
Towards a Formal Framework for
Hybrid Planning in Self-Adaptation

Ashutosh Pandey, Ivan Ruchkin, Bradley Schmerl, and Javier Cámara
Institute for Software Research

Carnegie Mellon University, Pittsburgh, PA
ashutosp@cs.cmu.edu · iruchkin@cs.cmu.edu · schmerl@cs.cmu.edu · jcmoreno@cs.cmu.edu

Abstract—Approaches to self-adaptation face a fundamental
trade-off between quality and timeliness in decision-making. Due
to this trade-off, designers of self-adaptive systems often have
to find a fixed and suboptimal compromise between these two
requirements. Recent work has proposed the hybrid planning ap-
proach that can resolve this trade-off dynamically and potentially
in an optimal way. The promise of hybrid planning is to combine
multiple planners at run time to produce adaptation plans of
the highest quality within given time constraints. However, since
decision-making approaches are complex and diverse, the problem
of combining them is even more difficult, and no frameworks for
hybrid planning. This paper makes an important step in simpli-
fying the problem of hybrid planning by formalizing it and de-
composing it into four simpler subproblems. These formalizations
will serve as a foundation for creating and evaluating engineering
solutions to the hybrid planning problem.

I. INTRODUCTION

A typical control loop in many self-adaptive software
systems has four computational components: Monitoring-
Analysis-Planning-Execution (MAPE), coordinated through
knowledge [7]. Prior research has proposed multiple approaches
for the planning component to provide decision-making at run
time.1 Frameworks such as Rainbow [12] apply case-based
reasoning, solving new problems based on solutions to similar
problems seen in the past. When adaptation is needed, Rainbow
chooses an adaptation strategy (i.e., a plan) from a repertoire of
predefined adaptation strategies created at design time by domain
experts based on their past troubleshooting experience [3]. In
contrast to building a repertoire offline, automated planning tech-
niques (e.g., model-checking [5] reinforcement learning [15],
and genetic algorithms [14]) have been explored to generate
adaptation plans at run time.

For any decision-making approach, quality and timeliness
(of adaptation decisions) are conflicting requirements. Decision-
making, in essence, is a search process performed over the space
of possible decisions; more complete searches provide better
quality guarantees about the decisions, but require more time
to be completed. Hence, a planner can either provide a partially
ready plan at the moment when it is needed, risking it being
sub-optimal, or provide a fully ready plan, risking it being
late. For instance, in the Rainbow framework, fast decisions
can be made using case-based reasoning, however decisions
could be sub-optimal since it is difficult to have a predefined
strategy for unforeseen scenarios. Alternatively, in less urgent
situation, a slower approach may be chosen that fully, and more

1The term "decision-making approaches" is used in a broad sense, representing
any approach that could be used in planning to determine adaptation plans.

deliberatively, explores a large decision space and provide an
optimal or near-optimal plan.

Some self-adaptive systems need to resolve the quality-
timeliness conflict at run time: they need timely actions under ur-
gent circumstances, but eventually require deliberative planning
to improve their performance over the long term. For instance,
Amazon Web Services (AWS) 2 are required to maintain an
up-time of at least 99.95% in any monthly billing cycle as
per the service level agreement, even though there might be
other quality concerns such as cost minimization. The perceived
quality for such systems would drop drastically if such service-
level constraints were violated. For systems like AWS, in case
of a failure a rapid response is required to keep the system in a
desirable state (for AWS, maintaining availability). However, to
maintain quality of the system, the adaptation plan should be as
close to optimal as possible, by considering other metrics such
as operating cost.

To provide a run-time balance between quality and timeliness,
researchers have proposed algorithms to improve the search [10]
and heuristics for reducing the search space [6] [2] [1]. However,
these solutions often do not generalize to many scenarios, remain
specific to systems for which they were devised.

