
Contract-Based Integration of Cyber-Physical Analyses

Ivan Ruchkin
Inst. for Software Research
Carnegie Mellon University

Pittsburgh, PA, USA

iruchkin@cs.cmu.edu

Dionisio De Niz
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

dionisio@sei.cmu.edu

Sagar Chaki
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

chaki@sei.cmu.edu

David Garlan
Inst. for Software Research
Carnegie Mellon University

Pittsburgh, PA, USA

garlan@cs.cmu.edu

ABSTRACT

Developing cyber-physical systems involves multiple engi-
neering domains, e.g., timing, logical correctness, thermal
resilience, and mechanical stress. In today’s industrial prac-
tice, these domains rely on multiple analyses to obtain and
verify critical system properties. Domain differences make
the analyses abstract away interactions among themselves,
potentially invalidating the results. Specifically, one chal-
lenge is to ensure that an analysis is never applied to a
model that violates the assumptions of the analysis. Since
such violation can originate from the updating of the model
by another analysis, analyses must be executed in the cor-
rect order. Another challenge is to apply diverse analyses
soundly and scalably over models of realistic complexity. To
address these challenges, we develop an analysis integration
approach that uses contracts to specify dependencies be-
tween analyses, determine their correct orders of application,
and specify and verify applicability conditions in multiple
domains. We implement our approach and demonstrate its
effectiveness, scalability, and extensibility through a verifi-
cation case study for thread and battery cell scheduling.

General Terms

Verification, Design, Theory

Keywords

Cyber-physical systems, analysis, real-time scheduling, ther-
mal runaway, model checking, battery scheduling, analysis
contracts, virtual integration

1. INTRODUCTION
The development of today’s industrial-scale cyber-

physical systems (CPS) is heavily driven by models [15] and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ESWEEK ’14, October 12-17, 2014, New Delhi, India
Copyright 2014 ACM 978-1-4503-3052-7/14/10 $15.00
http://dx.doi.org/10.1145/2656045.2656052

analyses. This trend is expected to continue, since it en-
ables CPSs to be developed, upgraded, integrated, and ver-
ified virtually through models before manufacturing starts.
Modeling also supports collaborative development by dif-
ferent teams, and fosters early error detection, faster de-
velopment, and lower costs. In particular, analyses enable
model creation and verification at design time to guaran-
tee important quality attributes, such as control stability,
schedulability, power consumption, safety, and security.

These analyses emerge from different engineering do-
mains, such as timing, logical correctness, and thermal re-
silience. Consequently, they focus on different CPS abstrac-
tions that interact in subtle ways. This leads to two prob-
lems that today render analysis results untrustworthy: (i)
one analysis modifies a system model in a way that vio-
lates the assumptions made by another. E.g., a real-time
task-allocation algorithm [8] assigns a set of threads to a
processor scheduled via a dynamic priority algorithm, thus
violating the fixed priority assumption made by a model
checker [4]. Also, (ii) the specification of such assumptions
and the detection of their violation are left implicit in the
hands of human designers that, more often than not, are
unable to cope with their complexity and subtlety due to
the inter-domain nature of the assumptions.

As a consequence, these problems are currently discovered
late during system integration, leading to costly fixes [25].
This issue is particularly prevalent in industries with com-
plex supply chains, such as avionics and automotive, where
systems are integrated from independently-developed parts,
designs of which are analyzed with a mishmash of tools.
Complexity of integration is currently mitigated in an ad-
hoc and manual way, which is neither scalable, nor able to
provide a high degree of assurance [14].

In this paper, we present and evaluate an alternative
two-part solution that is mathematically rigorous and au-
tomated. The first part is an analysis contract specification
language with well-defined syntax and semantics. A contract
for an analysis expresses both the assumption under which it
produces a sound result, and the guarantee about the result-
ing modified model. Our contract language finds a balance
between expressiveness and decidability to support contracts
that capture both design-time and runtime system aspects.
An example is the frequency scaling analysis [23], which as-
sumes that the runtime scheduling of threads allocated at

design-time to the same CPU is behaviorally equivalent to
deadline monotonic. To this end, our contract language
combines a many-sorted first-order logic with a variant of
linear temporal logic, propositions of which are derived from
predicates over the system state. The logical nature of the
language also makes it applicable to multiple analysis do-
mains. In addition, validity of contracts expressed in our
language is efficiently decidable.
The second part of our solution is a contract verification

algorithm that ensures soundness of analysis results. The al-
gorithm takes a set of analysis contracts and an architectural
CPS model as input, computes the dependencies between
the contracts, and executes the analyses over the model in
an order guaranteed to produce sound results. During this
process, our algorithm checks the validity of each contract:
(i) before an analysis is executed, the validity of its assump-
tion is checked over the input model; and (ii) after the anal-
ysis completes, the validity of its guarantee is ensured over
the output model. Moreover, the validity is checked in a
sound and exhaustive manner via co-operative application
of an SMT solver (for the design-time aspect) and a model
checker (for the runtime aspect) of the contract.
Finally, we implement our approach and demonstrate its

effectiveness, scalability, and extensibility with a case study
that involves multiple analyses from two domains: real-time
thread scheduling and battery cell scheduling. Our imple-
mentation is based on OSATE [20], which enables us to han-
dle CPS models described in the Architecture Analysis and
Design Language (AADL) [9], an SAE standard. It also uses
state-of-the-art tools Z3 [7] and Spin [13] for SMT solving
and model checking, respectively. We show how our ap-
proach detects subtle bugs in interactions between analyses,
and how the use of advanced tools enables it to scale to
systems of realistic complexity.
The rest of the paper is organized as follows. Sec. 2 in-

troduces a running example of a system and analyses used
in its design. Sec. 3 presents the analysis contract language.
Sec. 4 presents our contract verification algorithm. Sec. 5
and Sec. 6 present our implementation and evaluation, re-
spectively. We wrap up by surveying related work in Sec. 7
and conclude in Sec. 8.

2. RUNNING EXAMPLE
Consider a reconnaissance aircraft as an example CPS.

It is controlled by a set of threads (a.k.a. tasks) with dif-
ferent security levels executing on several processors (a.k.a.
CPUs). Each thread executes an infinite sequence of peri-
odic jobs. A job is a finite computation, e.g., a control cor-
rection for aircraft stability. The system has dynamic multi-
cell batteries with configurable connections between cells so
that some cells recharge while others are discharging [12].
Thread scheduling policies, CPU frequencies, battery cell
scheduling policies, and allocation of threads to CPUs are
among adjustable parameters in the system’s design.
The system has to satisfy several requirements: (i) data

security – threads with different security levels should not
run on the same CPU; (ii) schedulability – all jobs must meet
deadlines required by the control algorithms; (iii) energy
efficiency – CPUs must operate on the minimal frequency
possible, thus maximizing battery life; (iv) safe concurrency
– threads must be free of deadlocks and race conditions; (v)
thermal safety – even if a battery cell overheats, it should
not trigger a chain reaction called thermal runaway [5].

All of these requirements can be verified individually with
analysis tools from different engineering domains. However,
ensuring that all the requirements are satisfied together is
challenging, since one tool can select some design parameters
that violate the assumptions of another, as discussed before.
Similarly, creating a single overarching analysis that takes
into account all requirements is intractable. Our approach
uses each analysis as is, but complements them with analy-
sis contracts that allow us to model their interdependencies
and ensure their sound application. This enables sound and
tractable verification of all the system requirements.

