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Abstract 
Self-adapting systems based on multiple concurrent ap-

plications must decide how to allocate scarce resources to 
applications and how to set the quality parameters of each 
application to best satisfy the user. Past work has made 
those decisions with analytic models that used current re-
source availability information: they react to recent changes 
in resource availability as they occur, rather than anticipat-
ing future availability. These reactive techniques may model 
each local decision optimally, but the accumulation of deci-
sions over time nearly always becomes less than optimal. 

In this paper, we propose an approach to self-
adaptation, called anticipatory configuration that leverages 
predictions of future resource availability to improve utility 
for the user over the duration of the task.  The approach 
solves the following technical challenges: (1) how to express 
resource availability prediction, (2) how to combine predic-
tion from multiple sources, and (3) how to leverage predic-
tions continuously while improving utility to the user.  Our 
experiments show that when certain adaptation operations 
are costly, anticipatory configuration provides better utility 
to the user than reactive configuration, while being compa-
rable in resource demand. 

1. INTRODUCTION 
Predictive resource management has gained increasing 

mindshare in the pervasive computing research community 
over the past decade.  For example, Satyanarayanan's 2001 
paper on the challenges of pervasive computing [15], identi-
fies prediction as an important desired feature of systems 
that aim to provide an improved and seamless user experi-
ence. One of the scenarios describes how the user's intelli-
gent virtual assistant makes anticipatory decisions based on 
predictions of available wireless bandwidth in different loca-
tions of an airport concourse and helps the user complete her 
communication tasks on time for her departure.  

With the goal of seamless user experience in mind, recent  
self-adaptive systems improve quality of service despite re-
source shortage by using models of user preferences, histori-
cal profiles of application resource intensity, and estimates 
of current resource availability. Such systems partially auto-
mate various system decisions, such as which suite of appli-
cations to run and how to allocate scarce resources among 
concurrent applications with the objective of best satisfying 
the individual preferences of the user. These systems may 
also guide the adaptation of resource-aware applications, 
when more than one dimension of quality is of concern to the 
user, perhaps using a set of preference functions explicitly 
specified by the user for a given task and context. 

A common shortcoming in the behavior over time of such  

self-adaptive systems arises from their purely reactive adap-
tation policies. The analytical models in such systems con-
sider a very small horizon of time for both predictions. As a 
result, when dealing with changes in the operating environ-
ment, e.g., changes in resource availability, these systems 
make decisions based only on recent data, often resulting in 
suboptimal decisions over time.  For example, 
• Aura ([4][12][16]) achieves dynamic behavior by per-

forming re-configurations, which are costly in terms of 
both resource usage and user disruption.  Multiple costly 
re-configurations in response to several changes add up 
to a globally suboptimal utility to the user over time.  

• QRAM [8] admits tasks and allocates resources among 
them based on their utility to the system and resource 
demand intensity.  Running tasks have a priority over 
new ones.  If available resource levels are not sufficient, 
the system will not admit new tasks, even though there 
might be a resource allocation using both running and 
new tasks that improves utility. 
Thus, making decisions without considering future 

changes is myopic and can be suboptimal over the long term. 
Recent results in resource prediction offer an alternative 

to reactive adaptation.  For example, Qiao et al [13] and 
Sang et al [14] have analyzed a significant number of traces 
and have concluded that in many cases, network traffic has 
good predictability.  Using relatively inexpensive linear time 
series models, predictions of network traffic can be done in 
near real time for a meaningful future horizon, e.g., a few 
dozen seconds, or even minutes.  Other sources of predictive 
information are also available, e.g., administrator-announced 
network, CPU and service outages, recurring patterns of re-
source usage that have weekly or daily periods, remaining 
battery level, and models of battery drainage. 

Predictions of resource availability over a meaningful ho-
rizon naturally lead to uncertainty because of randomness 
inherent in the predicted variables and the noisy nature of the 
predictors. A system that uses long-term predictors must 
explicitly deal with the uncertainty in such predictions. 

In this paper, we propose an anticipatory approach to 
self-adaptation, which combines the benefits of resource 
prediction research into an existing framework of dynamic 
configuration.  Specifically, we present an enhanced analyti-
cal model of configuration that improves upon existing reac-
tive models of resource allocation by taking advantage of 
resource predictions from multiple sources.  We also present 
a set of resource allocation algorithms that leverage predic-
tive information to the benefit of the user.  We demonstrate 
that these new algorithms improve upon the earlier reactive 
algorithms while remaining feasible for real time evaluation.  

In this work three main results address key challenges in 
engineering a system for anticipatory configuration.  First, 
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we define a mathematical notation for expressing uncertainty 
in predictors that is consistent with resource prediction lit-
erature.  Next, we define a calculus for combining predic-
tions from multiple sources into an aggregate prediction. 
Third, we present an efficient online algorithm of anticipa-
tory configuration that leverages predictive information. 
Theses results constitute a modest contribution towards the 
challenges identified by Satyanarayanan. 

The rest of the paper is structured as follows.  Section 2 
surveys related work and highlights the novelty of this work.  
Section 3 defines important terms, enumerates the require-
ments for anticipatory configuration, and presents our ap-
proach, including a notation for predictors and combining 
calculus.  In Section 4, we describe the algorithms for antici-
patory configuration and analyze their theoretical running 
times.  Section 5 presents the results of runtime experiments 
comparing several approaches to configuration, including 
anticipatory and reactive.  The evaluation of our approach 
and enumeration of software engineering benefits in Section 
6.  We summarize the conclusions in Section 7. 