In contrast to inventing system-specific solutions, previous
work proposed a general hybrid planning approach [16] to
balance quality and timeliness at run time. Hybrid planning
combines several off-the-shelf decision-making approaches to
activate these approaches as necessary, ideally using the most
appropriate approach in each situation. The key idea is to
use a fast decision-making approach to handle an immediate
problem, but simultaneously use a slow approach to provide an
optimal solution, merging the plans on the fly. This interleaving
of approaches helped in achieving benefits of both worlds:
providing plans quickly when the timing is critical, while
allowing optimal plans to be generated when the system has
sufficient time to do so.

Even though hybrid planning is a promising idea and is
potentially applicable to a wide variety of domains, its successful
implementation faces substantial challenges, which have not yet
been addressed or even fully explored. It is difficult to identify
the conditions of compatibility between planning approaches,
how planners need to be configured (e.g., how to choose the
planning horizon), and when to stop using one plan and start us-
ing another. Moreover, even if some implementation overcomes
these obstacles, it is not clear how to systematically evaluate
that implementation. A particular hybrid planning approach may

2https://aws.amazon.com/ec2/sla/

Submitted for publication.



perform better than any particular planner, but that is a relatively
low standard given limitations of individual planners. Currently,
any evaluation is difficult because a fundamental description of
the ideal behavior for hybrid planning is lacking.

This paper addresses the complexity and vagueness of the
hybrid planning problem by splitting it into four subproblems:
(i) selecting which scenarios to plan for, (ii) rating available
planners on these scenarios, (iii) deciding what subplans can
be combined, and (iv) selecting the most optimal sequence of
subplans. We give formal definitions to these concepts, thus
taking a first step in building a principled theory of hybrid
planning. These formal definitions can be used as design
guidance and an evaluation method for making hybrid planners.
Before developing solutions for hybrid planning, it is necessary
to understand the subproblems. Furthermore, our notion of utility
can be used as a baseline for evaluating implementations of
hybrid planning.

We start with a motivating example of a cloud-based self-
adaptive system in the next section. Then we describe the basic
concepts of hybrid planning, which are used in Section IV to
formalize the four subproblems of hybrid planning. We conclude
the paper with a discussion of the model’s generality and its
usage for evaluation of hybrid planners.

II. MOTIVATING EXAMPLE

To explain elements of the formal framework defined later,
the paper uses a simplistic version of a typical cloud-based self-
adaptive system as an example. The system has a typical three
layered architecture: a presentation layer, an application layer,
and a database layer. The workload on the system depends on
the request arrival rate, which is uncertain as it depends on the
external demand.

The goal of the system is to maximize the utility, which
depends on the penalty for response time, and the cost of active
servers. We assume there is a penalty, say P , for each request
having a response time above the threshold. Therefore, in case of
a high average response time, the system needs to react. However,
once response time is under control, the system should execute
adaptation tactics to bring down the operating cost i.e., needs to
minimize the number of active servers.

III. FOUNDATIONAL CONCEPTS

This section defines basic concepts needed to formalize hybrid
planning. We interleave definitions of abstractions (e.g., plans)
with utility functions that evaluate these abstractions.

Definition 1 (State). A state s is a vector of values of the
system’s and environment’s variables. We designate the set of
states by S .

Definition 2 (Utility of states). The utility of a state is defined
as U : S → R, which is a function that maps state s to its
valuation.

In this paper we use the a posteriori notion of utility (i.e.,
assessed after an execution). Our formalization propagates
the definition of utility of from the ground truth (utility of a
particular state in a real system) to abstract notions that the
MAPE loop manipulates (e.g., planners). We hope to thus create

a formal underpinning for every planning decision of a self-
adaptive system, rooted in utility that this action leads to.

Some of our utility abstractions may be not implementable
directly, since they require perfect knowledge of the future.
Although an obstacle for practical systems, this circumstance is
beneficial for formalizing the problem of hybrid planning and its
idealized solution. In particular, by using information about the
future (e.g., how much utility was accrued from each state), we
can set a firm theoretical baseline for evaluation of downstream
engineering solutions. These solutions will use relaxations of
our utility notion (e.g., a priori utility or average expected utility)
to construct approximations of the idealized solution.

Definition 3 (Execution). An execution e is a potentially infinite
sequence of states: e def

= 〈s1, s2, . . . 〉. We designate set of
executions by E .