As an illustration, we consider the following set of analyses
AN through the rest of the paper: (i) secure thread allo-
cation: computes permissible thread co-locations based on
security levels; (ii) bin packing [8]: assigns threads on CPUs
to ensure schedulability; (iii) frequency scaling: minimizes
the CPU frequency given the threads assignment; (iv) REK
model checking [4]: checks if threads satisfy user-specified
safety properties like absence of race conditions and dead-
locks; (v) thermal runaway: determines patterns of battery
cell connections that lead to thermal runaway; and (vi) bat-
tery scheduling: determines a battery scheduler given the
required operation time and battery size.

Arbitrary independent use of these analyses can lead to
unsound results. For example, running bin packing before
thread allocation could violate secure co-location constraints
set by the latter, but not present at the time we run the for-
mer. Similarly, using the frequency scaling algorithm that
assumes a deadline-monotonic scheduler on a CPU that uses
the earliest deadline first scheduler would produce unsound
results. In this paper we demonstrate how our approach en-
ables systematic integration of these analyses ensuring sat-
isfaction of their interdependencies and assumptions.

3. CONTRACT SPECIFICATION
In this section we present our contract language, and use

it to formalize contracts for the analyses from Sec. 2.

3.1 Analysis Verification Domain
First, we formalize concepts on which engineering domains

“overlap” by introducing verification domains for analyses.

Definition 1. An analysis verification domain σ is a

many-sorted signature: (A,S,R, T , [[·]]σ) where:

• A is a set of sorts: A = {Ai}.

Examples of sorts are system elements (threads T , CPUs C ,
and thread scheduling policies SchedPol) and standard sorts
(Booleans B and integers Z).

• S is a set of static properties: S = {Si}. Each static
property is a typed function S : Ai × . . .× Aj 7→ Ak .

Static properties capture analysis-specific system properties
set at design-time, such as thread periods (Per : T 7→ Z)
and processor frequencies (CPUFreq : C 7→ Z), and standard
operators like addition (+ : Z × Z 7→ Z).

• R is a finite set of runtime properties: R = {Ri},
R : Ai × . . .× Aj 7→ Ak .

Runtime properties capture system aspects that depend on
S but change during execution, such as preemption between

threads or connectivity between battery cells. Given a run-
time state q , q(Ri) means the evaluation of Ri in q . The
structure of q is given by T :

• T is the execution semantics of the verification domain.

Informally, T is a set of infinite sequences of assignments
to the runtime properties. Each sequence corresponds to
an execution of the system, and specifically to the values of
the runtime properties observed at the successive states of
the execution. The executions are infinite since we are inter-
ested in analyzing reactive systems which, in general, do not
terminate. T is discussed in detail for specific verification
domains in Sec. 4.2.3 and 4.2.4.

• [[·]]σ is a partial interpretation of A and S. It assigns
permissible values to some of the sorts in A and value
mappings to some elements of S.

Intuitively, [[·]]σ interprets common sorts and operators in
the standard way. For example [[B]] = B, [[Z]] = Z, [[+]] is
integer addition, and [[∧]] is Boolean conjunction, and so on.
In addition, [[·]]σ interprets domain-specific sorts, e.g., the
set of permissible scheduling policies SchedPol.
Note that a verification domain σ externalizes concepts of

multiple engineering domains to create an inter-domain rea-
soning ground. However, σ does not limit deep intra-domain

reasoning of each analysis. For example, a thermal runaway
analysis would reason about evolving battery temperature,
which we do not include into S or R since other analyses in
our example have no interactions with battery temperature.
Some elements of A and S (e.g., T and Per) represent a

concrete system design and are left uninterpreted by [[·]]σ.
To obtain a full interpretation for A, S, and T we complete
[[·]]σ with an architectural model (or model, for short).

Definition 2. An architectural model M is an interpre-

tation [[·]]M of some elements of A and S, and T 1.

For example, a set of three threads and their periods is
specified by a model M as [[T]]M = {t1, t2, t3} and [[Per]]M =
{t1 7→ 40, t2 7→ 50, t3 7→ 60}. The value of runtime proper-
ties depends on the execution state, as follows. Let [[·]] de-
note the combination of [[·]]σ and [[·]]M. Formally, state q

maps each runtime property R : Ai × · · · × Aj 7→ Ak to a
function q(R) : [[Ai]]× · · · × [[Aj]] 7→ [[Ak]]. Let Q be the set
of all states, and Qω be the set of all infinite sequences of
states (i.e., executions). Then [[T]]M ⊆ Qω. In other words,
[[T]]M is the set of executions of the system defined by M.
Note that R is interpreted indirectly and modally via [[T]]M.
Specifically, each state q in each execution in [[T]]M gives an
interpretation q(Ri) to each Ri ∈ R.
We require that [[·]] interpret all elements of A, S, and T

unambiguously. In general, analyses from multiple domains
are applied to a single modelM. Therefore,Mmust complete
the interpretations for A, S, and T from each domain.

3.2 Contract Language
Our contract language consists of a combination of first-

order and temporal logic formulas over the sorts and proper-
ties of a target verification domain. We present it in stages,
beginning with the syntax of contract formulas.
1A classic definition of an architectural model [9] is an anno-
tated graph of components and connectors. Our functional
definition is more convenient to specify and verify contracts.
Sec. 5.1 explains our infrastructure to transform the two
versions of architecture.

3.2.1 Contract Formula Syntax

We first define the static fragment of contract formulas.
Consider a domain σ = (A,S,R, T , [[·]]σ). Let V be a denu-
merable set of typed variables, V = {vi}, vi : Ai . Then the
set of static formulas over σ, denoted φ, is defined by the
following grammar:

φ ::= v | f (e1 · · · ej),

where v ∈ V , f ∈ S with arity j , and e1, . . . , ej ∈ φ.
Typing. Formulas are well-typed. Variables are typed

with their sorts. If the type of f is A1 × . . . × Aj 7→ Ak ,
then the type of f (e1, . . . , ej) is Ak and it is well-typed iff
the type of each ei is Ai . For simplicity, we write v1 + v2
instead of +(v1, v2), e1 ∧ e2 instead of ∧ (e1, e2), etc.

Temporal Logic Formulas. We now turn our attention to
the temporal fragment of contract formulas. Since we are
interested in expressing properties of infinite executions of
reactive systems, we use a variant of next-time-free linear
temporal logic (LTL) [21]. The key difference with standard
LTL is that propositions in our logic are not atomic, but
are constructed from S and R. The set of all such runtime
formulas is defined by the following grammar:

RF ::= v | f (e1, . . . , ej),

where v ∈ V , f ∈ S ∪ R with arity j , and e1, . . . , ej ∈ φ.
Runtime formulas are also well-typed in the same way as
static formulas. Then our LTL formulas, denoted ψ, are
defined by the following grammar:

ψ ::= p | ¬ψ | ψ ∧ ψ | ψ U ψ,

where p ∈ RF is a runtime formula with Boolean type. Note
that other temporal operators, such as G and F (except X,
which is not part of the language), are defined in terms of
¬, ∧, and U in the standard manner. Finally, we define
contract formulas using φ and ψ.