2. RELATED WORK 
Self-adaptive systems such as QRAM [8], Aura [12][16], 

Nemesis [10], and Odyssey [9][11], incorporate models of 
user preferences, application behavior, and resource avail-
ability to optimize some measure of user satisfaction.  
QRAM is a general framework for quality of service man-
agement, while Aura is a configuration (self-adaptation) in-
frastructure for pervasive computing.  Both systems imple-
ment a centralized resource arbiter that makes resource allo-
cation decisions.  Nemesis employs a decentralized approach 
based on congestion pricing to optimize resource allocation 
among concurrent applications.  Initial work on Odyssey 
addressed agile adaptation mechanisms [11].  Later, Naraya-
nan et al [9] demonstrated how instantaneous predictions can 
help improve the response times of interactive applications. 

All of the above systems are reactive in adaptation poli-
cies. These systems have short prediction horizons and con-
sider the predictions to be exact.  Our approach differs from 
the above systems in three respects.  Our model has a predic-
tion horizon of dozens of seconds or minutes, deals with 
uncertainty of predictions, and makes anticipatory decisions. 

NWS [17] and RPS [1] are tools for gathering and ana-
lyzing resource demand and supply. Dinda [3] presents a 
comprehensive overview of prediction using linear time se-
ries models. A number of studies (Qiao [13], Sang [14], 
Wolski [18]) have demonstrated that: (1) resources have 
good predictability and (2) when resources are predictable, 
inexpensive models with autoregressive (AR) components 
work just as well as more complex schemes. Qiao et al [13] 
conjecture that resource prediction can be done online, using 
software running on routers or compute servers.  Gurun et al 
designed a lightweight version of NWS called NWSLite 
suitable for mobile and pervasive devices [6]. 

Anticipatory configuration is similar to online stochastic 
combinatorial optimization (OSCU) problems such as packet 
routing and vehicle dispatch ([2][6]). While the problem 
domains are different, each dynamic configuration algorithm 

has an analog in OSCU. The Reactive, Perfect, and Expecta-
tion algorithms in dynamic configuration are respectively 
called Local, Offline, and Expectation in OSCU. 

3. APPROACH 
We now introduce the problem of anticipatory dynamic 

configuration, discuss the specific technical challenges that 
we addressed in this work, and describe our approach.  Be-
cause anticipatory configuration builds on an earlier model 
of reactive configuration, we briefly review the pertinent 
details of that model first. 

3.1 Terminology 
Following [16], we define the set of computational de-

vices, applications, and resources available to a user in a 
location as the environment.  Applications and devices pro-
vide services, which are abstract descriptions of the applica-
tion capabilities, identified by service type, e.g. “play video”, 
“edit text”, “browse web”.  A specific application on a spe-
cific device is called a supplier.  Users carry out tasks to 
work on their everyday projects, e.g., plan a vacation, pro-
duce a report, or review a video clip.  A task specifies the 
use of one or more simultaneous services for the duration of 
the activation of the task.  Each task might be activated sev-
eral times, possibly in different locations. 

Applications use computational resources (such as CPU 
cycles, network bandwidth, disc, memory, and battery en-
ergy) to provide service to the user.  In many environments 
resources are scarce and can change over time.  Some appli-
cations are resource and fidelity aware, able to provide lower 
level of service in one or more quality of service (QoS) di-
mensions while consuming fewer resources.  Lower quality 
service allows the user to make progress on his task, al-
though his satisfaction from the task might be lower. 

A suite of applications that can satisfy a task is called a 
supplier assignment.  There might be multiple candidate 
assignments for a task in an environment, because each ser-
vice in the task might be satisfied by alternative available 
applications.  A resource allocation is a set of resource vec-
tors, one per supplier in an assignment.  Each of these vec-
tors specifies the maximum amount of a resource that the 
application should consume.  A QoS set-point is a vector of 
QoS levels that the application should meet.  A configura-
tion is a triple of supplier assignment, resource allocation 
and QoS set-points. 

The problem of configuration is to find a configuration 
that maximizes user’s utility.  Utility depends on the suppli-
ers in the assignment as well as QoS set-points. 

In the earlier model of configuration [12], utility is an in-
stantaneous measure of a user’s satisfaction.  That model 
works reactively, by considering only snapshots of current 
resource availability in the resource allocation and configu-
ration selection.  As resource availability changes, the reac-
tive model performs reconfiguration, changing the previous 
configuration if there is gain in instantaneous utility.  Thus 
the solution in the reactive model maximizes instantaneous 
utility in a series of locally optimal decisions.   
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In contrast, an anticipatory model of configuration con-
siders future resource availability predictions, and chooses 
sequences of configurations over the duration of the task, 
and maximizes the expected value of utility accrued over the 
duration of the task. 

3.2 Challenges 
The principal goal in this work is to improve the quality 

of service to the user in an existing framework of dynamic 
configuration by leveraging resource predictions. To do so, 
we must address the following three requirements: 

R1. Define a measure of accrued utility that captures the 
temporal dimension of anticipatory configuration. 

To make globally optimal decisions, the utility function 
of the user needs to be enhanced.  The enhanced notion of 
utility should: (1) incorporate the temporal dimension of the 
anticipatory configuration and guide globally optimal deci-
sion-making, (2) represent a user’s satisfaction with service 
quality over a period of time, while capturing the relevant 
attributes of a task, as before, and (3) allow for comparison 
of anticipatory and reactive configuration models. 

R2. Express and combine predictive information about 
future resource availability from multiple predictors. 

One part of the challenge here is to express predictive in-
formation in a way that is consistent with existing prediction 
literature.  Second part of the challenge is to aggregate pre-
dictions from multiple sources. 

R3. Design efficient on-line algorithms for anticipatory 
configuration that improve expected utility for the user. 

The new algorithms for anticipatory configuration must 
make online decisions under uncertainty.  Such algorithms 
must balance the runtime resource overhead and latency with 
optimal decision making.  These algorithms should demon-
strate improvement over those in the reactive model under 
reasonable assumptions of predictor accuracy. 