In this paper we allow infinite executions and aggregates
of infinities. For implementation purposes, infinite sets and
sequences can be made finite.

Definition 4 (Utility of executions). The utility of an execution
is defined as U : E → R, which is a function that maps
execution e to its valuation.

Utility of system execution (as well as other utility functions
we introduce below) directly builds upon the utility of states
in the execution. We abstract away the particular form of this
function (e.g., summation or averaging).

Definition 5 (Actions and transitions). An action a is a transition
between states. We designate a set of all actions by A. Actions
are characterized by the state transition function T : S×A→ S .

Definition 6 (Plan). A plan π is, given a planning problem, a
set of state-action tuples (s, a), suggesting a to be executed in s,
where s ∈ S and a ∈ A. Π is a set of all plans. We link a plan π
to the execution it produces e through a special linking function
L : Π→ E ; L(π) = e.

Definition 7 (Utility of plans). The utility of a plan is defined
as U : Π → R, which is a function that maps a plan to its
valuation by executing the plan in the system. In other words,
U(π)

def
= U(e) if e = L(π).

By linking the utility of plans to the utility of executions, we
have extended the groud truth to the internal reasoning of plan-
ners. This bridge lets us establish utility-based comparison of
concepts that are normally exist before execution happens.Thus,
we trade implementability off for a solid theoretical way of
putting value on planning decisions.

Definition 8 (Planning problem). A planning problem ξ is a
tuple (S , si,A, T, U), where si ∈ S is an initial state.U is a
utility function for executions. It will propagate it to plans as per
Definition 7. By choosing actions under the system’s control, U
needs to be optimized to solve the planning problem3 Planning
problem set Ξ is a set of all planning problems.

3The notion of U subsumes the cases where the objective of a planning
problem is to reach explicit goal states; this could be done simply by assigning a
large utility value to those desired states.



Generally, self-adaptive systems face a variety of planning
problems (i.e., adaptation scenarios). Although often such
scenarios are out of the system’s control (e.g., a sudden spike
in online traffic demanding an urgent response), systems have a
degree of control in selecting the planning problems they solve.
For instance, the system may choose its lookahead horizon:
should it consider a future of one minute or one hour ahead of
the current moment? Some approaches deal with this specific
problem of choosing the lookahead horizon [21]. We formalize
such unknowns as a more general problem in Section IV-D, and
the planning problem set contains all revelant problems, each
representing a particular set of inputs to a planner.

Definition 9 (Planner). A planner is defined as ρ : Ξ → Π,
which is a function that solves planning problem ξ and produces
plan π. Given a planning problem, a planner set P is a set of
planners that can solve this probiem.

In a particular adaptation scenario, a self-adaptive system has
variation in what planner to use for the problem. In practice,
planners are affected by their configuration and the format
of input. As a result, some planners may not be applicable
to some problems. Nevertheless, many planners can solve the
same planning problem, thus creating flexibility in what planner
to use. For instance, in the context of the self-adaptive cloud
setting, researchers have demonstrated the potential of various
decision-making approaches such as case-based reasoning [12],
automated planning [17], and reinforcement learning [18].
Moreover, for each approach, numerous customizations are
possible, which we formalize as individual planners in the
planners set. We focus on the interchangeability of the planners,
and assume that P is a set of planners that can solve the planning
problem in question. This simplification is made without loss of
generality, since we always evaluate planners with respect to a
certain planning problem (see Sections IV-C and IV-D).

Definition 10 (Utility of planners). The utility of planner is
defined as U : P × Ξ → R, which is a function that, given
planner ρ and planning problem ξ that it is solving, returns a
real number indicating the performance of the plan generated by
ρ after it has been executed on ξ. This utility function is defined
by the utility function for plans: U(ρ, ξ)

def
= U(ρ(ξ)).

Definition 11 (Utility of planning problems). The utility of a
planning problem is defined as U : Ξ × P → R, which is a
function that, given set of planners P , maps planning problem ξ
to the maximum utility among planners in the set. Formally:

U(ξ,P) , arg max
ρ∈P

U(ρ, ξ).