Definition 3. Given a domain σ, a set of contract for-
mulas Fσ is defined by the following grammar:

Fσ ::= ∀ v1 · · · vj � φ | ∃ v1 · · · vj � φ

| ∀ v1 · · · vj � φ : ψ | ∃ v1 · · · vj � φ : ψ,

where φ is a static formula of Boolean type, and ψ is a LTL
formula – both over variables v1, . . . , vj . Thus, a contract
formula can be purely first-order (i.e., the first two forms)
or a combination of first-order and LTL (i.e., the last two
forms). The meaning of the third form is that every assign-
ment of V that satisfies φ must also satisfy ψ. The meaning
of the last form is that at least one assignment of V satisfies
both φ and ψ. Note that formulas without variables are also
allowed. We are now ready to define analyses and contracts.

3.2.2 Analysis Contracts

Functionally, an analysis An takes an architectural model
MI as input and produces a new architectural model MO =
An(MI) as output. The contract for An specifies restrictions
on valid input models and valid output models, as well as
the model properties it reads and modifies.

Definition 4. A contract C for an analysis An over a

verification domain σ is a 4-tuple C = (I ,O ,A,G), where:

• I ⊆ A ∪ S are sorts and properties read by An.

• O ⊆ A ∪ S are sorts and properties modified by An.

• A ⊆ Fσ are assumptions – contract formulas that must
be satisfied by every valid input model to An.

• G ⊆ Fσ are guarantees – contract formulas over that
must be satisfied by every valid output model from An.

In order to determine whether An satisfies its contract, we
must first define what it means for An to satisfy a contract
formula. This is the topic of the next subsection.

3.2.3 Contract Semantics

We start with the evaluation of static formulas and build
up to defining satisfaction of a contract. Let the inter-
pretation of sort A be [[A]] and the interpretation of f :
A1 × · · · × Aj 7→ Ak ∈ S be [[f]] : [[A1]]× · · · × [[Aj]] 7→ [[Ak]].
An assignment µ maps each variable v : A to an element of
[[A]]. Given a static formula φ, and an assignment µ, [[φ, µ]]
is the evaluation of φ under µ defined as:

[[v , µ]] = µ(v); [[f (e1, . . . , ej), µ]] = [[f]]([[e1, µ]], . . . , [[ej , µ]]).

Note that if the type of φ is A, then [[φ, µ]] ∈ [[A]]. The
evaluation of a runtime formula RF under an assignment µ
in a state q , denoted [[RF , µ, q]], is defined as:

[[v , µ, q]] = µ(v)

[[f (e1, . . . , ej), µ, q]] = [[f]]([[e1, µ, q]], . . . , [[ej , µ]], q), f ∈ S

[[f (e1, . . . , ej), µ, q]] = q([[f]])([[e1, µ, q]], . . . , [[ej , µ, q]]), f ∈ R

An execution π = q0, q1, . . . satisfies an LTL formula ψ un-
der assignment µ, denoted π, µ |= ψ, if:

• If ψ ∈ RF then π, µ |= ψ iff [[ψ, µ, q0]] = ⊤.

• π, µ |= ¬ψ′ iff π, µ 6|= ψ′.

• π, µ |= ψ1 ∧ ψ2 iff π, µ |= ψ1 and π, µ |= ψ2.

• π, µ |= ψ1 U ψ2 iff there exists i ≥ 0 such that for all
0 ≤ j < i � πj , µ |= ψ1 and πi , µ |= ψ2, where π

x is the
(infinite) suffix of π starting with state qx .

Consider a model M. Let [[·]] be the combination of [[·]]σ
and [[·]]M. A contract formula f ∈ Fσ is satisfied by M,
denoted M |= f , based on the form of f (see Def. 3) as
follows:

• f is of the first form and ∀µ ∈ V � [[f , µ]] = ⊤.

• f is of the second form and ∃µ ∈ V � [[f , µ]] = ⊤.

• f is of the third form and ∀µ ∈ V � ∀π ∈ [[T]] � [[φ, µ]] =
⊤ ⇒ π, µ |= ψ.

• f is of the fourth form and ∃µ ∈ V �∀π ∈ [[T]] � [[φ, µ]] =
⊤ ∧ π, µ |= ψ.

Thus, first-order quantification over static formulas is in-
terpreted in the usual way: universal quantification over a
static formula and an LTL formula holds if and only if all
assignments that satisfy the static formula also satisfy the
LTL formula; existential quantification over a static formula
and an LTL formula holds if and only if there exists an as-
signment that satisfies both static and LTL formulas.
Analysis Applicability. Amodel to which an analysis is ap-

plied should satisfy its assumption, and the resulting model
should satisfy its guarantee. Formally:

Name Type Description
Per T 7→ Z Thread’s period.
Dline T 7→ Z Thread’s deadline.
WCET T 7→ Z Thread’s worst

case execution time.
ThSecCl T 7→ SecCl Thread’s security class.
CPUSchedPol C 7→ SchedPol CPU’s scheduling policy.
CPUFreq C 7→ R CPU’s normalized frequency2.

NotColoc T 7→ 2T Thread t mapped to a set of
threads that should not
share the same CPU as t.

CPUBind T 7→ C Thread-to-CPU binding.
ThSafe C 7→ B Flag whether CPU’s threads

are thread-safe.
Voltage () 7→ R Required system voltage3.

Table 1: Static properties of σSched .

Definition 5. Analysis An with contract An.C =
(I ,O ,A,G) is applicable to model M, denoted M |= An.C,

iff ∀ a ∈ A �M |= a and ∀ g ∈ G �An(M) |= g.

In Sec. 4 we present an algorithm to decide M |= C . Now,
to highlight our approach, we turn to formalizing analysis
domains and contracts for the example from Sec. 2.

3.3 Scheduling Verification Domain
The scheduling verification domain σSched encodes the

semantics of the real-time scheduling of threads along
with their allocation to processors. This domain helps
specify contracts for analyses that decide valid thread
allocations and priority assignments, check schedulabil-
ity according to a selected scheduling policy, determine
processor frequency, etc. The domain is defined as
σSched = (ASched ,SSched ,RSched , TSched , [[·]]Sched). In addi-
tion to Booleans B and integers Z, ASched has reals R,
threads T , CPUs C , thread security classes SecCl, and
thread scheduling policies SchedPol. Sorts B, Z, R are inter-
preted by [[·]]Sched in a standard way. There are three secu-
rity classes – normal, secret, and top-secret – [[SecCl]]Sched =
{normal, secret, topsecret} and three scheduling policies
– rate monotonic scheduling (RMS), earliest deadline first
(EDF) [18], and deadline monotonic scheduling (DMS) [1]
– [[SchedPol]]Sched = {rms,dms, edf}. Sorts T and C are
uninterpreted since they are model-dependent.

In addition to Boolean, integer, and real arithmetic oper-
ators, the properties in SSched interpreted by M are summa-
rized in Tab. 1. Also, there is one runtime propertyRSched =
{CanPrmpt : T × T 7→ B} such that q(CanPrmpt(t1, t2)) =
⊤ iff t1 can preempt t2 in state q . Interpretation of TSched

and CanPrmpt is model-dependent and presented in Sec. 4.