3.3 Utility 
3.3.1 Utility in the Reactive Model 
Utility is a measure of user satisfaction with respect to 

the running state of the systems.  In the model of reactive 
configuration, the system is concerned with instantaneous 
utility (IU), which has three parts: affinity for applications, 
preference for quality of service, and penalty for switching.  
The first part in the instantaneous utility allows the user to 
express his preference for specific applications.  For exam-
ple, the user might specify that among video players he 
strongly prefers Windows Media Player, but might also be 
happy with QuickTime or RealOne Player by giving scores 
to each of these choices.   Furthermore, he might also accept 
any other video player, but score them below either Quick-
Time or RealOne. 

The second part in the utility is collection of preference 
functions and weights that allow the user to express a desired 
level of service in each QoS dimension as well as trade-offs 
among different dimensions.  Using a preference function for 
each QoS dimension, the user specifies how much he values 
improvement or deterioration of service along that dimen-

sion.  Using a scalar weight, the user specifies how important 
that dimension is relative to others. 

The third part in the utility allows the user to specify 
penalties for disruptive changes.  This is to discourage the 
system from switching currently running applications, unless 
the gain in utility is sufficiently large.  For each service in 
the task, switching of applications is penalized by a scalar 
amount.   

The instantaneous utility is combination of the three 
parts.  Appendix A has the formal expression of IU. 

3.3.2 Utility in the Anticipatory Model 
In the model of anticipatory configuration the objective 

of the system is to maximize the accrued utility.  We use a 
discrete time model by dividing the duration of the task into 
T equal windows, and index each using variable t, 0 � t < T.  
Let Seq denote a sequence of T-1 configurations, one per 
each window in the duration of the task:   Seq = {Seq0, 
Seq1,…,SeqT-1}, where each Seqs is a configuration chosen to 
run during period s.  The accrued utility (AU) of the se-
quence Seq is defined as: 

where in the expression of the instantaneous utility we 
include both the current and previous configuration.  In other 
words, the accrued utility over a time period is the sum of 
instantaneous utilities during that time period. 

3.4 Supplier (Application) Profiles 
Applications use resources to provide service.  Typically, 

providing a better level of service requires the use of more 
resources.  Using historical profiling [9], it is possible to find 
an application’s resource requirement for each level of qual-
ity of service.  An application profile is an enumeration of 
resource and QoS vector pairs, where the resource vector is 
the required level of resources for providing the level of ser-
vice specified by the QoS vector. 

In the anticipatory configuration model we continue to 
assume that application profiles are static, i.e. they are com-
puted using offline profiling, don’t change over time, and are 
sufficiently accurate. 

3.5 Resource Availability Predictions 
3.5.1 Resource Availability in the Reactive Model 
In the reactive models of configuration, only the current 

level of resource availability is modeled. 
The anticipatory model explicitly incorporates predic-

tions of future resource availability.  Next we discuss the 
details of resource prediction. 

3.5.2 Resource Prediction 
Ideally, a prediction for the available level of a resource 

is a probability density function for a future time of predic-
tion s and the current time, t.  For each possible level r of the 
resource, the function predicts the probability that the re-
source will be at that level at time t.  Thus, the available 
level of resource R at time s is a random variable, Rs.  To 
capture the fact that the prediction is made at time t, we use 
the following notation: Rs|t, which is the conditioning of the 
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random variable Rs based on the information available at 
time t. 

A generalized predictor for resource R at time t, 0 � t < 
T, is a set of probability density functions, one for each s, s� 
t, of the random variable Rs|t. 

In practice, a predictor might not provide the complete 
distribution of the resource for all future times s.  For exam-
ple, a prediction from one source might be that with 100 
percent probability, the available resource level can not ex-
ceed a certain threshold.  Another source might predict a 
surge or drop in the resources around a specific time. 

3.5.3 Types of predictors 
We define three types of resource predictors: linear re-

cent history, relative move, and bounding predictors. 
A linear recent history predictor is any predictor that 

uses recent history and a linear time-series model to predict 
the next value in the series of resource availability.  This 
predictor is motivated by existing literature [3].  We consider 
autoregressive (AR) models of low orders.  Moving Average 
(MA) and auto-regressive moving average (ARMA) models 
can be easily handled in a similar manner by the anticipatory 
configuration algorithms. 

Formally, an autoregressive linear recent history predic-
tor of order p for resource R is an equation of the form: 

Rt+1|t = �1  r t  + �2 r t-1+ … + �p r t-p+1 + Z t+1, 
where r i are the previous p observations of the resource (the 
small letters indicate that these numbers are not random), �i 
are parameters of the model and are known at prediction 
time, and Z t+1 is a normal random variable with mean 0 and 
variance �, Z t+1 ~ N(0, �). 

Notice that the prediction we have is only one step ahead.  
However, we can easily express Rt+2|t using Rt+1|t, the previ-
ous p-1 observations, and Z t+2, an additional normal random 
variable which is independent of Z t+1. 

There might be opportunities for prediction that are not 
captured by a linear predictor. For example, by observing 
resource demand changes (surges and drops) and correlating 
these with calendar information, it might be possible to pre-
dict such changes and their length in the future.   

The second, relative move predictor predicts step-up or 
step-down changes in resource availability.  Formally, a rela-
tive move predictor is a set of tuples <s, M>, where s is the 
time of prediction and M is the possibly random magnitude 
of the predicted move.  For the purposes of this work, we 
will assume that M is normally distributed, M ~ N(�,�).  For-
mally, if rm is a relative move predictor, then rm = {<s,M>}. 

The third, bounding predictor specifies the maximum and 
minimum possible level of resource availability for a union 
of time intervals.  A bounding predictor is motivated by the 
availability of various sources of information, such as the 
maximum bandwidth specification of a DSL line, signal 
strength and type of WiFi network.  In case of CPU, the 
maximum available level is available from hardware specifi-
cation and from the power saving settings. 

3.5.4 Predictor Calculus 
We now define a calculus for combining multiple predic-

tors into an aggregate prediction. Let L denote the set of all 

linear predictors, RM denote the set of relative move predic-
tors, B denote the set of bounding predictors.  We define 
operations on predictors as follows. 