Let us illustrate the given definitions by mapping them back to
the self-adaptive cloud setting described in Section II. Planning
problems, such as reacting to low response time and seizing
an opportunity to reduce operating cost, belong to the planning
problem set (Ξ). For these problems, the state space S would
consist of both system and environment states; set of actions
A would contain adaptation actions such as adding/removing
servers; the goal of the system is to maximize utility U . For
executions e, U(e) is calculated a sum of instantaneous utilities
of individual states U (s). The utility of each state depends on
state attributes:response time and operating cost of servers.

Fig. 1. Decomposition of the hybrid planning problem.

To solve the hybrid planning problem for the cloud planning
problem, one may employ several planners, such as MDP and
Rainbow—both contained in P . To solve the hybrid planning
problem, the self-adaptive system will need to find the best
combinations of these two planners by selecting appropriate
planning problems (Ξ) and assigning them to planners in
advance (to account for their planning delays). In the remainder
of the paper we shed light on the subproblems that such a self-
adaptive system would need to solve.

IV. DECOMPOSITION OF THE HYBRID PLANNING PROBLEM

First, let us define the notion of a hybrid plan and planning.

Definition 12 (Hybrid plan). Hybrid plan ω is a sequence of
plans πi, each produced by planner ρi on planning problem ξi:

ω
def
= 〈π1, π2, . . . 〉, where πi = ρi(ξi).

Definition 13 (HPP). The Hybrid Planning Problem (HPP) is,
given a planning problem ξ and a set of planners P , produces
a hybrid plan sequence of plans from various planners that
maximizes the utility.

This paper’s central contribution is a decomposition of HPP
into four subproblems (starting from the end, see Figure 1):

1) Problem-Planner Path Selection (PPPS): what is the path
of problem-planners whose execution yields the maximum
utility?

2) Problem-Planner Reachability (PPR): what is the reacha-
bility relation between pairs of problems and planners?

3) Planner Rating (PR): what quality and timeliness does
each planner provide on a given planning problem?

4) Planning Problem Selection (PPS): what planning prob-
lems to solve?

We would like to stress again that these theoretical subprob-
lems of hybrid planning do not prescribe a particular framework
or an algorithm for doing hybrid planning. In the remainder of
this section, we define and discuss each problem separately. We
work our way back from the definition of HPP.



A. Problem-Planner Path Selection

The Problem-Planner Path Selection (PPPS) problem decides,
informally, what sequence of plans from different planners
yields the highest utility, and creates a hybrid plan from this
composition. To get a sequence of plans for solving HPP,
a sequence of planner invocations that generates those plans
is needed. However, by Definition 10, a plan generated by a
planner depends on the planning problem solved by that planner.
Therefore, PPPS needs to reason about sequences of problem-
planner pairs. We first formalize a structure that describes such
sequences and serves as an input to PPPS.

Definition 14 (Reachability graph). A problem-planner reacha-
bility graph Γ is a directed graph defined as a tuple (V , E ,V i):
• V is a set of nodes, where each node v is a tuple (ξ, ρ, d),

where deadline d (defined in Section IV-C) is the worst-case
time instant when ρ needs to be invoked on ξ.

• E ⊆ V ×V is a set of edges between pairs of nodes, where
each edge ε denotes reachability from the first node to the
second node.

• V i ⊆ V is a subset of initial nodes of the graph, linked to
variations of the initial planning problems.

An edge (v1, v2) in Γ indicates that the plan obtained by
executing the planner from v1 on its planning problem reaches
the initial state of the planning problem of node v2. Through
that plan, an edge can be mapped to an execution of the
system. Therefore, paths through Γ (which are sequences of
edges) mimic executions of the system, guided by concatenated
sequences of plans (equivalent to a hybrid plan).

The utility of paths through Γ builds upon the edge utilities
in the same way as utility of executions builds upon utilities of
states in Definitions 2 and 4. Paths have different utility, and the
goal of PPPS is to pick a path with the highest utility.