3.4 Battery Verification Domain
The domain of battery design and usage σBatt =

(ABatt ,SBatt ,RBatt , TBatt , [[·]]Batt) is defined as follows. Sorts
B,Z,R ∈ ABatt and their interpretations are identical
to σSched . The set of batteries is B ∈ ABatt , and
ConnSchedPol ∈ ABatt is the set of three battery schedul-
ing policies [12][17]: unweighed round robin with fixed cell
groups (FGuRR), weighed kRR with fixed parallel cell
groups (FGwRR), and weighed kRR with cell group pack-
ing (GPwRR). Voltage ∈ SBatt is the same as in the
scheduling domain: our approach naturally captures the fact

2A real number between 0 and 1.
3Voltage is a nullary function, or a real constant. We con-
sider a simplified example where the system voltage is the
maximum of required individual processor voltages.

Name Type Description
Voltage () 7→ R Required system voltage.
BatRows B 7→ Z Battery’s cell rows.
BatCols B 7→ Z Battery’s cell columns.
BatConnSchedPol B 7→ Battery’s cell

ConnSchedPol scheduling policy.
SerialReq B 7→ Z Number of cells required

to connect in series5.
ParalReq B 7→ Z Number of cells required

to connect in parallel6.
K B × Z 7→ Z Weight of cells with

i thermal neighbors.
HasReqdLifetime B 7→ B Flag whether a battery

has the lifetime required.

Table 2: Static properties of σBatt .

that both domains are concerned with the system voltage.
SBatt contains the properties summarized in Tab. 2.
Informally, a battery execution consists of continuous

charging, discharging, and resting of cells. The precise se-
mantics [[TBatt]] is model-dependent and defined in Sec. 4.
There is one runtime property: RBatt = {TN : B ×Z → Z}.
When a battery b is in state q , q(TN(b, i)) denotes the num-
ber of cells with i thermal neighbors – cells that exchange
heat conductively through a connector 4. This is motivated
by results [16]: there is a close connection between ther-
mal neighbors and thermal runaway. Specifically, there exist
constants K(b, i) : b ∈ B , i ∈ Z such that a state q triggers
a thermal runaway in battery b if it violates the condition:

∑

i

K(b, i)× q(TN(b, i)) ≥ 0 (1)

However, the exact values of K are not known up-front,
and experiments with a battery are needed to obtain them.

3.5 Analysis Contracts for Running Example
Using the domains signatures σSched and σBatt we define

the contracts for analyses AN from Sec. 2.
Secure thread allocation7 (AnSecAlloc) has contract

CSecAlloc : I = {T ,ThSecCl}, O = {NotColoc}, A = ∅,
and G = {g} where g is:

∀ t1, t2 � ThSecCl(t1) 6= ThSecCl(t2) ⇒ t1 ∈ NotColoc(t2)

Thus, AnSecAlloc makes no assumptions, but guarantees that
threads with different security classes are never co-located.
We omit sorts, e.g., t1 : T and t2 : T , since they are implied
by typing rules.
Bin packing (AnBinPack) has contract CBinPack : I =

{T ,C ,NotColoc,Per,WCET,Dline}, O = {CPUBind}, A =
∅, and G = {g} where g is:

∀ t1, t2 � t1 ∈ NotColoc(t2) ⇒ CPUBind(t1) 6= CPUBind(t2)

Thus, AnBinPack makes no assumptions but guarantees that
threads that should not be co-located are never scheduled
on the same CPU.
Frequency scaling (AnFreqSc) has contract CFreqSc: I =

4As opposed to electrical neighbors – cells that are connected
to each other electrically, no matter how far apart physically
they are.
5SerialReq is a battery-specific form of the voltage output
requirement.
6ParalReq is a battery-specific form of the electrical current
output requirement.
7We omit implied atoms in inputs, like SecCl in CSecAlloc.I .

{T ,C ,CPUBind,Dline}, O = {CPUFreq}, G = ∅, and

A , {∀ t1, t2 � t1 6= t2 ∧ CPUBind(t1) = CPUBind(t2) :

G (CanPrmpt(t1, t2) ⇒ Dline(t1) < Dline(t2))}

Thus, AnFreqSc makes no guarantees but assumes that the
scheduling used is semantically equivalent to a deadline-
monotonic scheduling policy. Note that a scheduling pol-
icy can be DMS for a specific model, e.g., rate-monotonic
scheduling (RMS) for a harmonic model, even thought it is
not deadline monotonic in general.

Model checking with REK (AnREK) has contract CREK :
I = {T ,C ,Per,Dline,WCET,CPUBind}, O = {ThSafe},
G = ∅, and A = {a1, a2} where:

a1 , ∀ t � Per(t) = Dline(t),

a2 , ∀ t1, t2 � G (CanPrmpt(t1, t2) ⇒ G ¬CanPrmpt(t2, t1)).

REK [4] takes threads and their marked source code files
(which we didn’t include into the formal example) as input
and verifies whether the system is safe, where safety is ex-
pressed as assertions embedded in the source code. AnREK

assumes implicit deadlines and fixed-priority scheduling.
Prior to this work, the only way to apply REK was to use
RMS. However, our contract mechanism allows for a broader
scope of applicability. Note that a1 expresses implicit dead-
lines, while a2 expresses fixed priority scheduling, i.e., if t1
preempts t2, then t2 should never be able to preempt t1.

Thermal runaway (AnThermRun) has contract CThermRun :
I = {B ,BatRows,BatCols,Voltage}, O = {K}, A = ∅,
and G = ∅. Note that AnThermRun has no assumptions or
guarantees, but has a dependency with defined below bat-
tery scheduling via I and O . Thermal runaway determines
the patterns, which, given concrete battery characteristics,
would result into a thermal runaway. In our example, we
encode these patterns as K(i) for i : Z ∈ [0, 3]. AnThermRun

determines K through experimentation, adjusting K so that
acceptable heat propagation patterns satisfy (1), and unac-
ceptable ones violate it.

Battery scheduling (AnBatSched) has contract
CBatSched : I = {B ,BatRows,BatCols}, O =
{BatConnSchedPol,HasReqdLifetime, SerialReq,ParalReq},
A = ∅, and G = {g} where g is:

∀ b � G (K(b, 0)× TN(b, 0) + K(b, 1)× TN(b, 1)+

K(b, 2)× TN(b, 2) + K(b, 3)× TN(b, 3) ≥ 0).

AnBatSched computes a battery cell connectivity scheduler
that maximizes the battery lifetime given the battery char-
acteristics and output requirements. It sets a flag indicating
whether the battery with the selected scheduler meets the
lifetime requirement. Since the scheduling is not aware of the
thermal runaway, the determined scheduler needs to be veri-
fied against the thermal runaway pattern, hence the guaran-
tee. AnBatSched also sets cell group characteristics SerialReq

and ParalReq that are used to verify its guarantee.

4. CONTRACT VERIFICATION
This section presents our contract verification algorithm,

which takes a model M and a set of analyses AN and pro-
duces a correct execution of AN on M, or aborts. The al-
gorithm consists of the following steps: (i) determine an
ordering O of AN that respects all inter-analysis depen-
dencies; (ii) process each analysis An ∈ AN with con-
tract C = (I ,O ,A,G) in the order O by: (iia) verifying

Figure 1: Analyses graph for the running example.