Boosting of two linear predictors: if l1 and l2 are predic-
tors in L, then l3 = l1 x l2 is a linear predictor.  The term 
boosting refers to the machine learning technique that allows 
improved prediction or classification by combining multiple 
predictors or classifiers.  Simple averaging is boosting, al-
though a good booster should reduce the prediction error by 
finding correlations among the predictors.  

Concatenation of two relative move predictors: if rm1 
and rm2 are predictors in RM, then rm3 = rm1 � rm2 is also a 
relative move predictor.  If rm1 and rm2 have conflicting 
predictions, i.e. one of the predictions in rm1 is for the same 
time period as another prediction in rm2, we can simply 
combine those two predictions by adding the random moves.  
Otherwise, the predictions are combined by taking the union 
of the two sets of predictions. 

Addition of a relative move predictor to a linear predic-
tor: if rm1 is in RM and l1 is in L, then gp1 = l1 + rm1 is a 
generalized predictor that combines the relative moves pre-
dicted by rm1 into the linear prediction of l1. 

Bounding of a generalized predictor by a bounding pre-
dictor: if gp1 is a generalized predictor and b1 is a bounding 
predictor in B, then gp2 = gp1 || b1 is a generalized predic-
tor that is the bounding of gp1.  Bounding limits the support 
of any probability density function to the interval specified 
by b1. 

Intuitively, a linear predictor finds self-correlations in the 
recent history of resource availability.  A relative move pre-
dictor finds periodic patterns of resource increases or de-
creases that are not reflected in the recent history.  The effect 
of a relative move is in addition to the prediction of a linear 
predictor (hence justifying the operation of addition).  A 
bounding predictor limits the range of resource availability. 

Let’s see the predictor calculus in action by the way of a 

simple example.  Suppose l1 and l2 are linear predictors, 
rm1 and rm2 are relative move predictors and b1 is a bound-
ing predictor.  Then l1 x l2 + rm1 � rm2 || b1 = {(l1 x l2) + 
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band of the sum of linear and relative move predictors.  

The Y axis is in abstract units of resource. 
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(rm1 � rm2)} || b1.  In other words, we first apply all boost-
ing operations to obtain one linear predictor.  Next we apply 
all the concatenation operations until one relative move pre-
dictor remains.  Then we perform addition with the only re-
sulting linear predictor and the only resulting relative move 
predictor.  After that, we apply as many bounding operations 
as there are bounding predictors. 

Figure 1 shows resource predictions using 3 curves.  The 
middle curve is the expected value (mean) of the predicted 
level of the resource.  The top curve is one standard devia-
tion above the mean and the bottom curve is one standard 
deviation below the mean.  This predictor was obtained by 
the addition of a relative move predictor (rm1) to a linear 
predictor (l1). 

3.6 The Formal Optimization Problem 
Informally, the optimization problem at hand is one of 

choosing a sequence of configurations over the duration of 
the task, such that the expected value of accrued utility is 
maximized given the aggregate knowledge of all resource 
predictors.  There are two constraints to the optimization 
problem: (1) the level of quality of service of each supplier is 
bound by the supplier’s historical QoS vs. resource profile, 
and (2) the sum of resource demands of the suppliers in the 
running configuration in each time period can not exceed the 
actual resource supply. 

Let Set(Seq) be the set of all possible configuration se-
quences.  Let QoSProfsupp denote the QoS vs. resource pro-
file for the supplier identified by supp.  Let rrrrs|s denote the 
actual resource availability vector for each time period s, 0 � 
s<T.  Let Seq denote a sequence of configurations: Seq = 
{Seq0, Seq1,…,SeqT-1}, where each Seqs specifies a supplier 
assignment.  Then the objective of anticipatory configuration 
is to maximize: 

 
given the knowledge of all the resource predictors and sub-
ject to the following constraint for each s, 0 � s<T: 

The inequality in the above constraint is understood for 
each resource dimension separately and must hold for any 
combination of quality set-point choices (denoted by of fSupp) 
among the suppliers of Seqs. 

4. ALGORITHMS AND ANALYSIS 
An algorithm for anticipatory configuration should 

maximize the expected accrued utility over the duration of 
the task.  At each time step, an algorithm decides which as-
signment of the suppliers to choose as well as how to allo-
cate resources among them.  First we describe some prereq-
uisite computation.  Next, we describe two different algo-
rithms for anticipatory configuration. 

4.1 Prerequisite Algorithms 
4.1.1 Resource sieve and resource scenarios 
For tractability purposes, we discretize the available lev-

els of resources.  For each resource, we enumerate the possi-
ble available levels of that resource.  Then we consider the 
Cartesian combinations of the available levels of all the re-
sources.  We call this the resource sieve.  And we call each 
point in the sieve a resource scenario. 

For example, if the environment includes one laptop, and 
one of the resources under consideration is the CPU of the 
laptop, then the possible available levels of the CPU can be 
anywhere from 0 to 100 percent of the maximum, in 4 per-
cent increments. 

Another resource of interest, downstream TCP band-
width, might have 13 levels: 100, 150, 200, 250, 300, 350, 
400, 500, 600, 700, 800, 900, 1000 (all in kbps).  These lev-
els are based on the available suppliers and their resource 
intensity for various levels of quality of service. 

With two resources, CPU and bandwidth, as described 
above, the resource sieve will have 26 * 13 = 338 resource 
scenarios.  We generate resource scenarios using an ad-hoc 
enumeration and call this algorithm GenResourceSieve. 

4.1.2 Supplier assignments 
For each service in a task, there may be multiple avail-

able suppliers in the environment that can satisfy that ser-
vice.  For example, for a “play Video” service, on a typical 
Windows system there might be as many as 4 applications to 
choose from: Windows Media Player, RealOne Player, Ap-
ple QuickTime, iTunes.  The same applies for browsers, e-
mail readers, text editors, compilers, etc. 