To enable comparison of paths via the ground-truth utility,
our next step is to formalize the mapping from edges/paths
in Γ to executions. Edge ε = (v1, v2) maps to its execution
from the initial state of planning problem in the first node
to the initial state of planning problem of the second node:
L(ε) = L(v1.ρ(v1.ξ))

_〈v2.ξ.s
i〉. Path (i.e., sequence of edges)

〈ε1, . . . , εn〉 maps to its execution composed of constituent
edges’ executions: L(〈ε1, . . . , εn〉) = 〈L(ε1), . . . ,L(εn)〉. This
mapping lets us define utility of edges and paths.

Definition 15 (Utility of edges and paths). The utility of edge ε
is a function U : E → R that maps ε to the utility of the edge’s
execution. Formally, U(ε)

def
= U(L(ε)). Similarly, the utility of

a path (a sequence of edges) κ = 〈ε1, . . . , εn〉 is a function
U : En → R that is defined as U(κ)

def
= U(L(κ)).

With these definitions, we are ready to fully formalize PPPS.

Definition 16 (PPPS). The Problem-Planner Path Selection
(PPPS) problem is, given reachability graph Γ, find a sequence
of edges starting from any of its initial nodes V i that maximizes
the utility:

PPPS(Γ)
def
= arg max

κ∈En
U(κ)

In practice, PPPS would be the last algorithmic step made in
planning, before the hybrid plan is handed over to the execution

component. Consider a rapid spike of online traffic in a cloud-
based system from Section II. PPPS can compare two possible
paths: activate fast planner and stick to it, or activate a fast
planner but switch to slow planner after the spike. Since the
slow planner yields larger utility on average, PPPS would
pick switching to it after an urgent situation has cleared, thus
improving the system’s utility.

B. Problem-Planner Reachability

The purpose of the Problem-Planner Reachability (PPR)
problem is to build reachability graph Γ used by PPPS. To
build this graph, PPR relies on two inputs: planning problems Ξ
that need to be solved (from PPS) and available planners P that
were rated in utility (U ) and invocation deadline (d) on each ξ
(from PR).

Nodes of Γ are constructed as follows: For a given planning
problem ξ, we create a node for each planner ρ applicable to ξ.
In each node, we add deadline d of the planner. We repeat this
process for each planning problem received from PPS. Thus, we
have constructed the set of nodes such that each node is a triple
(ξ, ρ, d).

Constructing edges of Γ is more complex. For each pair of
nodes v1 and v2, we need to determine whether there is an edge
between them. The edge exists if and only if two conditions are
met:

1) Preemption: after executing the plan from v1, the system
should reach to initial state of the planning problem in v2.
Only in this case the plan for node v2 can take over from
the previous plan. Formally, v2.ξ.s

i = last(v1.ρ(v1.ξ))
where last is a function that returns the end state of a plan
execution.

2) Timing: the plan in v2 should be ready once the execution
comes to it. Hence, v2.ρ has to be triggered at least its
worst-case planning time units earlier than the execution
of the system began. Although estimating planning time is
a significant obstacle in implementing practical solutions
to PPR, mathematically there is only one reason for a
time early enough not to be found—when it is before
t = 0. Therefore, the condition for ρ having enough time
before its execution is: d(ρ) >

∑
εi∈〈ε0,...εn〉

time(L(εi)),

where function time returns the duration of execution
corresponding to an edge.

Now that we have fully defined construction of graphs and
edges, we are ready to define PPR formally.

Definition 17 (PPR). The Problem-Planner Reachability (PPR)
problem is, given planning problems Ξ, planners P , and utilityU
and deadline d functions, to find reachability graph Γ with edges
satisfying the preemption and timing conditions (see above).

In practice, PPR is unlikely to be fully constructed for even
moderately sized problems. Therefore, the goal of implemen-
tations is to build the most effective subgraph of Γ. The cloud-
based self-adaptive system can place nodes at times of large
expected changes in the incoming traffic. Edges can be made
probabilistic (based on historic information and heuristics) to
avoid requiring exhaustive traversal of the state space.



C. Planner Rating
The purpose of the Planner Rating (PR) problem is, given a

particular planning problem ξ and a set of planners P , is to rate
the performance of these planners on that problem. These ratings
are an essential part of PPR (Section IV-B), and obtaining them
is a difficult and separate subproblem of HPP.