∀ a ∈ A � M |= a, (iib) updating M by executing An, i.e.,
setting M to An(M), (iic) and verifying ∀ g ∈ G � M |= g ;
and (iii) output the final M as the result. The algorithm
aborts if either an appropriate ordering O cannot be com-
puted (as we will show, it only happens if there are circular
dependencies between analyses), if any of the verifications in
Steps (iia) and (iic) fail, or the execution of An on M fails.
Note that the algorithm ensures that all analyses produce
valid results since: (a) an analysis An executes successfully
on M only if M |= An.C (see Def. 5); and (b) the ordering
O ensures that once an analysis has been executed, future
values of M do not violate its assumptions.

4.1 Analysis Ordering
We begin with Step (i), which uses contracts to deter-

mine a correct ordering of analyses execution. The con-
tract of analysis An is denoted C (An). For a contract
C = (I ,O ,A,G), C .I means I , C .O means O , etc.

Definition 6. Analysis contract Ci is dependent on

analysis contract Cj , denoted d(Ci ,Cj), if Ci .I ∩ Cj .O 6=
∅. Analysis Ani is dependent on analysis Anj , denoted

d(Ani , Anj), iff d(C (Ani),C (Anj)).

Given a set of analyses AN , an ordering O =
〈An1 · · ·Ann〉 of AN is sound if each analysis in the or-
dering is not dependent on any of its predecessors, i.e.,

∀ i ∈ [1,n] � ∀ j ∈ [1, i) � ¬d(Ani , Anj)

Thus, the goal of step (i) is to produce a sound order-
ing of AN . Consider the directed graph of analyses γ =
(AN , d(,)). It can be shown that: (i) if γ is cyclic then
there is no sound ordering of AN ; and (ii) otherwise γ is a
DAG and any topologically sorted ordering of its nodes is
a sound ordering of AN . Therefore, O is computed by: (i)
constructing γ; (ii) checking its cyclicity; (iii) aborting if γ
is cyclic; and (iv) if it is acyclic, constructing any topolog-
ical ordering of its nodes. The specific O constructed does
not affect the correctness of our algorithm since topological
orderings of γ differ only in relative positions of mutually
independent analyses. The γ for our example is shown in
Fig. 1. Each edge is labeled by a property that causes the
dependency between the corresponding analyses.

4.2 Analysis Applicability
We now focus on Steps (iia) and (iic) of our algorithm.

Recall that the core problem here is to decide M |= f where
f is a contract formula. In Step (iia) f is one of the contract’s
assumptions, while the Step (iic) it is one of the contract’s
guarantees. The algorithm for verifying M |= f depends on
the form of f (see Def. 3), and we consider each separately.

4.2.1 Verifying Purely First Order Formulas

If f is a quantified first-order formula (i.e., the first two
forms of Def. 3) we check M |= f via Satisfiability Modulo

Theories (SMT) solving. We first describe how to construct
a SMT formula ϕ(M, φ) – using SMT v2 syntax [7] – given
a model M and a first-order formula φ. The first step in
constructing ϕ(M, φ) is defining the basic types. These are
obtained directly from the sorts (A) of the analysis domain.
Basic sorts like Boolean, integer, and float are already prim-
itive types in SMT. Domain-specific sorts, like threads and
processors, are declared as integers using the define-sort

SMT command. Subsequently, the IDs of the actual threads
and processors are used as concrete values for their corre-
sponding types. For example, if M has five threads with IDs
[0, 4] and three processors with IDs [0, 2], then ϕ(M, φ) has
two types – thread and processor – defined as follows:

(define-sort thread() (Int))

(define-sort processor() (Int))

Subsequently, all variables of type T have five legal values
[0, 4] and all variables of type C have three legal values [0, 2].
These legal values are enforced by adding appropriate SMT
constraints to ϕ(M, φ). The functions in ϕ(M, φ) are ob-
tained from the static properties of the domain used for the
contract. For example, if the analysis references Per, then
ϕ(M, φ) contains a function Period defined as follows:

(declare-fun Period (thread) Int)

Variables are also declared with appropri-
ate types, e.g., variable t1 : T is declared as:
(declare-fun t1 () (thread)). Finally, the constraints in
ϕ(M, φ) are obtained from: the interpretation of static prop-
erties of the domain (e.g., if thread 0 has a period 20, then we
add the constraint (assert (= (period 0) 20))) and the

formula φ itself (e.g., if φ , Per(t1) < Per(t2), then we add
the constraint (assert (< (period t1) (period t2))).

Given an SMT formula ϕ as input, an SMT solver returns
SAT if ϕ is satisfiable, and UNSAT otherwise. Now checking
M |= f reduces to two cases:

• f = ∀ v1 · · · vj � φ (form 1 of Def. 3): In this case we
return YES if the SMT solver returns UNSAT for input
ϕ(M,¬φ) and NO otherwise.

• f = ∃ v1 · · · vj � φ (form 2 of Def. 3): In this case we
return YES if the SMT solver returns SAT for input
ϕ(M, φ) and NO otherwise.

The correctness of our algorithm follows from our seman-
tics and the construction of ϕ(M, φ). An example of ϕ(M, φ)
constructed for CBinPack .G is shown in Fig. 2. The guar-
antee states that non-colocated threads should be bound to
different processors, and has the first form of Def. 3. The
SMT solver returns UNSAT, hence M |= CBinPack .G.

4.2.2 Verifying First Order+LTL Formulas

We now show how to verify f if it combines both first-
order logic and LTL (i.e., the last two forms of Def. 3). This
again has two cases:

• f = ∀ v1 · · · vj � φ : ψ (form 3 of Def. 3):

We first construct ϕ(M, φ). Next, we use the SMT solver
iteratively to compute all satisfying solutions of ϕ(M, φ). To
obtain all solutions, we use “blocking clauses”, i.e., once we
obtain a solution, we add its negation to the formula before
re-solving it. From each solution we construct the corre-
sponding assignment µ to {v1 · · · vj}. For each assignment

Figure 2: SMT problem for verifying CBinPack .G.

µ, we check ∀π ∈ [[T]] �π, µ |= ψ using a model checker. The
model checking step is domain-specific and described in the
following subsections. We return YES if the model checker
finds no ψ violations for every µ, and NO otherwise.

• f = ∃ v1 · · · vj � φ : ψ (form 4 of Def. 3):

We first construct ϕ(M, φ). Next, we use the SMT solver
iteratively to compute all assignments µ to {v1 · · · vj} as in
the previous case. For each assignment µ, we check ∀π ∈
[[T]] � π, µ |= ψ using a model checker. We return YES if the
model checker find no ψ violations for at least one µ, and NO
otherwise. The correctness of our algorithm follows from our
semantics and the construction of ϕ(M, φ). The algorithm
always terminates if the sort of each quantified variable vi
is interpreted to a finite domain (e.g., threads and batteries,
but not integers), since this means that there are only a
finite set of assignments to {v1 · · · vj}. This is indeed the
case for all analyses in our example. We now describe the
model checking step for the scheduling and battery domains.