Recall that a supplier assignment is an assignment of one 
application for each service in the task.  A task can have 
multiple supplier assignments.  We generate all possible sup-
plier assignments using ad-hoc enumeration and call this 
algorithm GenSuppAssignments. 

We now present three lemmas that help in computing in-
stantaneous utility and designing the algorithms: 

Lemma 1:  affinity for applications depends only on the 
choice of a supplier assignment and does not depend on the 
level of available resources in the past, present, or future. 

Lemma 2:  the switching penalty depends only on the 
supplier assignments in the previous and in the current time 
period. 

Lemma 3:  QoS utility depends only on the current as-
signment of suppliers and current resource availability. 

These lemmas follow directly from the definition of in-
stantaneous utility.  Armed with these three lemmas, we per-
form the following computations. 

Penalty(SA1, SA2): for each pair of candidate supplier 
assignments, SA1 and SA2, compute the penalty in the hypo-
thetical situation when switching from SA1 to SA2 by com-
plete enumeration of all pairs and store the result in a two-
dimensional array. 

SuppPrefScore(SA): for each candidate supplier assign-
ment, SA, compute the portion of instantaneous utility that is 
due to application preference and store the results in a one-
dimensional array. 
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OptInstQoS(SA, RS): for each supplier assignment, SA, 
and each resource scenario, RS, compute the optimal re-
source allocation among the suppliers in SA when the cur-
rent level of resources is given by RS.  Also determine the 
QoS set-points for each supplier and the resulting utility.  
The mrmd algorithm in [8] solves the resource allocation 
problem all resource scenarios at once, using dynamic pro-
gramming.  The running time of the algorithm is proportion-
ate to the size of the resource sieve. 

4.2 Algorithms For Anticipatory Configuration 
The first algorithm, OptAccUtilPerfect, maximizes actual 

accrued utility in the case when resource predictions are 
known precisely.  The second, OptAccUtilExpectation, ex-
plicitly deals with uncertainty in resource predictions and 
works by maximizing the expected accrued utility. 

4.2.1 Algorithm for No-Uncertainty Prediction 
In the simplest case of anticipatory configuration, we as-

sume that the resource predictors are error-free.  Under this 
unrealistic assumption, the predictions are exact resource 
paths into the future for the duration of the task and as time 
goes by, this proves to be true.  The benefits of considering 
this case are two-fold: (1) we would like to find out if antici-
patory configuration is ever better than reactive configura-
tion and (2) we create a shared routine that can be invoked in 
hind-sight for comparison purposes. 

Prediction in this case is a vector of snapshots: RS(s), 
where 0 � s < T and each RS(s) is a resource scenario. 

We find a sequence of configurations that maximize the 
accrued utility using dynamic programming.  Let’s define 
PartMaxAU(j,s) to be the maximum partial accrued utility 
possible if the task were to run starting from time period s till 
time period T and if supplier assignment with index j were 
chosen to run at time s.  To demonstrate how the dynamic 
programming algorithm would work, we show the terminal 
condition and the recursive rule: 
• PartMaxAU(j,T-1) = OptInstQoS(j,RS(T-1) + 

SuppPrefScore(j), because T-1 is the last time period. 
• PartMaxAU(j,s) = maxk { OptInstQoS(j, RS(s)) + 

SuppPrefScore(j) + Penalty(j,k) + PartMaxAU(k,s+1)}. 
The first three terms in the last sum are pre-computed 

and together add up to the instantaneous utility possible 
when choosing to run supplier assignment j in period s.  The 
fourth term is the future partial accrued utility from time 
period s+1 till the end of the task if supplier assignment with 
index k is chosen next.  In addition to recording the maxi-
mum utility, we also record the value of k for which that 
maximum is achieved. 

The dynamic programming algorithm will start from time 
period T-1 to compute PartMaxAU(j,T-1) and work back-
wards in time in a simple loop to compute PartMaxAU(j,s).  
The maximum of PartMaxAU(j,0) over all possible supplier 
assignments j will be the maximum possible accrued utility 
for the task.  The sequence of supplier assignments is also 
recorded.  We call this algorithm OptAccUtilPerfect. 

Next we analyze the runtime complexity of the algorithm.  
To help in this analysis, we define the following variables: 

• nServices, the number of services in the task, 
• nAltSupp, the typical number of alternative suppliers for 

each service type, 
• nResources, the number of resources, 
• nResPoints, the number of different resource points for 

a typical resource, 
• nRSieve, the size of the resource sieve or the number of 

different resource scenarios.  This number is 
O(nResPoints^ nResources). 

• nSA, the number supplier assignments. This number is 
O(nAltSupp^ nServices). 

• nQoS, the number of maximum different possible QoS 
points among all suppliers, 

• T, the duration of the task or the number of time periods. 
Here are the running times of the prerequisite algorithms: 

• GenSuppAssignments is O(nSA*nServices), 
• GenResourceSieve is O(nRSieve), 
• Penalty is O(nSA*nSA), 
• SuppPrefScore is O(nSA), 
• OpUtil is O(nQoS*nRSieve*nSA), 
• OptAccUtilPerfect is O(nSA*nSA*T). 

After adding the running times of the above algorithms, 
the following two terms dominate all the others: 
• O(nQoS*nRSieve*nSA) + O(nSA*nSA*T). 

We conclude that the running time is pseudo-polynomial 
with respect to the inputs of the problem.  We argue that this 
algorithm is feasible for online computation. 