For hybrid planning, we are interested in two aspects of
planners’ performance: quality and timeliness. We model quality
with propagating utility functions defined in Section III. For
timeliness, we adopt the worst-case model of time: we assume
the knowledge of the maximum time needed by a particular
planner for a particular planning problem. Thus, PR requires
finding the worst-case planning time for each planner.

Since planners are functions, their output plan is fully defined
by a planning problem. Once executed, the plan’s utility is
determined as well. Therefore, the only necessary inputs to
PR are planning problem ξ and space of planners P . Therefore,
the quality and timeliness are determined by the execution of
that plan.

PR has two outputs:
1) Utility U(ρ) for each ρ ∈ P that is the utility accrued by

the execution of the planner’s output on the given planning
problem, U(ρ) = U(L(ρ(ξ))).

2) Deadline d : P × Ξ → R is a function of a planner that
returns a real number that indicates the worst-case delay
between starting a planner (on a certain problem) and
receiving its plan.

Definition 18 (PR). The Planner Rating (PR) problem is, given
planning problem ξ and set of planners P , to find the utility U
(ρ) and deadline d (ρ) of each planner ρ ∈ P on ξ.

To solve PR in practice, one would need to create algorithms
to measure utilities and deadlines for planners. To the authors’
knowledge, the absolute majority of existing planner imple-
mentations do not provide up-front guarantees on either of
these two characteristics. Therefore, two general approaches
are possible: (i) designing new planners with guarantees of
quality and timeliness on given planning problems, and (ii)
approximately predicting characteristics of existing planners.
While (i) is self-evident, (ii) can be accomplished in a number
of ways—from theoretical modeling to empirical profiling. This
formalization of PR explains how to evaluate such predictions
of planners’ quality in a uniform way.

D. Planning Problem Selection
The goal of the Planning Problem Selection (PPS) problem is

to decide what planning problems should be solved. PPS sets the
direction of planning, which in turn sets the adaptation course.

Formally, at every moment, an infinite number of planning
problems can be formulated and solved. According to Defini-
tion 8, one can arbitrarily select the initial state, the subset of
actions, the subset of the state space, and the utility function. If
the utility function is fixed, the number of problems is finite, but
still much larger than feasible to formulate and solve in practice.
Hence, PPS reduces the space of all possible planning problems
(Ξ) to a smaller set of planning problems that is input to PPR
and PPPS.

As time passes, the set of relevant planning problems changes.
For example, some initial states become not reachable, and these

problems become obsolete. At every moment of time, there is
a set of relevant planning problems Ξ. In Ξ, there is a subset of
problems that yield the largest utility—if solved and the plan is
executed immiediately. Due to the delay in planning, we must
consider problems in the future, the solution of which needs
to be started in advance, so that the plan is executed just-in-
time. Therefore, in a general case, PPS needs to return multiple
planning problems—not a single one with the highest utility.

So far we treated planning problems as timeless objects, with
time implicitly encoded in si. Within the discussion of PPS
we make time explicit for planning problems. However, this
extension does not affect other subproblems of HPP, since time
can be discarded when transferred to these subproblems.

Definition 19 (Timed Ξ). Time-specific space of planning
problems, Ξt, is the set of planning problems ξ ∈ Ξ that have
the initial state ξ.si with time t.

The inputs PPS are the time-specific space of planning
problems Ξt and the initial problem ξi. Problem ξi is the
initial planning problem given to hybrid planning. This problem
contains the utility function and a description of all reachable
states and actions. It also contains the original system state, from
which execution will start.

The output of PPS is a set of planning problems Ξ∗t ⊆ Ξt
that will solved, and their plans will inform the behavior of the
self-adaptive system. As discussed earlier in this section, PR
will rate planners on Ξ∗t , PPR will analyze reachability between
problem-planner pairs, and finally PPPS will select the best
sequence of plans and, consequently, planner executions.

