.

Ignoring tactic latency has negative consequences as well.
Consider a situation that can be handled with one of two tac-
tics, a or b. If tactic b is marginally better than a in terms of
instantaneous utility improvement, the decision would favor
tactic b. However, if tactic a is faster than b, it will start ac-
cruing the utility improvement sooner than b. Therefore, it
may very well be that a is better when looking at utility ac-
crued over time. In situations like this one, it is not possible
to reason appropriately about adaptation unless the latency
of adaptation tactics is considered.

Proactive latency-aware adaptation is an approach that
addresses the limitations of reactive adaptation by (i) using a
look-ahead horizon to proactively adapt, taking into account
not only the current conditions, but how they are estimated
to evolve; and (ii) explicitly considering tactic latency when
deciding how to adapt, improving the outcome of adapta-
tion [9]. Adapting proactively requires having predictions of
how the environment is going to change in the near future.
These predictions can come from various sources, such as
time series prediction models, recurring workload patterns,
or even reports from other systems that experience similar
situations. Regardless of the source, these predictions will
have uncertainty. Therefore, the approach must be able to
decide under the uncertainty of these predictions.

In this paper, we present an approach for proactive self-
adaptation under uncertainty based on probabilistic model
checking, a formal verification technique used to analyze sys-
tems with stochastic behavior [30]. The approach consists
of (i) creating offline formal specifications of the adaptation
tactics and the system; (ii) generating periodically at run
time a model to represent the stochastic behavior of the en-
vironment; and (iii) using a probabilistic model checker at
run time to synthesize the optimal strategy that maximizes
the expectation of a utility function over the decision horizon
by analyzing the composition of the models of the tactics,
the system and the environment.

The key idea is to leave the adaptation decisions in the
model underspecified through nondeterminism, and have the
model checker resolve the nondeterministic choices so that
accumulated utility is maximized. Thanks to the use of for-
mal specification and verification, it is straightforward for
the approach to deal with the infeasibility of adaptations due
to the latency of tactics, or conflicts between them. Further-
more, the same mechanism allows the adaptation decision to
select multiple adaptation tactics to execute in parallel when
they do not interfere with each other. We illustrate and eval-

uate the approach using the Rice University Bidding System
(RUBiS), a web application that implements the core func-
tionality of an auctions website [2]. To show the benefit of
combining proactivity, latency awareness, and probabilistic
model checking to deal with uncertainty, we compared this
approach with a latency-agnostic feed-forward adaptation
approach, and found that it provides considerable improve-
ments in the effectiveness of the adaptation. Additionally,
the adaptation decision time is adequate for online use, in
spite of using formal verification at run time.

The rest of the paper is organized as follows. In Section 2,
we introduce an example that will be used throughout the
paper. An overview of the approach is given in Section 3.
Section 4 provides some background on probabilistic model
checking. In Section 5, we describe the core of the approach,
including the formal models and how the adaptation deci-
sion is done. The evaluation of the approach is presented in
Section 6. Section 7 presents related work in the areas of
proactive adaptation, adaptation latency, and quantitative
verification. Finally, in Section 8 we provide conclusions and
future work directions.

2. EXAMPLE
To illustrate the approach we use an online auctions web-

site as a running example. In particular, we use RUBiS [2],
an open-source benchmark web application widely used for
research in web application performance, and various areas
of cloud computing [42, 24, 15, 19]. This multi-tier web ap-
plication consists of a web tier that receives requests from
clients (i.e., browsers), and a database tier. In order to sup-
port multiple servers in the web tier, we added a load bal-
ancer that distributes the requests among the web servers
following a round-robin policy. The web servers access the
database tier to get the data needed to render the pages with
the dynamic content requested by the clients. The workload
on the system depends on the request arrival rate, which
fluctuates over time. This changing demand on the system
constitutes its environment.

To deal with the changing load, there are two pairs of
inverse adaptation tactics that can be used. The system
can add or remove servers, to scale out or in, respectively.
The tactic to add a server has a latency λ, which in a cloud
deployment can be in the order of minutes [36]. The tac-
tic to remove a server, however, is assumed to be imme-
diate.1 Additionally, the system implements the brownout
paradigm [28]. With brownout, the response to a request
includes mandatory content, such as the details of an item
being browsed, and, possibly, optional content, such as rec-
ommendations of similar items. A parameter called dimmer
is used to control the proportion of responses that include
the optional content, thereby allowing the system to con-
trol the average service time for handling requests. With
values in the range [0..1], the dimmer can be thought of as
the probability of a response including the optional content.
Two inverse adaptation tactics can be used to increase and
decrease the dimmer value.

The cost of operating the website is proportional to the
number of servers used, due to energy costs, or fees charged
by cloud providers. The cost per server per unit of time is

1Removing a server requires waiting for the requests already
in the server to complete their processing. We assume the
time that takes to be negligible for this example.

denoted by C. On the other hand, requests processed by the
system provide utility or revenue. However, since companies
such as Amazon, eBay, and Google claim that increased user
perceived response time results in revenue loss [34], we im-
pose a response time threshold T , such that each request
whose response time is above T provides no revenue. An-
other factor that must be taken into account is that rec-
ommendations in e-commerce generate extra revenue [13].
Consequently, a request with the optional recommendations
provides more revenue than requests without it. With RO
and RM being the revenue of a response with the optional
content and with only mandatory content, respectively, we
have that RO > RM > 0.

The goal of the self-adaptive system is to maximize the
difference between revenue and cost. If the system runs for
a duration L, utility function (1) represents this difference:

U = ROxO +RMxM − C
∫ L

0

(
s(t)− 1

)
dt (1)

where s(t) is the number of servers in the system at time t,
and xO and xM are the numbers of responses with time no
larger than T , with optional and only mandatory content,
respectively. Since there must be at least one server running
at all times, the first server is not counted in the cost.

3. APPROACH OVERVIEW
Our approach fits in the general class of self-adaptation

architectures based on explicit closed-loop control such as
the monitor, analyze, plan, and execute with knowledge
(MAPE-K) loop [27]. The MAPE phases cover the activ-
ities that must be performed in the control loop: (i) mon-
itoring the system and the environment; (ii) analyzing the
information collected and deciding if the system needs to
adapt; (iii) planning how to adapt; and (iv) executing the
adaptation. The four activities share a knowledge base or
repository that integrates them. These notional elements
are realized as follows in our approach:

Knowledge model. As in other architecture-based self-
adaptation approaches [21], we use an abstract represen-
tation of the system that captures important system char-
acteristics and properties as the knowledge that is used to
reason about the possible adaptations. This model includes
the number of servers, the number of active servers (i.e.,
those connected to the load balancer and able to process
requests), the maximum number of servers supported, the
current dimmer setting, and the observed average response
time. Because some adaptation tactics have latency larger
than the period of the control loop, it is necessary to keep
track, in the model, of the adaptation tactics that are being
executed, along with information about the progress they
have made (or equivalently, when they are expected to com-
plete). In addition, the model has information about the
environment, which in this case includes the observed re-
quest arrival rate, and estimations of arrival rates in the
near future.