<double, int> OptAccUtilFullSearch(int t,int s,  
             Vector RPath (0..s),  
             Vector Seq(-1..s-1),  
             Vector RPred(s+1..T-1) ){ 
 <RSim[],Prob[]> = SimRScenario(s+1,  
          RPath (0..s), RPred(s+1..T-1)); 

  for each a in SA { 
    Seq(1..s+1) = Seq(1..s), SA[a]; 
    double instUtil = OptInstQoS(a, RPath[s]) + 
       SuppPrefScore(a) + Penalty(a,Seq(s-1)); 
    double expUtilFuture = 0; 
    if ( s < (T-1) )  // termination condition 
      for each rs in RSim { 
        RPath(0..s,s+1) = RPath(0..s),RSim[rs]; 
        <U,next> = OptAccUtilFullSearch (t, 
             s+1, RPath(0..s+1), 
             Seq(-1..s), RPred(s+2..T-1)) ; 
        expUtilFuture += Prob[rs] * U; 
      } 
     // find + record max of expUtilFuture 
  } 
  return <maxExpAccU, bestSA>; 
} 
AnticipatoryDynConfig() 
{ 

Obtain RHistory; 
Initialize RPath = RHistory, Seq, RPred; 

    for s = 0 to T-1  { 
    <util, a> = OptAccUtilFullSearch (s, s, 
              RPath(0..s), Seq(-1..s-1), 
              RPred(s+1..T-1); 
    ExecuteConfig(a, RHistory(0..s), prevSA); 
    Update RHistory, RPath; 
    UpdatePred(RPred, RPath[s+1]); 
    prevSA = a; 
  } 
} 

Figure 2: The Full Search Anticipatory Algorithm. 
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4.2.2 Algorithm for Uncertainty in Prediction 
In practice, resource predictors are noisy, and an antici-

patory algorithm must handle the noise in the predictors. 
Figure 2 shows a generic algorithm that maximizes the 

expected value of accrued utility when predictors are noisy. 
The algorithm, OptAccUtilFullSearch, simulates likely 

paths of resources and computes the expected future accrued 
utility along these paths for each candidate supplier assign-
ment.  t is the current time, s is the time of simulation and is 
continually rolled forward, RPath contains actual resource 
availability history up to time t and simulated resource his-
tory up to time s, Seq contains supplier assignments that are 
selected to run at each time, RPred contains the predictor 
objects conditional on information up to time s. 

The algorithm first simulates possible resource states and 
their probabilities for the next time period.  Next it cycles 
through all candidate supplier assignments and calculates the 
expected future accrued utility in the hypothetical case when 
a particular supplier assignment is selected to run in the cur-
rent time period.  The expected future utility is calculated in 
the inner loop by iterating through the simulated resource 
states and computing the probability weighted average of 
future expected utility from each state.  The instantaneous 
utility from running that supplier in the current period is 
added to the expected future accrued utility. 

The AnticipatoryDynConfig routine is the entry point of 
configuration.  This routine is responsible for “rolling” time 
forward, injecting the system with actual resource availabil-
ity information, executing (starting / stopping) the necessary 
applications and setting their runtime state. 

The algorithm computes the maximum expected accrued 
utility as defined in section 3.6.  However, because of the 
liberal use of recursion, the running time of the algorithm is 
exponential in T.  Indeed, the algorithm does a complete 
scan of all possible simulated resource paths, with a branch-
ing factor proportionate to nSA*nRSim, the latter being the 
number of simulated resource state at each recursive step.  
Even for small problem sizes the running time of the algo-
rithm can quickly escalate. 

We considered several possibilities to overcome this 
problem. By memoizing computation results and using dy-
namic programming, we can reduce the running time, but 
will need exponential storage space. We can also partially 
memorize computation results, rearrange the two loops, and 
reduce the branching factor of the recursion, but this will not 
reduce the running time below exponential.  We also consid-
ered Monte Carlo simulation. 

We discovered that reducing the depth of the recursive 
search does not affect the optimality of the algorithm dra-
matically, but reduces the running time to less than exponen-
tial. We modify the Full Search algorithm, by limiting the 
depth of complete simulations to a configurable parameter.  
For the remainder of the search, we obtain an approximation 
of future expected accrued utility using the OptAccUtilPer-
fect algorithm over the expected path of the resources.  We 
call this modified algorithm OptAccUtilExpectation. 

5. EXPERIMENTS 
We implement the algorithms from Section 4 and the re-

active model. We experimentally compare the algorithms 
along two metrics: (1) the actual accrued utility to the user 
over the duration of the task and (2) runtime efficiency. 

5.1 Experimental Setup 
The basis for our experiments is a task of a newspaper 

movie critic, who watches clips and writes reviews.  This 
task has 2 services: video playing and browsing.  The user 
simultaneously watches streaming clips using a video player 
and searches for information using a browser.  Both the 
browser and the server support levels of data compression 
and the server can provide content at varying levels of fidel-
ity (e.g., text-only, images, multi-media).  There are three 
alternative applications for video playing and three alterna-
tive applications for browsing, generating 8 alternative sup-
plier assignments (nSA). 

The model requires three inputs: (1) user preferences, (2) 
application profiles, and (3) resource availability predictions.  
We profile 6 applications: 3 video players and 3 browsers. 
As an experimental platform, we use a relatively old IBM 
T30 laptop that can operate in power-saving mode and limit 
the available CPU level to a percentage of the maximum.  
For user preferences, we use synthetic data. 

In this case study we consider 2 resources: CPU and 
bandwidth.  For CPU availability predictions, we use only 
relative move and bounding predictors, because the user is in 
complete control of his hardware and there are no external 
demands on the CPU to require the use of a linear predictor.  
Variations in CPU availability come from a number of 
sources: (1) whether the laptop is plugged into an outlet or 
not, (2) planned background tasks (e.g., virus checker or 
backup).  For bandwidth prediction, it is appropriate to use a 
linear predictor.  We combine an AR(5) with several relative 
move predictors (so a bandwidth prediction very much looks 
like the graph in Figure 1). 

We create a resource sieve of about 350 points (nRSieve) 
and consider a task of duration 25 (T).  Based on these num-
bers, OptAccUtilFullSearch is not feasible to run online. 