4.2.3 Model Checking for Scheduling

The execution semantics [[TSched]] of the scheduling do-
main is defined as follows. Recall that each thread consists
of an infinite and periodic sequence of jobs. A state q of
the system corresponds to a point in time where a new job
arrives or a currently executing job terminates. An execu-
tion consists of a infinite sequence of such states observed
at runtime. Note that multiple executions are possible due
to the non-determinism in the time required by each job to
complete. Then [[TSched]] consists of all such executions.
We model [[TSched]] as a Kripke structure K([[TSched]]) com-

posed of a “task” process for each thread. Task pro-
cesses are periodic and their numeric characteristics –
(Per,Dline,WCET) – are specified by the model M. There
are |[[C]]M| processors, and each running task is allocated to a
processor dynamically. For each task process t , K([[TSched]])
has the following propositions:

• Prior(t) : Z – the priority of t .

• Run(t) : B – whether a job of t is dispatched on a
processor.

• InQ(t) : B – whether a job of t has arrived but hasn’t
been completed yet.

Prior(t) is set by the scheduling policy and decides which
tasks are executed. The last two propositions encode every
possible state of t : idle if ¬InQ(t) ∧ ¬Run(t), waiting for
processor if InQ(t) ∧ ¬Run(t), and executing if InQ(t) ∧
Run(t). Also, for any state q of K([[TSched]]), and threads t1,
t2, q(CanPrmpt)(t1, t2) is ⊤ iff the following holds in q :

Run(t1) ∧ ¬Run(t2) ∧ InQ(t2)

Recall that our model checking problem is ∀π ∈ [[TSched]] �
π, µ |= ψ, where µ is a variable assignment. We solve this
by: (i) instantiating the LTL formula ψ to a propositional
LTL formula ψprop using µ; and (ii) using a model checker
to verify K([[TSched]]) |= ψprop. For example, CFreqSc.A is
expressed as the following propositional LTL formula:

G (Run(µ(t1)) ∧ ¬Run(µ(t2)) ∧ InQ(µ(t2)) ⇒

Dline(µ(t0)) ≤ Dline(µ(t1)))

The correctness of our algorithm follows from the seman-
tics of our LTL formulas, the semantics of propositional LTL,
and the correctness of model checking.

4.2.4 Model Checking for Battery

Let us now define the execution semantics of [[TBatt]]. A
battery b consists of a matrix of cells χ being continuously
charged, discharged, connected, and disconnected with each
other. A state q of the system corresponds to a point in
time when either the charge or the connectivity status of a
cell changes. An execution consists of an infinite sequence of
such states observed at runtime. Many such executions are
possible due to the non-determinism in the order of charge
and discharge. Then [[TTherm]] consists of all such executions.

We model [[TTherm]] as a Kripke structureK([[TTherm]]) with
the following propositions for each cell c = (x , y) ∈ χ, which
is characterized by its physical coordinates x ∈ [0,BatRows−
1] and y ∈ [0,BatCols− 1]:

• CellCharge(c) is the charge of c. To simplify model
checking we chose a Boolean abstraction for the cell
charge, but other abstractions are possible too.

• CellSt(c) is the status of c with possible values
discharging, charging, and idle.

• Gr(c) is the number of group of cells electrically con-
nected in serial within which c is located. Groups are
treated as electrically connected in parallel with each
other. Every cell belongs to a group, but not every
group or cell is discharging.

TN is encoded as follows. Cells c1 and c2
are thermal neighbors, denoted istnbr(c1, c2), if: (i)
c1 6= c2; (ii) Gr(c1) = Gr(c2); (iii) |c1.x − c2.x | +
|c1.y − c2.y | ≤ TNDIST 8; (iv) CellCharge(c1) =
CellCharge(c2) = ⊤; and (v) CellSt(c1) = CellSt(c2) =
discharging. The number of thermal neighbors of cell c
is ntnbr(c) = |{c′ ∈ χ � istnbr(c, c′)}|. Finally, TN(b, i) =
|{c′ ∈ χ � ntnbr(c) = i}|.

5. IMPLEMENTATION
In this section we present the implementation of our anal-

ysis contracts tool9 in OSATE – an open source environment
for AADL modeling [9]. Below we describe how our tool im-
plements the concepts of this paper and how Spin/Promela
is used for model checking.

8For our calculations we use TNDIST = 2.
9Available at www.cs.cmu.edu/~iruchkin/dist/v0.
1-emsoft14-tool.tar.gz.

www.cs.cmu.edu/~iruchkin/dist/v0.1-emsoft14-tool.tar.gz
www.cs.cmu.edu/~iruchkin/dist/v0.1-emsoft14-tool.tar.gz

Figure 3: Contracts framework architecture.

5.1 Contracts Framework
Let us start by describing how the different elements of

our approach are represented. First, architectural model M
is described in an AADL model. Second, domain types,
like SecCl and ConnSchedPol, are defined as AADL property
types. Third, component sorts T , C , and B are derived
from respectively threads, CPUs, and battery devices in the
AADL model. SSched and SBatt are derived from proper-
ties of the components. Finally, we specify contracts in an
AADL sub-language annex to capture I , O , A, and G.
Fig. 3 depicts the architecture of our tool. Analysis con-

tracts C are associated with AADL component types, while
M is derived from the AADL main system instance. Initially,
our tool converts M from AADL into a database represen-
tation using the OSATE-database converter. All subsequent
steps are performed using this database (model DB). The
analysis execution controller constructs the analysis graph
γ, as described in Sec. 4.1, and delegates the verification
of A and G to an appropriate verification engine, which is
determined by the form in Def. 3, along with A, T , and R
in the contract. A selected verification engine populates an
SMT problem and a Promela model with values from the
model DB, executes the verification via Z3 and Spin, and
interprets the outputs. To verify forms 3 and 4 of Def. 3,
σSched and σBatt verification engines use Z3 to find assign-
ments to v1 · · · vj that satisfy φ, and use these assignments
to verify ψ via Spin.

5.2 Scheduling Domain Implementation
We encode K([[TSched]]) as a Promela (the input language

of the Spin [13]) program that computes q(CanPrmpt)(t1, t2)
appropriately for each state q and pair of threads t1 t2, as
described in Sec. 4.2.3. We implement each task t as a pro-
cess and add a manager process that decides what priorities
are assigned to threads and what threads are dispatched to
processors. Thus, the manager process plays the role of a
scheduler and a dispatcher. Our Promela program handles
the events of job arrival and termination in an infinite cycle,
interleaving each event with the manager execution.
The Promela program models non-deterministic job ter-

minations without explicit time counters as follows. The
manager process calculates possible upcoming events. Time
is advanced in a greedy manner (i.e., whenever possible): if
an arrival event happens, or the earliest of all the possible job
termination events. To achieve a finite state space, all clock

variables10 are reduced by the minimum value of all clock
variables periodically. It can be shown that this approach
maintains contract satisfaction as long as clock variables are
not used in a contract. This condition holds for our contract
language since the clock variables are not exposed in it.

5.3 Battery Domain Implementation
We encode K([[TBatt]]) as a single-process Promela

program. The program maintains the state
CellCharge,CellSt,Gr discussed in Sec. 4.2.4. The pro-
gram execution works in two steps: scheduling cells for
discharge and charge (i.e., changing Gr and CellSt), and
advancing the charge state (i.e., changing CellCharge).