Monitoring. Observations of the system and environ-
ment are collected, aggregated as needed, and used to up-
date the model. For example, the request arrival rate at the
load balancer is monitored and its average and standard de-
viation is reflected in the model. In terms of architectural
changes, when a server finishes booting and is connected to
the load balancer, the monitoring marks the server as active
in the model.

Adaptation Decision. Even though MAPE-K has dis-
tinct phases for analyzing the system to determine if adap-
tation is needed, and for planning how to adapt, these are
combined into a single activity in our approach. When the
goal of self-adaptation is to maximize a utility function, de-
termining whether it is possible to adapt the system to a con-
figuration that will give higher utility—the analysis part—
implies finding such a configuration—the planning part. In
our approach, the adaptation decision phase is run periodi-
cally, at a fixed interval τ . With a single invocation of the
probabilistic model checker, it is possible to determine both
whether adaptation is required, and what adaptation tac-
tics should be used, if needed. The output of the adaptation
decision is a (possibly empty) set of adaptation tactics that
have to be executed.

Execution. The execution manager receives the set of
tactics computed by the adaptation decision, and executes
them. It executes asynchronously relative to the adaptation
decision, so that if it has to execute a tactic with latency
larger than the evaluation period (e.g., adding a server), the
adaptation decision can still be run according to its period.
Being able to do so allows the approach to complement slow
tactics with fast ones if they do not interfere with each other.
For example, suppose at some point, only the tactic to add a
server is started because it was determined that it was going
to be sufficient to handle a predicted increase in the arrival
rate. However, in the following evaluation period—and be-
fore the tactic to add server completes—the realization of
the environment is worse than it was estimated. In this case,
the adaptation decision can instruct the execution manager
to execute the tactic to decrease the dimmer value, a fast
tactic. The execution manager can execute these adapta-
tion tactics in parallel; thus, it can change the dimmer value
right away, without waiting for the other tactic to complete.

The following section provides a brief background on prob-
abilistic model checking, and Section 5 describes the core
of the approach, the adaptation decision using probabilistic
model checking.

4. PROBABILISTIC MODEL CHECKING
Probabilistic model checking is a set of techniques that

enable the modeling and analysis of systems that exhibit
stochastic behavior, allowing quantitative reasoning about
probability and reward-based properties (e.g., resource us-
age, time, etc.). These techniques employ state-transition
systems augmented with probabilities to describe stochastic
system behavior.

Moreover, probabilistic model checking approaches em-
ploying formalisms that support the specification of nonde-
terminism, such as Markov decision processes (MDPs), and
probabilistic timed automata (PTAs), also enable the syn-
thesis of strategies guaranteed to achieve optimal expected
probabilities and rewards.

Our approach to decision-making in proactive adaptation
is based on the synthesis of optimal strategies for reward-
based properties in MDPs [32], since it allows us to (i) rea-
son stochastically about uncertainty in the environment, and
(ii) find optimal strategies based on a reward function that
is easily mapped to maximizing utility.

Definition 1 (Markov decision process). A Markov
decision process 2 (MDP) is a tuple M = 〈S, sI , A,∆, r〉,
2We assume a definition of MDP extended with rewards.

where S 6= ∅ is a finite set of states; sI ∈ S is an initial
state; A 6= ∅ is a finite set of actions; ∆ : S × A→ D(S) is
a (partial) probabilistic transition function; and r : S → Q≥0

is a reward structure mapping each state to a non-negative
rational reward. D(X) denotes the set of discrete probability
distributions over finite set X.

An MDP models how the state of a system can evolve in
discrete time steps. In each state s ∈ S, the set of enabled
actions is denoted by A(s) (we assume that A(s) 6= ∅ for
all states). Moreover, the choice of which action to take in
every state s is assumed to be nondeterministic. Once an
action a is selected, the successor state is chosen according
to probability distribution ∆(s, a).

We can reason about the behavior of MDPs using strate-
gies (also referred to a as policies or adversaries). A strategy
resolves the nondeterministic choices of an MDP, selecting
which action to take in every state.

Definition 2 (Strategy). A strategy of an MDP M
is a function σ : S → D(A) s.t., for each state s ∈ S, it
selects a probability distribution σ(s) over A(s).

In this paper, we use strategies that are memoryless (i.e.,
based solely on information about the current state3) and de-
terministic (σ(s) is a Kronecker function such that σ(s)(a) =
1 if action a is selected, and 0 otherwise).

Reasoning about strategies is a fundamental aspect of
model checking MDPs, which enables checking for the exis-
tence of a strategy that is able to optimize an objective ex-
pressed as a quantitative property in a subset of probabilistic
reward computation-tree logic (PRCTL) [3]. PRCTL ex-
tends PCTL [6] to reason about reward-based properties. A
PRCTL property can state that an MDP has a strategy that
can ensure that the probability of an event’s occurrence or
an expected reward measure meets some threshold. An ex-
tended version of the PRCTL reward operator Rr

max=?[F∗ φ]
enables the quantification of the maximum accrued reward
r along paths that lead to states satisfying the state formula
φ. A typical example of a property employing the reward
maximization operator is Rtime

max=?[Fc empty battery], meaning
“maximum amount of time that a cell phone can operate
before its battery is fully discharged.”

In the following section, we show how similar properties
that refer to utility-based rewards are employed for decision-
making in the context of proactive adaptation.

5. ADAPTATION DECISION
At a high level, the adaptation decision is answering the

question of what adaptation tactic(s) should be started now,
if any, to maximize the aggregate utility the system will pro-
vide in the rest of its execution. Poladian et al. showed that
reacting to the current situation without looking ahead can
result in suboptimal solutions when there is an adaptation
cost [41]. We argue a similar case for situations where adap-
tations have latency, even if there is no adaptation cost.
When there is no adaptation cost, tactics do not directly
affect utility. Rather, they change the system configuration,
which in turn results in a change in utility. If adaptation tac-
tics had no latency, the system could adopt any configura-
tion anytime, and thus no look-ahead would be necessary for
optimal adaptation decisions. However, when tactics have

3However, time is explicitly encoded as part of the state.

latency, it takes some time for the system to adapt to a new
configuration. Therefore, the configuration of the system at
time t constrains the possible configurations at a later time
t + τ , if τ is smaller than the latency of at least one of the
adaptation tactics. For instance, if the current configuration
has one server at time t, and τ < λ, then, all system con-
figurations with more than one active server are not feasible
at time t + τ . Consequently, it is not possible to find the
best configuration, or the adaptation to get to it, without
looking ahead to see which configurations the system will
need in the future.

Although the decision approach must look ahead, it is not
practical to look too far into the future because of compu-
tational complexity, and because the uncertainty of the en-
vironment predictions increase as they get further into the
future. Therefore, the adaptation decision uses look-ahead
with a finite horizon, and the question it answers is what
adaptation tactic(s) should be started now, if any, to max-
imize the aggregate utility the system will provide over the
horizon.