5.2 Algorithm Comparisons 
5.2.1 Comparisons in Utility to User 
We now address the following questions.  Under what 

conditions is anticipatory configuration better than reactive 
configuration? How do we quantify the improvement? 

These factors influence whether anticipatory configura-
tion can outperform reactive configuration: 
• The magnitude of switching (re-configuration) costs 

relative to other components of instantaneous utility, 
• Similarity of the profiles of suppliers. 

If there are no switching costs, or those costs are very 
small, then several locally optimal decisions provably add up 
to a globally optimal decision.  In that case, reactive configu-
ration is temporally globally optimal. 

With respect to the second factor, consider the extreme 
case when all the suppliers providing the same service have 
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identical application profiles, i.e. their resource requirements 
for each QoS level are identical.  Mathematically, the prob-
lem reduces to having only one supplier assignment, and 
there is never a need to switch suppliers to capture better 
utility when resources change. 

We have observed that suppliers offering the same ser-
vice can have vastly different resource requirements.  Appli-
cations from large commercial vendors tend to be feature-
rich and resource-intensive, while open-source applications 
tend to be more efficient.  Also, different vendors offer dif-
ferent runtime options in their applications, contributing to 
the diversity of application resource profiles.  Thus, even 
with static user preferences, the ranking of the supplier as-
signments changes under different resource scenarios. 

Assuming the above factors are satisfied, there are two 
reasons why reactive configuration might under-perform 
anticipatory configuration.  First is thrashing and is likely to 
occur when switching penalties are small (but not insignifi-
cant).  Oscillating resource paths will force reactive configu-
ration to change supplier assignments and pay switching 
penalty frequently.  The second reason is lack of amortiza-
tion of switching costs over multiple time windows and is 
likely to occur when penalties are relatively high.  Reactive 
configuration might not find it optimal to switch a configura-
tion when resources change, although doing so will pay in 
the long term, if the resources persist at that level. 

To investigate these questions, we performed experi-
ments of 1000 trials that compared the actual accrued utility 
achieved by 4 different algorithms under the same resource 
conditions: OptAccUtilPerfect, OptAccUtilExpectation, Re-
active, and Random.  Random randomly selects a supplier 
assignment in the beginning of the task and commits to that 
assignment throughout the task.  As resources change, Ran-
dom can change the resource allocation to maximize QoS 
portion of IU.  Obviously, Random does not incur penalties 
since it can’t switch the suppliers. 

We calculated the average accrued utility achieved over 
1000 trials for each algorithm.  Next, we computed GainRe-
active as the difference between the average utility of Reac-
tive and Random.  Similarly, we computed GainAnticipatory 
as the difference between the averages of OptAccUtilExpec-
tation and Reactive.  We computed Handicap as the differ-
ence between OptAccUtilPerfect and OptAccUtilExpecta-
tion.  Since OptAccUtilPerfect is run after the resource 
availability is known for the entire duration, it calculates the 
maximum possible accrued utility for that resource path. 

We varied the sigma parameter of the linear predictor 
from 1% to 33% of the mean (This parameter determines the 
range of the one-standard deviation band around the pre-
dicted mean).  Figure 3 shows the resulting graph. 

 From the graph, we conclude that: 
• With accurate prediction, GainAnticipatory exceeds the 

GainReactive by a factor of 3-4.  As prediction accuracy 
falls, GainAnticipatory disappears, 

• With accurate prediction, OptAccUtilExpectation per-
forms very close to OptAccUtilPerfect,. 

We also tallied the number of beat OptAccUtilExpecta-
tion exceeded Reactive.  The results are in Figure 4. 

We investigated the effect that the relative magnitude of 
the switching penalty has on the algorithms.  We confirmed 
that when penalties are very small, there is no substantial 
difference in the utility of the Anticipatory (Perfect or Ex-
pectation) and Reactive algorithms.  This is consistent with 
the observation made in the beginning of this sub-section. 

5.2.2 Runtime Efficiency 
To evaluate the runtime efficiency of the anticipatory al-

gorithms, we measure the resource (CPU) demand and la-
tency of one configuration decision. 

We measure the time it takes to make one configuration 
decision using the standard C clock() function.  For OptAc-
cUtilExpectation, we vary the depth of recursive simulation 
from 2 to 6 (experiments for section 5.2.1 used value of 3).  
We use two different CPU speed settings: maximum and 
slowest possible.  The results in Table 1 show that the la-
tency of one configuration decision is very small. 

Comparison of Configuration Algorithms
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Table 1: running times of one invocation of the algo-
rithm, OptActUtilExpectation, in milliseconds. The row 
labels show the simulation depth, and the column labels 

show CPU speed.  CPU is 100 percent utilized. 
 2 3 4 5 6 
Max 0.50 1.95 7.65 24.20 72.50 
Slow 1.71 6.15 23.30 72.00 201.50 

 
The latencies of both OptAccUtilPerfect and Reactive 

algorithms are in the nanoseconds and have the same order 
of magnitude.  For comparison, OptAccUtilExpectation with 
simulation depth of 2 is about 40 times slower than either of 
the former two.  Since the configuration framework has other 
overheads (communication, application control), the addi-
tional time required by the anticipatory algorithm is not sig-
nificant. 

Anticipatory configuration requires one invocation of the 
algorithm during each time period.  The resource demand of 
the algorithm depends on the size of the time window.  This 
size depends on a number predictor and application parame-
ters, but is on the order of dozens of seconds.  Thus, we con-
clude that the OptAccUtilExpectation algorithm can run in 
near-real-time with very little CPU demand. 

6. EVALUATION 
We now refer to the requirements set earlier in the paper 

and discuss how our work has addressed those.  Next, we 
enumerate the engineering benefits of our work. 