The first step is deterministic: it imitates the logic of a
selected scheduler. FGURR does not change Gr and rotates
through groups, setting ParalReq groups to discharge each
time and the rest to idle. FGWRR does not change Gr

either, but instead of rotating the groups it sorts them in
decreasing order of charge (which, for us, is the number of
cells with CellCharge(c) = ⊤) and selects the top ParalReq

groups. GPWRR assembles groups by packing as many
charged cells into each group as possible. Then it selects
the top ParalReq most charged groups to discharge. Within
each group, all schedulers select SerialReq charged cells.

The other step is non-deterministic: every discharging cell
non-deterministically becomes discharged; every charging
cell non-deterministically becomes charged; idle cells, how-
ever, do not change their charges. The program terminates
when there is not enough charge for the output requirements.

This program is an overapproximation of high-fidelity bat-
tery models with precise measurements of the cell charge.
This measurement is then used in these models to sched-
ule the cells. Thanks to the non-determinism in the second
step, our implementation accounts for possible cell failures
(i.e., cell gets immediately discharged) and any high-fidelity
model of charge. On the other hand, the program represents
cell schedulers’ logic precisely.

6. EVALUATION
In this section we evaluate three aspects of our approach:

(i) the effective integration of analyses – detection of in-
tegration errors or demonstration of their absence, (ii) the
scalability of our tool for models of practical size, and (iii)
extensibility of our tool.

Effectiveness of Analysis Integration. Consider a con-
crete configuration for the sample aircraft: threads
t1, t2, t3 have [[Per]]M = {t1 7→ 100, t2 7→ 150, t3 7→ 200},
[[Dline]]M = {t1 7→ 100, t2 7→ 90, t3 7→ 200}, [[WCET]]M =
{t1 7→ 10, t2 7→ 15, t3 7→ 20} are allocated to a single CPU.
Before analysis AnFreqSc is applied to determine CPU fre-
quencies, its assumption CFreqSc.A is verified. Recall that
CFreqSc.A states that the scheduling policy must be seman-
tically equivalent to DMS. Suppose first that the system
uses RMS scheduling, i.e., Prior(t1) > Prior(t2) > Prior(t3).
In this case, our tool detects a violation of CFreqSc.A via
model checking because in this case DMS would assign
Prior(t2) > Prior(t1). Now suppose that the system uses
EDF. As our Spin program indicates, it satisfies CFreqSc.A
Thus, our approach not only prevents incorrect usage of
AnFreqSc, but also extends its applicability to EDF.

Next, suppose our system has a battery with BatRows =

10Such as the next job arrival or the absolute system time.

Threads DMS/RMS Time12 EDF Time
3 0.01 0.01
4 0.01 0.52
5 0.07 33.4
6 0.37 2290.0
7 2.18 MEMLIM
8 12.4 MEMLIM
9 71.2 MEMLIM
10 421 MEMLIM
11 MEMLIM MEMLIM

Table 3: Scalability of the K([[TSched]]) program.

Cells FGURR Time 12 FGWRR Time GPWRR Time
9 0.13 0.15 0.15
12 0.61 2.34 3.94
16 44.0 31.4 127
20 1060 619 MEMLIM
25 MEMLIM MEMLIM MEMLIM

Table 4: Scalability of the K([[TBatt]]) program.

BatCols = 4, and a voltage requirement ParalReq =
SerialReq = 3. It has been observed [16] that heat-
dissipating cells (i.e., those with many thermal neighbors)
and heat-isolated cells (i.e., those with no thermal neigh-
bors) tend to prevent thermal runaway, while cells with one
thermal neighbor tend to accumulate heat and lead to run-
away. An assignment of weights K(0) = K(1) = K(2) =
2,K(1) = −1 in (1) captures this intuition. After execut-
ing analysis AnBatSched , which picks a battery scheduler, our
tool verifies its guarantee CBatSched .G. Since AnBatSched is
not aware of thermal runway, not every scheduler meets the
guarantee. As our Spin verification indicates, FGWRR and
FGURR satisfy it, but GPWRR fails because it causes
the system to reach a configuration that violates (1) with
TN(0) = TN(3) = 0,TN(1) = 8,TN(2) = 1. Thus, our ap-
proach detects possibility of thermal runaway even though
the existing analysis AnBatSched does not.
Scalability of Contract Verification. We evaluate the scal-

ability of our approach by comparing it to an alternative
based on a unified semantic model. We focus on model
checking since it is by far the most expensive component of
our algorithm. The execution semantics of a unified model
would, at the very least, consist of the interleaving of the
two Kipke structures – K([[TSched]]) and K([[TTherm]]). Model
checking this interleaving would be intractable due to states-
pace explosion. In contrast, our approach is compositional
and always verifies K([[TSched]]) and K([[TTherm]]) in isolation.
We evaluated our Promela programs using a general-

purpose Amazon EC211 virtual machine with 8 cores and
30 Gb memory. The worst-case exploration times by sched-
uler for the full statespace K([[TSched]]) and K([[TTherm]]) are
shown in Tab. 3 and Tab. 4, respectively. For the former
we use threads with implicit harmonic periods, and for the
latter we grow the battery size, fixing the output voltage
requirement to SerialReq = ParalReq = 3. Although the
complexity growth is exponential, K([[TSched]]) is verifiable
upto 6-10 threads (per CPU), and K([[TTherm]]) is verifiable
up to batteries with 25 cells. We believe that this enables
verification of realistic CPSs. We expect that other tech-
niques, such as abstraction and symbolic model-checking,
will help us to push these limits even further.
Tool Extensibility. Our tool can be extended with new

11Available at aws.amazon.com/ec2.
12 All times are in seconds. MEMLIM indicates that the
verification exceeded the memory limit of 30Gb.

verification domains. This is done by creating a new σ that
defines A and S in AADL and developing a verification en-
gine that interprets T and R, which can be done separately
by teams of domain experts. In addition, it is possible to
incorporate new verification tools (e.g., UPPAAL instead
of Spin for σSched) as well as new analysis tools (e.g., a
higher-fidelity method of calibrating K to predict thermal
runaways). Finally, our approach is not fundamentally lim-
ited to AADL: any typed architecture description language
can be used to create a model database.

7. RELATED WORK
Contracts, assume-guarantee reasoning, and architectures

have been used extensively to enable modular verification.
In particular, in the development and verification of CPS,
contracts provide an important alternative to a unified se-
mantic model. For instance, Torngren et al. [26] use archi-
tectural viewpoints contracts as a coordination tool for de-
signers with tools from different domains without, however,
rigorously verifying application of these tools. Rajhans et
al. [22] use an architectural multi-view approach where dif-
ferent modeling notations are captured in different views of
an architectural model, using structural and semantic map-
pings to ensure consistency. In contrast, we concentrate not
on model consistency, but on correct analysis interaction.

Sangiovanni-Vincentelli et al. [24] use contracts between
components and platform-based design to combine the se-
mantics of multiple domains. A similar approach is used in
the SPEEDS project [2] to enable speculative design to sup-
port teams of distributed designers. Specifically, the authors
propose the use of “rich” components where functional and
non-functional aspects of the system are combined. We do
not require a model that semantically unifies multiple do-
mains, and our focus is not on the interaction between com-

ponents. Instead we use contracts to capture the semantics
of, and interaction between, the analyses themselves.