The overall approach to solve the adaptation decision prob-
lem using probabilistic model checking is to analyze the
MDP model that results from the parallel composition of
processes representing the behavior of the environment and
the system, starting at the current time until the horizon.
These models are abstractions that contain only the prop-
erties of the system and the environment that are necessary
to compute the value of the utility function, and to keep
track of how the system changes when tactics are applied.
The key idea is to leave the decision to execute adaptation
tactics underspecified in the model through nondeterminis-
tic behavior. The probabilistic model checker PRISM [31]
is then used to synthesize a strategy that maximizes the
expected accumulated utility over the horizon. Since the
strategy is a resolution of the nondeterminism in the model,
it indicates which tactics must be used and when.

The following sections elaborate on the overall structure
of the model used to decide; describe the models of the en-
vironment, system, and tactics; and provide more details
about how the model checker is used with these models to
solve the adaptation decision problem.

5.1 Overall Model Structure
The model used for the decision describes the behavior of

the adaptive system in the context of the predicted behavior
of the environment over the look-ahead horizon. As depicted
in Figure 1, it is composed of modules (or equivalently, con-
current processes) for the environment, the adaptation tac-
tics, and the system. The orchestration of these processes
is critical to get the right behavior. However, it is as im-
portant to leave enough nondeterminism in the scheduling
of the processes to give the model the freedom to decide
when to use the adaptation tactics. The orchestration is ac-
complished via a module, clk, that controls the passing of
time, and through the synchronization of modules on shared
actions (the connectors in the figure).

The overall schedule of how processes should be sched-
uled is as follows. The execution of the model is done at the
granularity of evaluation periods, so one unit of model time
corresponds to τ in real-world time. Time 0 in the model
represents the beginning of the look-ahead horizon (i.e., the
current time in the controlled system). At the beginning of
each evaluation period in the execution of the model, the

environment

tactic1

...

tacticN

system

clock
tick

tactic1 complete

tacticN complete

module
shared action

Figure 1: Module composition in adaptation deci-
sion model

1 module clk
2 time : [0..HORIZON + 1] init 0;
3 readyToTick : bool init true;
4

5 [tick] readyToTick & time < HORIZON + 1 −> 1 : (time’ = time
+ 1) & (readyToTick’=false);

6 [tack] !readyToTick −> 1 : (readyToTick’=true);
7 endmodule
8

9 rewards ”util”
10 [tack] true : UTILITY SHIFT + periodUtility;
11 endrewards

Listing 1: Clock module and reward structure

system must have a chance to proactively adapt. Once the
system has adapted (or just passed the opportunity), the en-
vironment updates its state for the current period by taking
a probabilistic transition according to its model. After that,
the utility that the system provides for the period is com-
puted, and accumulated. Then, time is advanced, and the
process is repeated until the end of the horizon is reached.

The specification of the clk module is shown in Listing 1.
At each period, it takes two transitions. First the command
labeled with the action tick advances the time. However,
the environment and the tactics share the same action, and
since a module can only execute a labeled command when
all modules sharing the same label execute their correspond-
ing command synchronously, clk will only be able to ad-
vance the time when the tactics and environment modules
are ready to do so. After that happens, clk takes another
transition labeled tack, with which the utility accumulation
synchronizes.4 This ensures that neither the system nor the
environment change when utility calculation is done. The
reward structure util (lines 9-11) defines the reward func-
tion that will be maximized by the model checker, which in
this case is the accumulation of the utility for the periods
in the decision horizon.5 Although not shown in the listing,
periodUtility is a formula that encodes (1) for a single period.

5.2 Environment Model
4This means that the utility for the period is computed right
after time is advanced, which is different than the conceptual
schedule described before. This change allows a reduction
of the state space without affecting the resulting decision.
5The utility function is translated with a large positive shift
constant because PRISM does not allow negative rewards.
This does not affect the result of the optimization.

The goal of the adaptation decision is to decide how to
adapt to maximize the utility the system will accrue over
the look-ahead horizon. However, utility is a function of
both the system configuration and the environment state.
Therefore, deciding with a look-ahead horizon requires pre-
dicting the near future states of the environment. These
predictions are not perfect, though, and, consequently, they
are subject to uncertainty. In Esfahani and Malek’s list of
sources of uncertainty that affect self-adaptive systems, this
corresponds to uncertainty of parameters over time [16].

The environment can be modeled as a stochastic process in
which the random variable representing the state of the en-
vironment has one realization at each time step, with a time
step being equal to the evaluation period τ . More specif-
ically, we want to model the evolution of the environment
over the decision horizon as an MDP, so that it can be com-
posed with the model of the system and tactics for the anal-
ysis. Note that the specification of the environment model
does not include any nondeterminism, making the descrip-
tion of the environment’s behavior fully probabilistic (i.e.,
analogous to a discrete-time Markov chain6). As it will be
explained later, the resolution of the nondeterminism in the
adaptation tactics is used to decide how the system should
adapt given the probabilistic behavior of the environment.

In our example, the environment predictions are made us-
ing an autoregresive (AR) time series predictor that is part
of the RPS toolkit [14]. The monitoring component mea-
sures the interarrival time between requests arriving at the
load balancer. At the beginning of each evaluation period,
the knowledge model is updated with the average interar-
rival time for the previous period. This observation is sup-
plied to the time series predictor so that it can update its
internal model. Using the predictor, it is possible to obtain
estimations for the average interarrival time for the next
evaluation period, given the past observations. Since the
estimation has an error with a normal distribution, the pre-
dictor provides the variance associated with the estimation.

To create an MDP that captures both the prediction of
the environment states and its uncertainty, we construct a
probability tree. The root of the tree corresponds to the cur-
rent state of the environment, each node represents a possi-
ble realization of the environment, and its children represent
realizations conditioned on the parent, with the edges repre-
senting the probability of the child realization given that the
parent was realized. Creating a small number of branches at
each node requires discretizing the probability distribution
of the estimation for the following period. Usually, three-
point discrete-distribution approximations are used for con-
structing probability trees for decision making. In our ap-
proach, we use the Extended Pearson-Tukey (EP-T) three-
point approximation [26]. This approximation consists of
three points that correspond to the 5th, 50th, and 95th
percentiles of the estimation distribution, with probabilities
0.185, 0.630, and 0.185, respectively.

The construction of the probability tree starts with the
root, which is the current state of the environment, e0 in
Figure 2. Using the predictor, we obtain the distribution for
the estimation for the following period, ê1. Note that the
predictor has already seen the past realizations of the envi-
ronment, up to e0, so the prediction is implicitly conditioned

6Specifically, this process is an MDP in which only one ac-
tion can be selected in each state, the outcome of which is
governed by a single discrete probability distribution.

e0

P95(ê1)

P50(ê1)

P5(ê1)

P95(ê2|P5(ê1))

P50(ê2|P5(ê1))

P5(ê2|P5(ê1))

0.185

0.630

0.1850.185

0.630

0.185

Figure 2: Probability tree

on the past observations. Using the estimation ê1, and the
EP-T discrete approximation, three children of the root are
created. In Figure 2, the nodes Pk(ê1) represent the kth
percentile of the distribution of the estimation ê1. To con-
tinue the expansion of the tree, each child is visited and its
children created in the same way. However, the estimation
for these children must be conditioned on the parent. This
is achieved by cloning the predictor (to avoid disturbing the
state of the original predictor), and giving to it the state of
the environment at the parent, as if that state would have
actually been the realization of the environment. In that
way, when we obtain the prediction for the following period,
the prediction will be conditioned on the parent.