The goal of PPS is to select planning problems with maximum
utility (as described in Definition 11). Since the space Ξ changes
every moment, PPS should produce problems with maximum
instant utility. That is, the best plans that the planning problems
produce (when solved by their best planners, as decided in PR)
should yield maximum utilities if executed at the same time
where the problem originates (i.e., its si has that time).

Definition 20 (PPS). The Planning Problem Selection (PPS)
problem is, given the initial planning problem ξi and time-
specific planning problem space Ξt, selects the best planning
problem, arg max

ξ∈Ξt

U(ξ), for each time t.

For illustration of PPS, imagine a scenario—the block world
example in [20]. It is a static planning problem: the space
of planning problems does not evolve with time (although it
can be infinite). Therefore, a fixed non-empty set of planning
problems yields maximum utility. This set would be the output
of PPS. If any problem in this set is selected and solved, the
resulting plan to achieve maximum utility indefinitely (assuming
no uncertainty in actuation or environment). Such a plan is
guaranteed to be the optimal plan, by the Definition 11.

Two obstacles make practical implementation of PPS difficult.
First, it is impossible to decide the best planning problem for
each time moment. Therefore, self-adaptive systems would need
a mechanism to decide what moments to give to PPS. This can
be done periodically or based on various heuristics. For example,
when the incoming traffic is relatively stable in the cloud
system, the periods of PPS can be larger. The PPS triggering
mechanism will be affected by the loss of expected utility by



picking planning problems in the future. This loss will occur
due to lower-quality predictions of the environment behavior.
Implementations of hybrid planning will need to estimate this
loss and account for it.

The second substantial practical issue for PPS is the mutual
dependency between PPS and PR: a problem cannot be evalu-
ated without planners, and planners—without a problem. There
does not seem to be a theoretical way to break this circularity.
Therefore, systems will need to employ approximate solutions.
One example of such solution is to use machine learning to
predict which problems and planners would yield the most utility.
Specifically, one would identify two independent sets of features
that predict, respectively, the utility of problems and planners.

V. DISCUSSION

Here we discuss two characteristics of the proposed hybrid
planning formalization: its use for experimentally validating
hybrid planners and its generality.

A. Evaluation of Hybrid Planners

The proposed formalization uses two idealized notions: utility
of plans/planners/problems and reachability between pairs of
problem-planners. We use utility to directly measure “goodness”
of decisions in subproblems. We use reachability to combine
plans into a hybrid plan with guaranteed preemption and timing.
While these idealizations are not directly implementable, they
do provide a single uniform way to evaluate future solutions to
the subproblems of hybrid planning.

Utility and reachability enable a workflow of evaluation:
• Implement a hybrid planner and a simulation of a system.
• Execute the planner on the system in several scenarios,

logging complete execution traces.
• Calculate utility of traces according to Definition 4.
• Reconstruct a reachability graph for each scenario.
• Perform what-if simulations to determine:

– Are there more optimal paths?
– Are nodes locally optimal in their neighborhood?
– Does removing nodes improve the performance?
– Are some edges incorrect or missing?

• The identified improvements indicate the delta between the
empirical utility and theoretical utility.

This is a repeatable, robust evaluation procedure for hybrid
planners, grounded in theoretical concepts. In fact, it is also
applicable to prior work on combining different contingency
plans [19]. Although such experiments can be computationally
expensive, they yield valuable insights into the behavior of
hybrid planners and opportunities for their improvements.

B. Generality

A careful reader might ask: is this the right formalization and
does it apply to all possible hybrid planners? We believe that
several such formalizations are theoretically possible, and to our
best knowledge this is the only one in existence. The distinctive
feature of this formalization is parsimony—our foundation uses
only essential concepts broadly applicable to planners, and
we introduce the least restrictive assumptions that still allow
precise formal definitions. Below we explicitly summarize our
assumptions behind and assess the scope of their validity.

Known utility of states/executions: this assumption holds
in the majority of contexts where self-adaptation is applied
to software systems. Exceptions are cases when experimental
data remains incomplete or inaccessible. One example is so-
phisticated cyber-physical systems where physical state may be
volatile and difficult to log in its entirety.