Assume-guarantee reasoning for control theory has been
widely explored. Frehse et al. [10] develop assume-guarantee
reasoning for hybrid systems based on over-approximation
by simulation to enable compositional reasoning. A similar
approach is taken by Girard and Pappas [11] using bisimula-
tion, simulation, and language inclusion to develop approxi-
mate system relationships. These approaches are focused on
the intersection of control theory and computer science. In
contrast, our work aims at capturing a larger set of domains
with extensible representations of domains.

Cofer et al. [6] present an approach to add architectural
contracts to AADL components to enable compositional ver-
ification. While we share the AADL platform, we use the
AADL annexes to specify contracts on the analysis and
within these contracts we specify the components accessed
by these analyses. The FUSED [3] project defines a meta-
language approach to merge notations from multiple analysis
domains to enable a syntactic integration of multiple tools.
It is limited to what the syntax can express and unable to
reason semantically. For instance, it would not be able to
reason about when different scheduling algorithms are equiv-
alent depending on different parameters of the taskset. In
our approach we model the semantics in the analyses algo-
rithms and are able to reason about these behavioral differ-
ences that are hidden at the syntactic level.

Our prior work on contracts[19] has been extended in a
number of aspects. Previously, contracts were restricted to

a single domain – resource allocation. Contract verification
was unsound and incomplete since it explored the system
statespace only up to a finite depth, and the previous imple-
mentation was tied to a specific tool, Alloy, which cannot do
unbounded model checking or SMT solving. In contrast, our
contract language supports multiple domains, our algorithm
is sound and exhaustive, and our implementation relies on
extensible use of SMT solvers and model checkers.

8. CONCLUSION AND FUTURE WORK
In this paper we presented an analysis integration ap-

proach for the development of cyber-physical systems. Our
approach uses novel analysis contracts to formally specify
and automatically verify interactions between analyses from
different engineering domains. Our contract language can
express both static and runtime aspects of models to which
analyses are applicable. We presented the syntax and formal
semantics of contracts, as well as an algorithm that orders a
set of analyses in a correct way and checks the applicability
of each analyses via co-operative use of SMT solving and
model checking. We discussed how our approach captures
the semantics of a new domain in order to support analysis
specific to it. Contrasting with other approaches, we show
how we avoided developing a unifying semantics (which leads
to an intractable verification process), focusing instead on
the interactions between domain-specific analyses. We then
presented the integration of the analysis contracts into the
AADL/OSATE toolkit with the use of an AADL annex. Fi-
nally, we used an example to demonstrate the application of
our framework to realistic models. As future work we plan to
explore more scalable contract verification tools and define
contracts for the contract verification tools themselves.

9. REFERENCES
[1] N. Audsley, A. Burns, M. F. Richardson, and A. J.

Wellings. Hard real-time scheduling: The
deadline-monotonic approach. In Proc. of IEEE

Workshop on Real-Time Operating Systems and

Software, pages 133–137, 1991.

[2] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi,
R. Passerone, and C. Sofronis. A contract-based
formalism for the specification of heterogeneous
systems. In Proc. of FDL, 2008.

[3] M. Boddy, M. Michalowski, A. Schwerdfeger,
H. Shackleton, and S. Vestel. The FUSED
Meta-Language and Tools for Complex System
Engineering. In Proc. of AVICPS, 2011.

[4] S. Chaki, A. Gurfinkel, S. Kong, and O. Strichman.
Compositional Sequentialization of Periodic Programs.
In Proc. of VMCAI, 2013.

[5] Y. Chen and J. W. Evans. Thermal analysis of
Lithium-Ion batteries. J. of The Electrochemical

Society, 143(9):2708–2712, Sept. 1996.

[6] D. D. Cofer, A. Gacek, S. P. Miller, M. W. Whalen,
B. LaValley, and L. Sha. Compositional verification of
architectural models. In Proc. of NFM, 2012.

[7] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proc. of TACAS, 2008.

[8] D. De Niz and R. Rajkumar. Partitioning bin-packing
algorithms for distributed real-time systems. IJES,
2(3), 2006.

[9] P. H. Feiler and D. P. Gluch. Model-Based Engineering

with AADL - An Introduction to the SAE Architecture

Analysis and Design Language. SEI series in software
engineering. Addison-Wesley, 2012.

[10] G. Frehse, H. Zhi, and B. Krogh. Assume-guarantee
reasoning for hybrid I/O-automata by
over-approximation of continuous interaction. In Proc.

of CDC, 2004.

[11] A. Girard and G. J. Pappas. Approximate
bisimulation: A bridge between computer science and
control theory. Eur. J. Control, 17(5-6), 2011.

[12] K. Hahnsang and K. G. Shin. Scheduling of battery
charge, discharge, and rest. In Proc. of RTSS, 2009.

[13] G. J. Holzmann. The model checker spin. IEEE Trans.

Software Eng., 23(5), 1997.

[14] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and
K. Butts. Powertrain control verification benchmark.
In Proc. of HSCC 2014, pages 253–262, New York,
NY, USA, 2014. ACM.

[15] G. Karsai and J. Sztipanovits. Model-integrated
development of cyber-physical systems. In Proc. of

SEUS, 2008.

[16] G. Kim and A. Pesaran. Analysis of heat dissipation
in Li-Ion cells & modules for modeling of thermal
runaway. In Proc. of 3rd International Symposium on

Large Lithium-Ion Battery Technology and

Application, Long Beach, CA, 2007.

[17] H. Kim and K. Shin. On dynamic reconfiguration of a
large-scale battery system. In RTAS 2009, pages
87–96, Apr. 2009.

[18] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Environment. JACM, 20(1), 1973.

[19] M. Nam, D. de Niz, L. Wrage, and L. Sha. Resource
allocation contracts for Open Analytic Runtime
models. In Proc. of EMSOFT, 2011.

[20] OSATE 2 - An Open-Source Tool Platform for AADL
v2. http://www.aadl.info.

[21] A. Pnueli. The Temporal Logic of Programs. In Proc.

of FOCS, 1977.

[22] A. Rajhans, A. Y. Bhave, I. Ruchkin, B. Krogh,
D. Garlan, A. Platzer, and B. Schmerl. Supporting
heterogeneity in cyber-physical systems architectures.
IEEE Trans. Autom. Control, Special Issue on Control

of CPS, 2014. To appear.

[23] S. Saewong and R. Rajkumar. Practical
voltage-scaling for fixed-priority rt-systems. In Proc.

of RTAS, 2003.

[24] A. L. Sangiovanni-Vincentelli, W. Damm, and
R. Passerone. Taming Dr. Frankenstein:
Contract-based design for cyber-physical systems.
Eur. J. Control, 18(3), 2012.

[25] J. Sztipanovits, X. Koutsoukos, G. Karsai,
N. Kottenstette, P. Antsaklis, V. Gupta,
B. Goodwine, J. Baras, and S. Wang. Toward a
science of cyber physical system integration. Proc. of
the IEEE, 100(1):29–44, Jan. 2012.

[26] M. Törngren, A. Qamar, M. Biehl, F. Loiret, and
J. El-khoury. Integrating viewpoints in the
development of mechatronic products. Mechatronics,
2013.