In principle, it would be possible to continue the expansion
of the probability tree up to a depth equal to the number of
evaluation periods in the look-ahead horizon. However, the
further into the future we get (or the deeper in the tree), the
higher the uncertainty of the predictions, and the larger the
resulting state space. In their use of probability trees, Pola-
dian et al. found that they could limit the branching depth
without much impact on the quality of the solution [41]. We
take a similar approach, limiting the branching in the tree
to two levels, and, beyond that, continuing the extension of
the branches without any further branching up to a depth
equal to the horizon.

A new probability tree is generated at the beginning of
the adaptation decision phase of each period. Generating
the PRISM code that represents the MDP for the probabil-
ity tree is straightforward. Listing 2 shows its specification
in PRISM. Each node of the probability tree is assigned a
unique number in the range [0..N − 1], where N is the num-
ber of nodes. A variable s in the env module with the same
range represents the state of the environment in the proba-
bility tree. The transitions out of each node can be encoded
directly as commands in PRISM.7

The action tick is used to synchronize the transitions of
the environment with the transitions of the clock and the
system. The mapping from state s to the value of the state
is encoded in the formula starting in line 9, using the con-

7MDPs are encoded in PRISM with commands like:
[action] guard -> p1 : u1+ . . . + pn : un

where guard is a predicate over the model variables. Each
update ui describes a transition that the process can make
(by executing action) if the guard is true. An update is
specified by giving the new values of the variables, and has
an assigned probability pi ∈ [0, 1]. Multiple commands with
overlapping guards (and probably, including a single update
of unspecified probability) introduce local nondeterminism.

1 module env
2 s : [0..N−1] init 0;
3

4 [tick] s = 0 −> 0.185 : (s’ = 1) + 0.63 : (s’ = 2) + 0.185 : (s’ = 3);
5 [tick] s = 1 −> 0.185 : (s’ = 4) + 0.63 : (s’ = 5) + 0.185 : (s’ = 6);
6 ...
7 endmodule
8

9 formula stateValue = (s = 0 ? E 0 : 0) +
10 (s = 1 ? P5 E 1 : 0) +
11 (s = 2 ? P50 E 1 : 0) +
12 ...

Listing 2: Environment module in PRISM

ditional operator. In this formula, constants such as P5 E 1
represent the values of the nodes of the probability tree.

5.3 System and Tactics Models
In addition to the environment state, the system config-

uration is also needed to compute the value of the utility
function the adaptation decision is maximizing. Unlike the
environment model, the model of the system and its tactics
does not change at run time except for a few initialization
constants; and consequently, it can be constructed offline.

The system model only has to keep track of the config-
uration information that is needed as input to the utility
function. In the case of our example system, this informa-
tion includes the number of active servers, and the value of
the dimmer. This model does not actually model the pro-
cessing of individual requests. Instead, it uses a queueing
theory model to compute the average response time for each
period based on the system configuration and the environ-
ment state. Because web servers can only handle a limited
number of requests simultaneously, we use a limited proces-
sor sharing (LPS) model [46], which considers a system in
which the number of simultaneous requests that can be pro-
cessed by each server simultaneously is limited by a constant
K. We set K equal to the maximum number of processes
configured for each server in the system.

The system model must also reflect the changes in its
state that would result from the use of adaptation tactics.
For better modularity, each adaptation tactic is modeled as
a separate PRISM module that synchronizes with the sys-
tem module on actions that represent the completion of the
adaptation tactic. The specification of the system module
is shown in Listing 3. Lines 2-3 have the two variables that
capture the system configuration. They are initialized with
constants INI * that represent the state of the system at the
time the adaptation decision is invoked; that is, at the be-
ginning of the decision horizon. Lines 5-8 have commands
that capture how the system state is updated when each of
the adaptation tactics completes. Since each command is
synchronized with the completion of the corresponding tac-
tic, the associated state updates can only take place when
the tactic completes.

The responsibilities of each tactic module include deter-
mining if the tactic’s applicability conditions are met, decid-
ing nondeterministically whether to start the tactic or not,
keeping track of the progress of the tactic (if it has latency),
and synchronizing with the system module when the tactic
completes. Listing 4 shows the model for the tactic to add
a server. Line 1 computes the number of evaluation periods
that correspond to the latency of the tactic, since the track-

1 module sys
2 servers : [1..MAX SERVERS] init INI SERVERS;
3 dimmer : [1..DIMMER LEVELS] init INI DIMMER;
4

5 [addServer complete] servers < MAX SERVERS −> 1 : (servers’
= servers + 1);

6 [removeServer complete] servers > 1 −> 1 : (servers’ = servers −
1);

7 [increaseDimmer complete] dimmer < DIMMER LEVELS −> 1 :
(dimmer’ = dimmer + 1);

8 [decreaseDimmer complete] dimmer > 1 −> 1 : (dimmer’ =
dimmer − 1);

9 endmodule

Listing 3: System module

ing of the latency of tactics is done at the granularity of pe-
riods. The predicate in line 4 expresses the conditions under
which the tactic applies; that is, that we have not yet used
all available servers and that the tactic can be executed con-
currently with other tactics currently executing (expressed
here in addServer compatible). This latter condition allows
the adaptation decision to decide to execute non-conflicting
tactics concurrently (e.g., decreasing the dimmer value while
a server is being added), while avoiding the concurrent ex-
ecution of conflicting tactics (e.g., removing a server while
one is being added). The state of the tactic is defined in
lines 7-8. The variable addServer state is used to keep track
of whether the tactic is executing or not (it is greater than 0
when the tactic is executing), and if it is, how much progress
it has made. As was the case with the system state, the
state of this variable is initialized with a constant that rep-
resents its state at the time the adaptation decision is in-
voked. This is needed because the tactic may already be in
progress when the adaptation decision is carried out, and
that must be taken into account to avoid making decisions
inconsistent with the state of the system. Note that this is
the reason why the knowledge model needs to keep track of
tactic execution.