6.1 Addressing the Requirements 
R1. Define a measure of accrued utility.  We have intro-

duced a discrete time model and defined accrued utility as 
the sum of instantaneous over the duration of the task.  Ac-
crued utility represents user’s satisfaction with the running 
state of the task over the entire duration, is backwards com-
patible to the reactive model of configuration and allows 
comparisons between algorithms, satisfying this requirement. 

R2. Express and combine prediction into the model.  We 
have formalized three representative predictors and defined a 
predictor calculus.  The linear recent history predictor is 
grounded by resource prediction research and factors in un-
certainty of predictions.  The other two predictor types are 
motivated by other sources of available information. 

R3. Design optimal and efficient algorithms for anticipa-
tory configuration.  We have designed and experimented 
with two anticipatory algorithms. OptAccUtilPerfect pro-
vides a benchmark for maximum possible accrued utility 
when resource predictions are exact, while OptAccUtilEx-
pectation explicitly handles uncertainty in predictors.  With 
reasonable accuracy of predictors, we have demonstrated 
that OptAccUtilExpectation nearly always performs better 
than Reactive and the gain in utility is substantial. 

We have also demonstrated that OptAccUtilExpectation 
is fast and resource efficient, and can be used online on a 
resource constrained platform. 

6.2 Engineering Benefits 
We have presented the design and partial implementation 

of a self-adaptive system that leverages resource predictions 
for user preference-driven application configuration and re-
source allocation.  We argue that our solution addresses a 
number of important engineering concerns: (1) combining 
multiple sources of predictive information, (2) optimal deci-
sion making under uncertainty, and (3) runtime efficiency. 

Our approach defines three predictor types and a calculus 
for combining information from multiple sources into a sin-
gle generalized prediction.  The model allows expressing 
near and long term predictions about resource availability.  
To the best of our knowledge, previous adaptive systems 
have not considered multiple sources of information. 

The second benefit of our approach is demonstration of 
improved decision making under uncertainty.  Presently, 
many systems choose to ignore uncertainty: they operate by 
waiting and then reacting.  We have argued that when pre-
dictors are sufficiently accurate, system decision making can 
be improved despite uncertainty. 

Third, our approach addresses runtime efficiency, an im-
portant concern for self-adaptive systems.  We have demon-
strated that the anticipatory configuration system can make 
decisions on-line, while consuming very little resources.  
The result holds even for resource constrained platforms, 
making the approach usable in pervasive and mobile envi-
ronments. 

6.3 Limitations 
Our approach has limitations: 

• while linear recent history predictors are empirically 
grounded, the other two predictor types are merely plau-
sible.  There are no studies that demonstrate the statistical 
validity of relative move or bounding predictors, 

• the results we have demonstrated are sensitive to the 
choice of preference functions.  In particular, for antici-
patory configuration to have an edge over the reactive 
version, the penalty term in instantaneous utility must sat-
isfy certain bounds, 

• we have not modeled resources with intertemporal substi-
tution such as battery.  This is the subject of future work. 

7. CONCLUSION 
We have leveraged research in resource prediction to im-

prove the decision making of a self-adaptive system that 
allocates resources among concurrent fidelity-aware applica-
tions. As part of incorporating long-term predictions in a 
model of self-adaptation, we have formally expressed the 
uncertainty inherent in such predictions. We have demon-
strated that the new anticipatory decision making approach 
improves over an earlier reactive approach, while remaining 
resource-efficient on a limited capability device. 

Our approach presents several engineering benefits, in-
cluding formal treatment of predictors and analysis of im-
proved utility as a function of the uncertainty of the predic-
tors. We conjecture that other self-* systems (e.g., Rainbow 
[5]) can potentially benefit from predictive information.   We 
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hope that our paper has provided a blue-print for integrating 
predictive information in other self-* systems that address 
adaptation, repair, and configuration. 
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10. APPENDIX A 
Below we produce a nearly verbatim copy of the defini-

tion of instantaneous utility published in [12].  
10.1.1 QoS Preferences 
QoS preferences specify the utility function associated 

with each QoS dimension. The names of the QoS dimensions 
are also part of the shared vocabulary. The utility of service 
svc as a function of the quality of service is given by: 
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where for each QoS dimension d of service svc, 
]1,0()(: →ddomF d

 is a function that takes a value in the 

domain of d, and the weight cd∈[0,1] reflects how much the 
user cares about QoS dimension d.  As an example, video 
playing has a QoS dimension of frame update rate.  The 
function FframeRate gives utility for various frame rates, and 
cframerate specifies the weight of frame rate. 

Weighted product specifies an “AND” semantics when 
combining QoS dimensions.  A utility value of zero in one 
dimension indicates that the user is not interested in the con-
figuration even if the quality of other dimensions is high. 

10.1.2 Supplier Preferences And Switching Pen-
alty 

To evaluate the assignment of specific suppliers, we em-
ploy a supplier preference function, which is a discreet func-
tion that assigns a score to a supplier, based on its type.  
Also, we account for the cost of switching from one supplier 
to another at run time.  

Precisely, the utility of the supplier assignment for a set a 
of requested services is: 
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where for each service svc in the set a, Fsvc : Supp(svc) -> 
(0,1] is a function that appraises the choice of a supplier for 
service svc; and the weight csvc∈[0,1] reflects how much the 
user cares about the supplier assignment for that service. 

The term svcx
svch  above (10.1.2) expresses a change pen-

alty as follows: hsvc indicates the user’s tolerance for a 
change in supplier assignment: a value close to 1 means that 
the user is fine with a change, the closer the value is to zero, 
the less happy the user will be.  The exponent xsvc indicates 
whether the change penalty should be considered (xsvc=1 if 
the supplier for s is being exchanged by virtue of dynamic 
change in the environment) or not (xsvc=0 if the supplier is 
being newly added or replaced at the user’s request). 

10.1.3 Instantaneous Utility 
Overall utility is the product of the QoS preference, sup-

plier preference, and change penalty.  Let a’ be the previous 
assignment of suppliers and a be the current.  Then the in-
stantaneous utility is: 
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