The variable addServer go is for internal book keeping,
and has to do with the orchestration of the modules. At
the beginning of each period, this variable is true, as it is
the sys go predicate, which is simply an alias to readyToTick
from the clock module. This means that the tactic has an
opportunity to decide whether it should be applied in this
period. After doing that, addServer go is set to false to force
the tactic to wait until the next period by leaving only the
transition labeled with tick enabled (line 38). When the
tactic is enabled and applicable, the two commands starting
in lines 11 and 17, respectively, are enabled with identical
guards. These commands correspond to starting the exe-
cution of the tactic (line 14), and just passing (line 20).
Since they have no probability specified on their right-hand
side, the model has a nondeterministic choice between them.
When the tactic is enabled, but it is not applicable, it passes
(lines 23-26). The commands starting in lines 29 and 34
model the progress of the tactic, and its completion, respec-
tively. The latter must synchronize with the system module
on the action addServer complete, causing the system to re-
flect the change caused by the completion of the tactic in its
configuration. Note that after the completion of the tactic,
addServer go is left true to allow the tactic to start again in
the same period.

The rest of the tactics are defined in a similar way, and

1 const int addServer LATENCY PERIODS = ceil(addServer LATENCY
/ PERIOD);

2

3 // applicability conditions
4 formula addServer applicable = servers < MAX SERVERS &

addServer compatible;
5

6 module addServer
7 addServer state : [0..addServer LATENCY PERIODS] init

ini addServer state;
8 addServer go : bool init true;
9

10 // tactic applicable, start it
11 [addServer start] sys go & addServer go // can go
12 & addServer state = 0 // tactic has not been started
13 & addServer applicable
14 −> (addServer state’ = 1) & (addServer go’ = false);
15

16 // tactic applicable, but don’t start it
17 [] sys go & addServer go // can go
18 & addServer state = 0 // tactic has not been started
19 & addServer applicable
20 −> (addServer go’ = false);
21

22 // pass if the tactic is not applicable
23 [] sys go & addServer go
24 & addServer state = 0 // tactic has not been started
25 & !addServer applicable
26 −> 1 : (addServer go’ = false);
27

28 // progress of the tactic
29 [] sys go & addServer go
30 & addServer state > 0 & addServer state <

addServer LATENCY PERIODS
31 −> 1 : (addServer state’ = addServer state + 1) &

(addServer go’ = false);
32

33 // completion of the tactic
34 [addServer complete] sys go & addServer go
35 & addServer state = addServer LATENCY PERIODS //

completed
36 −> 1 : (addServer state’ = 0) & (addServer go’ = true); //

so that it can start again at this time if needed
37

38 [tick] !addServer go −> 1 : (addServer go’ = true);
39 endmodule

Listing 4: Tactic to add a server

since they are modeled as concurrent processes that syn-
chronize only when they all have had a chance to execute,
their ordering is nondeterministic. This, combined with the
nondeterminism in the decision to start each tactic, give suf-
ficient flexibility to the model checker so that it can decide
how to best schedule the adaptation tactics.

5.4 Adaptation Decision
The adaptation decision can be carried out after the en-

vironment model has been constructed as described in Sec-
tion 5.2. The input to the probabilistic model checker is the
composition of the modules previously described. Because
we want the model checker to synthesize a strategy, we also
have to specify the property of the model that must hold un-
der the generated strategy. In this case, the desired property
is to maximize the accumulated utility over the look-ahead
horizon. In the PRISM property specification language [31],
this property is expressed as

Rutil
max=?[Fcend]

where util is the reward structure specified in the model
(Listing 1, lines 9-11), and end is a predicate that indicates
the end of the look-ahead horizon.

The strategy synthesized by PRISM resolves the nonde-
terminism in the model, replacing nondeterministic choices
with choices based on the state of the system and the envi-
ronment. Because the behavior of the environment remains
stochastic, it is not possible to extract from the strategy
what adaptation tactics should be used at each time step in
the horizon, because that decision depends on the stochas-
tic behavior of the environment. That notwithstanding, the
choices made by the strategy at time 0 are deterministic
because they are made before the environment takes any
probabilistic transition. Because these choices are exactly
the ones that should be enacted at the current time in the
controlled system (recall that time 0 in the model corre-
sponds to the current time), it is sufficient to extract these
from the strategy and ignore future choices. The set of tac-
tics extracted from the synthesized strategy are handed off
to the execution manager, thus completing the adaptation
decision phase.

6. EVALUATION
The approach was evaluated using a version of RUBiS ex-

tended by Klein et al. to support brownout [28].8 The eval-
uation setup consisted of two computers: an Intel Core i7-
4800MQ quad-core processor at 2.7GHz and 16GB of RAM,
where the self-adaptive system was deployed, and another
computer to generate traffic to the website. The website
setup had up to three web servers, each running in a virtual
machine (VM) hosted in the main computer. Each VM had
4GB of RAM, and one virtual CPU pinned to a dedicated
core. The host OS, Ubuntu 14.04 LTS, was configured to
isolate (and thus not use) the cores dedicated to the VMs.
The load balancer, HAProxy [1], was run in the host OS,
and configured to distribute requests with a round-robin pol-
icy among the available web servers. The adaptation layer
(monitoring, adaptation decision, execution manager, and
knowledge model) was also run in the host OS. In order to
keep the latency of adding a server controlled in the exper-
iments, the three VMs were kept running during each ex-
periment run, and the booting and shutting down of a VM
was simulated by enabling and disabling, respectively, the
VM in the load balancer. The latency of the tactic to add a
server was simulated by the execution manager by imposing
a delay λ between the start of the tactic, and the time the
server was enabled and marked active.

The parameters of the utility function (1) were assigned as
follows. The server cost was assumed to be C = 1 monetary
unit per second, and the rest of the parameters were derived
from it. The average time to serve a request with and with-
out the optional content was measured profiling the web-
site with a client making a single request at a time so that
there was no queueing time involved. Using the queueing
model, it was determined that with a response time thresh-
old T = 1 second, a single server was able to handle 53.8
requests per second with the optional content. Assuming
that the cost of a server can be covered by the revenue of
handling half its maximum capacity with optional content,
the revenue for a response with optional content was com-
puted as RO = 2

53.8
C. The maximum capacity for handling

requests without the optional content was 921.8 requests
per second, but in this case we require that 2/3 of the server

capacity be used to cover its cost; that is, RM = 3/2
921.8

C.

8https://github.com/cristiklein/brownout

In that way, the utility function reflects the notion that it
should be preferred to use server capacity for providing op-
tional content, and not just stay with the minimum number
of servers and deal with load changes using the dimmer.

The evaluation period τ was configured to be 60 seconds.
The length of the look-ahead horizon was determined as
h = max

(
5,
⌈
λ
τ

⌉
(Smax − 1) + 1

)
, where Smax = 3 is the

maximum number of servers. This computes a horizon that
is long enough for the system to go from the one server to
the maximum number of servers plus one period to observe
the benefit. The minimum of 5 is used to enforce look-ahead
even if the tactic latency is small.

The adaptation tactics were those described in Section 2,
with the number of servers allowed to range between 1 and
3, and the dimmer levels allowed to take values 0, 0.25, 0.5,
0.75, and 1. To use both conflicting and non-conflicting tac-
tics, each pair of inverse tactics was specified as conflicting
with itself, and non-conflicting with the other. That means
that, for example, a server could not be removed while one
was being added, but the dimmer value could be increased
or decreased while the number of servers was being changed.

To get realistic arrival patterns, we used an arrival trace
from requests made to the World Cup ’98 website [4]. This
trace has considerable load increases around the two games
that were played on that day. We took the arrivals between
noon and midnight (thus encompassing the two games), and
scaled it to last 75 minutes, and not to exceed the maximum
capacity of the evaluation setup. To replay the trace, we
used a single client that was able to send as many concur-
rent requests as needed to reproduce the traffic of the trace.
Only the timestamps of the trace were used, because all the
requests in the experiments targeted the same URL, which
randomly selected an item to render its details page.

Besides the proactive latency-aware (PLA) approach pre-
sented in this paper, a second approach was implemented
for comparison. The latter used feed-forward (FF) adapta-
tion, in the following manner. Each evaluation period, the
adaptation decision gets the estimated arrival rate for the
following period, and, using the queueing model, finds the
adaptation that maximizes utility for the following period,
by considering all the adaptations that are possible at that
time. Unlike PLA, FF is latency-agnostic. Both approaches
use the same queuing model, and, although limited to one
period in the future, the environment prediction used by FF
is the same as the one used for PLA. In fact, to check the
implementation, we forced PLA to have a horizon of one
period with no branching, and both produced exactly the
same results.

For each adaptation approach, the simulation was run
once for each latency of the tactic to add server, with the lat-
ter, λ, having values 60, 120, 180, and 240 seconds. In each
run, the first 15 minutes were used to prime the environment
time series predictor, and the metrics to do the evaluation
were collected in the remaining hour. Figure 3 summarizes
the results obtained with the adaptation approaches PLA
and FF. Although utility is the main metric for compari-
son, the plots also show the average number of servers used,
the percentage of responses that included the optional con-
tent, and the percentage of responses that were late. The
results show that PLA performs better with respect to the
four metrics. Even though both approaches show a decline
in utility as the tactic latency gets higher, the drop shown
by FF is more pronounced. In addition, PLA managed to

0

1000

2000

3000

4000

5000

0.0

0.5

1.0

1.5

2.0

0

20

40

60

0

10

20

30

40

utility
avg. servers

%
 w

/optional
%

 late
60 120 180 240

tactic latency (s)

FF

PLA

Figure 3: Evaluation results

keep the percentage of late responses very low, whereas in
FF the number of late responses increased as the latency of
the tactic increased.

Although the running time of the adaptation decision may
be a concern due to the use of probabilistic model checking,
we found that except for a few outliers, it was under 3 sec-
onds. The box plot in Figure 4 shows the median, 1st and
3rd quartile in the box, and the range in the bar. The first
decision in each run took close to 5 seconds, probably be-
cause the model checker was not cached yet; thus, the first
data point for each run was not used for the plot. Tak-
ing into account that the evaluation period was 60 seconds,
these decision times are acceptable. The running time of
the model checker increases with the number of tactics, the
latency of the tactics, the length of the horizon, and the
branching and depth of the probability tree.9 A study of
the sensitivity of the decision time to these parameters is
left for future work. However, it is worth noting that no op-
timization was done for this work. Techniques such as those
proposed by Gerasimou et al. [22] could be used to reduce
the adaptation decision time.

9Note that the horizon is the same when the tactic latency is
60 and 120 in these experiments. That explains why there is
not much difference between their decision time in Figure 4.

1.5

2.0

2.5

60 120 180 240
tactic latency (s)

de
ci

si
on

 ti
m

e
(s

)

Figure 4: Adaptation decision running time

7. RELATED WORK

7.1 Proactive Adaptation
One of the defining characteristics of autonomic or self-

adaptive systems is being anticipatory, defined as “[being]
able to anticipate to the extent possible, its needs and be-
haviors and those of its context, and [being] able to manage
itself proactively” [40]. Notwithstanding, the vast majority
of the self-adaptive approaches are reactive [43, 29], and in
their recent survey, Krupitzer et al. highlight proactive adap-
tation as a research challenge in the area of self-adaptive
systems [29].

One area in which proactive adaptation has received con-
siderable attention is service-based systems [8, 23, 38, 44] be-
cause of their reliance on third-party services whose quality
of service (QoS) can change over time. In that setting, when
a service failure or a QoS degradation is detected, a penalty
has already been incurred, for example, due to service-level
agreement (SLA) violations. Thus, proactive adaptation is
needed to avoid such problems. Hielscher et al. proposed
a framework for proactive self-adaptation that uses online
testing to detect problems before they happen in real trans-
actions, and to trigger adaptation when tests fail [23]. Wang
and Pazat use online prediction of QoS degradations to trig-
ger preventive adaptations before SLAs are violated [44].
Some limitations of these approaches is that they ignore the
adaptation latency, and that their look-ahead is limited, for
example by considering only the predicted QoS of services
yet to be invoked in a service composition being executed.

The work on anticipatory dynamic configuration by Pola-
dian et al. [41] is the closest to our work. They demonstrated
that when there is an adaptation cost or penalty, anticipa-
tory adaptation outperforms reactive adaptation. By lever-
aging environment predictions and using a look-ahead hori-
zon, anticipatory adaptation can determine the best adap-
tation to carry out in order to maximize the utility accumu-
lated over time, taking into account how the environment
state will evolve in the short term, and the penalties asso-
ciated with adapting. One limitation of this work is that
it ignores adaptation latency, which has the following con-
sequences: (i) it cannot select between a fast a slow adap-
tation, (ii) it cannot be proactive because it cannot start
adaptations with the necessary lead time to complete by
the time the environment changes, and (iii) it assumes that
all configurations are feasible at all times.

7.2 Adaptation Latency

Adaptation latency (i.e., how long the system takes to
adapt) is a concern in autonomic computing, and has been
proposed and used as a metric to evaluate adaptation ap-
proaches [10, 5, 18, 37]. Nevertheless, it is rarely taken into
account as a factor in the adaptation decision. As Gambi et
al. point out, adaptations are typically assumed to be imme-
diate. So, they pose—but not address—the research ques-
tion of how knowledge of adaptation latency can be lever-
aged to improve the quality of the control exerted by the
MAPE loop [17].

Adaptation latency is considered for some very specific
situations in some work. In the area of dynamic capac-
ity management for data centers, the work of Gandhi et al.
considers the setup time of servers, and is able to deal with
unpredictable changes in load by being conservative about
removing servers when the load goes down [20]. Their work
is specifically tailored to adding and removing servers, a set-
ting that resembles the example used in this paper. How-
ever, their work cannot reason about other tactics that could
be used instead of or in combination with tactics to control
the number of servers. Similarly, the work of Jamshidi et al.
on autonomic scaling for cloud-based software using fuzzy
logic for reasoning [25] does not consider the simultaneous
use of tactics other than scaling. Zhang et al. propose a safe
adaptation approach that can minimize the cost of adap-
tation, with adaptation duration being one such cost [45].
However, that cost is only considered once all the possible
ways of reaching the desired target configuration have been
found. That is, adaptation duration is not considered to
select among alternative target configurations.

7.3 Quantitative Verification in Self-Adaptation
Calinescu et al. proposed the use of model checking and

quantitative verification techniques at run time to ensure the
dependability of self-adaptive systems [7]. In their approach,
referred to as runtime quantitative verification (RQV), in-
formation gathered through the self-adaptive system’s mon-
itoring capability is used to update parameters in the formal
model of the system, which is then used to detect or predict
requirements violations. If a violation is detected, the same
quantitative verification techniques can be used to select, for
example, the configuration less likely to result in an unsat-
isfied requirement. Despite the use of a model checker at
run time, Gerasimou et al. recently showed how the over-
head and execution time of this approach can be reduced by
combining caching, look-ahead, and near-optimal reconfigu-
ration [22]. There are two main differences between that use
of verification, and the use of probabilistic model checking
in this paper. One is that for adaptation decisions, RQV is
used to quantify or verify properties of each possible config-
uration one at a time, and that information is then used to
select a target configuration outside of the model checking
process. Instead, we use the model checker to synthesize the
best adaptation strategy. The second difference is that they
do the verification of individual configurations in the context
of a snapshot of the environment state. In this paper, the
verification analyzes sequences of adaptations in the context
of an evolving environment.

In previous work, we presented a technique to analyze
different adaptation approaches using probabilistic model
checking, and applied it to proactive latency-aware adapta-
tion [9]. It is worth noting that in that case, model checking
was used as an offline analysis to study worst- and best-case

performance of an adaptation approach. The work presented
in this paper, on the other hand, uses model checking at run
time to decide how to adapt.

8. CONCLUSION
We have presented an approach for proactive latency-

aware adaptation under uncertainty that uses probabilistic
model checking for adaptation decision. The approach uses
a look-ahead horizon to find the adaptation that maximizes
the expected utility accumulated over the horizon in the
context of the uncertainty of the environment. The advan-
tages of using probabilistic model checking are that (i) the
adaptation decision is optimal over the horizon because the
model checker selects the strategy through a combination
of mathematical models and exhaustive search; and (ii) it
takes into account the stochastic behavior of the environ-
ment. Furthermore, the modular specification of tactics as
separate processes, combined with the use of tactic compat-
ibility predicates, allows the approach to deal easily with
the (in)feasibility of adaptations due to the latency of tac-
tics, and the conflicts (or lack thereof) between them. Our
results showed that the approach performs better in terms
of several metrics when compared with a feed-forward ap-
proach that does not use a look-ahead horizon and is not
aware of tactic latency. Moreover, this performance advan-
tage increases as the tactic latency increases.

Since the specification of tactics in the PRISM language is
solely dependent on their applicability conditions and their
compatibility predicates, we plan in future work to generate
them automatically from descriptions in a tactic specifica-
tion language (ideally, an extension to Stitch [12]). We also
intend to work on using their specification in such a language
to determine whether tactics could interfere with each other,
something that we now assume is specified in the compati-
bility predicate. Additionally, we plan on analyzing the scal-
ability of the approach for larger sets of adaptation tactics,
as well as the use of optimization techniques to counter the
effects of scale. Even though in this paper we have focused
on tactic latency as a key motivation for the approach, the
same techniques would be useful for self-adaptive systems in
which the use of a tactic prevents the use of other tactics in
the near future.10

9. ACKNOWLEDGMENT
This work is supported in part by awards N000141310401

and N000141310171 from the Office of Naval Research, CNS
1116848 from the National Science Foundation, and by the
National Security Agency. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the Office of Naval Research or the
U.S. government. This material is based upon work funded
and supported by the Department of Defense under Con-
tract No. FA8721-05-C-0003 with Carnegie Mellon Univer-
sity for the operation of the Software Engineering Institute,
a federally funded research and development center. This
material has been approved for public release and unlimited
distribution. (DM-0002240).

10For example, a small drone breaking from a formation
would not be able to get shared location data from oth-
ers in the formation, and that, in turn, would prevent the
possibility of turning off its GPS to save power.

10. REFERENCES
[1] HAProxy: the reliable, high performance TCP/HTTP

load balancer. http://www.haproxy.org/.

[2] RUBiS: Rice University Bidding System.
http://rubis.ow2.org/.

[3] S. Andova, H. Hermanns, and J.-P. Katoen.
Discrete-time rewards model-checked. In FORMATS,
volume 2791 of Lecture Notes in Computer Science,
pages 88–104. Springer, 2003.

[4] M. Arlitt and T. Jin. A workload characterization
study of the 1998 World Cup web site. IEEE Network,
14(3):30–37, 2000.

[5] C. Bertolli, G. Mencagli, and M. Vanneschi. A cost
model for autonomic reconfigurations in
high-performance pervasive applications. In
Proceedings of the 4th ACM International Workshop
on Context-Awareness for Self-Managing Systems -
CASEMANS ’10, pages 20–29, New York, New York,
USA, Sept. 2010. ACM Press.

[6] A. Bianco and L. de Alfaro. Model checking of
probabilistic and nondeterministic systems. In P. S.
Thiagarajan, editor, Foundations of Software
Technology and Theoretical Computer Science, 15th
Conference, Bangalore, India, December 18-20, 1995,
Proceedings, volume 1026 of Lecture Notes in
Computer Science, pages 499–513. Springer, 1995.

[7] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and
R. Mirandola. Self-adaptive software needs
quantitative verification at runtime. Communications
of the ACM, 55(9):69, Sept. 2012.

[8] R. Calinescu, L. Grunske, M. Kwiatkowska,
R. Mirandola, and G. Tamburrelli. Dynamic QoS
management and optimization in service-based
systems. IEEE Transactions on Software Engineering,
37(3):387–409, May 2011.

[9] J. Cámara, G. A. Moreno, and D. Garlan. Stochastic
game analysis and latency awareness for proactive
self-adaptation. In Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems - SEAMS 2014, pages 155–164,
New York, New York, USA, June 2014. ACM Press.

[10] H. Chen and S. Hariri. An evaluation scheme of
adaptive configuration techniques. In Proceedings of
the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering
(ASE), pages 493–496, Atlanta, Georgia, USA, 2007.
ACM.

[11] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar,
A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. A. Müller, S. Park,
M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and
J. Whittle. Software engineering for self-adaptive
systems: A research roadmap. Lecture Notes in
Computer Science, 5525:1–26, June 2009.

[12] S.-W. Cheng and D. Garlan. Stitch: A language for
architecture-based self-adaptation. Journal of Systems
and Software, 85(12):2860–2875, Dec. 2012.

[13] M. B. Dias, D. Locher, M. Li, W. El-Deredy, and P. J.
Lisboa. The value of personalised recommender

systems to e-business. In Proceedings of the 2008 ACM
Conference on Recommender Systems - RecSys ’08,
page 291, New York, New York, USA, Oct. 2008.
ACM Press.

[14] P. A. Dinda. Design, implementation, and performance
of an extensible toolkit for resource prediction in
distributed systems. IEEE Transactions on Parallel
and Distributed Systems, 17(2):160–173, Feb. 2006.

[15] S. Duttagupta, R. Virk, and M. Nambiar. Predicting
performance in the presence of software and hardware
resource bottlenecks. In International Symposium on
Performance Evaluation of Computer and
Telecommunication Systems (SPECTS 2014), pages
542–549. IEEE, July 2014.

[16] N. Esfahani and S. Malek. Uncertainty in self-adaptive
software systems. Software Engineering for
Self-Adaptive Systems II, 7475:214–238, 2013.

[17] A. Gambi, D. Moldovan, G. Copil, H.-L. Truong, and
S. Dustdar. On estimating actuation delays in elastic
computing systems. In 2013 8th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), pages 33–42. IEEE,
May 2013.

[18] N. Gamez, L. Fuentes, and M. A. Aragüez. Autonomic
computing driven by feature models and architecture
in FamiWare. In 5th European Conference on Software
Architecture, pages 164–179, Essen, Germany, Sept.
2011. Springer-Verlag.

[19] A. Gandhi, P. Dube, A. Karve, A. Kochut, and
L. Zhang. Modeling the impact of workload on cloud
resource scaling. In 2014 IEEE 26th International
Symposium on Computer Architecture and High
Performance Computing, pages 310–317. IEEE, Oct.
2014.

[20] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and
M. A. Kozuch. Autoscale: Dynamic, robust capacity
management for multi-tier data centers. ACM
Transactions on Computer Systems, 30(4), 2012.

[21] D. Garlan, B. Schmerl, and S.-W. Cheng. Software
architecture-based self-adaptation. Autonomic
Computing and Networking, pages 31–55, 2009.

[22] S. Gerasimou, R. Calinescu, and A. Banks. Efficient
runtime quantitative verification using caching,
lookahead, and nearly-optimal reconfiguration. In
Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems - SEAMS 2014, pages 115–124, New York,
New York, USA, June 2014. ACM Press.

[23] J. Hielscher, R. Kazhamiakin, A. Metzger, and
M. Pistore. A framework for proactive self-adaptation
of service-based applications based on online testing.
In 1st European Conference on Towards a
Service-Based Internet, volume 5377, pages 122–133.
Springer Berlin Heidelberg, 2008.

[24] M. Islam, S. Ren, H. Mahmud, and G. Quan. Online
energy budgeting for cost minimization in virtualized
data center. IEEE Transactions on Services
Computing, PP(99):1–1, 2015.

[25] P. Jamshidi, A. Ahmad, and C. Pahl. Autonomic
resource provisioning for cloud-based software. In
Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing

Systems, pages 95–104, Hyderabad, India, 2014. ACM.

[26] D. L. Keefer. Certainty equivalents for three-point
discrete-distribution approximations. Management
Science, 40(6):760–773, 1994.

[27] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[28] C. Klein, M. Maggio, K.-E. Årzén, and
F. Hernández-Rodriguez. Brownout: building more
robust cloud applications. In Proceedings of the 36th
International Conference on Software Engineering -
ICSE 2014, pages 700–711, New York, New York,
USA, May 2014. ACM Press.

[29] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele,
and C. Becker. A survey on engineering approaches for
self-adaptive systems. Pervasive and Mobile
Computing, Oct. 2014.

[30] M. Kwiatkowska, G. Norman, and D. Parker.
Probabilistic symbolic model checking with PRISM: A
hybrid approach. In Proceedings of the 8th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS
’02), pages 52–66. Springer-Verlag, 2002.

[31] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: verification of probabilistic real-time systems. In
23rd international conference on Computer Aided
Verification, pages 585–591. Springer-Verlag, July
2011.

[32] M. Z. Kwiatkowska and D. Parker. Automated
verification and strategy synthesis for probabilistic
systems. In D. V. Hung and M. Ogawa, editors,
Automated Technology for Verification and Analysis -
11th International Symposium, ATVA 2013, Hanoi,
Vietnam, October 15-18, 2013. Proceedings, volume
8172 of Lecture Notes in Computer Science, pages
5–22. Springer, 2013.

[33] J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. F.
Loureiro, and Q. Wang. Energy efficient GPS sensing
with cloud offloading. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems -
SenSys ’12, page 85, New York, New York, USA, Nov.
2012. ACM Press.

[34] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency
geo-replicated storage. In 10th USENIX Symposium
on Networked Systems Design and Implementation,
pages 313–328. USENIX Association, Apr. 2013.

[35] L. Maatta, J. Suhonen, T. Laukkarinen, T. D.
Hamalainen, and M. Hannikainen. Program image
dissemination protocol for low-energy multihop
wireless sensor networks. In 2010 International
Symposium on System on Chip, pages 133–138. IEEE,

Sept. 2010.

[36] M. Mao and M. Humphrey. A performance study on
the VM startup time in the cloud. In 2012 IEEE Fifth
International Conference on Cloud Computing, pages
423–430. IEEE, June 2012.

[37] J. A. Mccann and M. C. Huebscher. Evaluation issues
in autonomic computing. In H. Jin, Y. Pan, N. Xiao,
and J. Sun, editors, Grid and Cooperative Computing,
volume 3252 of Lecture Notes in Computer Science,
pages 597—-608, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[38] A. Metzger, O. Sammodi, and K. Pohl. Accurate
proactive adaptation of service-oriented systems.
Assurances for Self-Adaptive Systems, 7740:240–265,
2013.

[39] I. D. Paez Anaya, V. Simko, J. Bourcier, N. Plouzeau,
and J.-M. Jézéquel. A prediction-driven adaptation
approach for self-adaptive sensor networks. In
Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, pages 145–154. ACM, 2014.

[40] M. Parashar and S. Hariri. Autonomic computing: An
overview. Unconventional Programming Paradigms,
pages 257–269, 2005.

[41] V. Poladian, D. Garlan, M. Shaw, M. Satyanarayanan,
B. Schmerl, and J. Sousa. Leveraging resource
prediction for anticipatory dynamic configuration. In
Self-Adaptive and Self-Organizing Systems, pages
214–223. IEEE, July 2007.

[42] K. Qazi, Y. Li, and A. Sohn. Workload prediction of
virtual machines for harnessing data center resources.
In 2014 IEEE 7th International Conference on Cloud
Computing, pages 522–529. IEEE, June 2014.

[43] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Transactions
on Autonomous and Adaptive Systems, 4(2):1–42, May
2009.

[44] C. Wang and J.-L. Pazat. A two-phase online
prediction approach for accurate and timely
adaptation decision. 2012 IEEE Ninth International
Conference on Services Computing, pages 218–225,
June 2012.

[45] J. Zhang, Z. Yang, B. H. C. Cheng, and P. K.
McKinley. Adding safeness to dynamic adaptation
techniques. In Proceedings of the ICSE 2004 Workshop
on Architecting Dependable Systems, Edinburgh,
Scotland, 2004.

[46] J. Zhang and B. Zwart. Steady state approximations
of limited processor sharing queues in heavy traffic.

Queueing Systems, 60(3-4):227–246, Nov. 2008.