Instantaneous solutions to subproblems: our formalization
factors in only the delays of planning itself, but not delays of
solving PPPS, PPR, PR, and PPS. This assumption holds if
solving these problems takes negligible time compared to the
time scale of planning and execution, or if the solutions can be
precomputed offline.

Fixed space of planners: the formalization is inspired by
realistic contexts where planning tools are known before they
are executed in a system. This assumption is generally valid in
practically all contexts where planners are used today.

Known worst-case planning time: currently most planners
cannot provide a hard guarantee on their planning time. We hope,
however, that extensive up-front profiling of planners can lead
to strong empirical guarantees on worst-case planning times.
The goal of relaxing the time assumption opens a promising
direction of future work—predictable planners in self-adaptation.
An alternative research direction is to model the expected
planning time as probabilistic. Although this assumption is
more realistic, it would propagate probabilities throughout the
formalization, making reasoning too approximate to define a
precise, deterministic theoretical baseline for hybrid planning.

To summarize, this paper takes on a sophisticated problem
of hybrid planning and decomposes it into four computational
subproblems. Due to formalization, the definitions from the
paper may serve as a validation framework for practical solutions
to hybrid planning. We expect that, due to complexity in
hybrid planning, hybrid planning frameworks will greatly vary
in formal approaches, design patterns, and components that
address the subproblems. This paper provides a unifying way
to experimentally evaluate such frameworks, based on formal
notions of utility and reachability.

We would like to encourage the self-adaptive systems com-
munity to actively participate in contributing to engineering
solutions to the subproblems of hybrid planning. According
to prior work [16] [19], hybrid planning is a promising way to
both improve self-adaptation and combine multiple self-adaptive
frameworks, thus increasing the potential for industrial adoption.
However, the openness and complexity of hybrid planning
creates the possibility for many diverse approaches. Therefore,
extensive experimentation is needed to provide efficient, usable,
and general approaches to planning in self-adaptation.

ACKNOWLEDGMENTS

This work is supported in part by awards N000141310401 and
N000141310171 from the Office of Naval Research (ONR),
and FA87501620042 from the Air Force Research Laboratory
(AFRL). Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the ONR, AFRL, DARPA or the
U.S. Government.



REFERENCES

[1] B. Nebel, The FF Planning System: Fast Plan Generation Through Heuristic
Search, in: Journal of Artificial Intelligence Research, Volume 14, 2001,
Pages 253 - 302.

[2] Blai Bonet, Hector Geffner, Planning as heuristic search, Artificial Intelli-
gence 129 (2001) 5-33

[3] Shang-Wen Cheng, David Garlan, Stitch: A language for architecture-based
self-adaptation, The Journal of Systems and Software 85 (2012) 2860-2875

[4] Jeff Kramer and Jeff Magee, Self-Managed Systems: an Architectural
Challenge, Future of Software Engineering(FOSE’07)

[5] Daniel Sykes, William Heaven, Jeff Magee, Jeff Kramer, Plan-Directed Ar-
chitectural Change For Autonomous Systems, Sixth International Workshop
on Specification and Verification of Component-Based Systems (SAVCBS
2007), September 3-4, 2007, Cavtat near Dubrovnik, Croatia.

[6] Sungwook Yoon, Alan Fern, Robert Givan, FF-Replan: A Baseline for
Probabilistic Planning, American Association for Artificial Intelligence,
2007

[7] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41-50, 2003.

[8] M. B. Dias, D. Locher, M. Li, W. El-Deredy, and P. J. Lisboa. The value
of personalised recommender systems to e-business. In Proceedings of the
2008 ACM Conference on Recommender Systems - RecSys ’08, page 291,
New York, New York, USA, Oct. 2008. ACM.

[9] C. Klein, M. Maggio, K.-E . Irz̀en, and F. Hernàndez-Rodriguez. Brownout:
building more robust cloud applications. In Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014, pages
700-711, New York, New York, USA, May 2014. ACM.

[10] Dana Nau, Malik Ghallab, Paolo Traverso, Automated Planning: Theory
and Practice

[11] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger
semantics for low-latency geo-replicated storage. In 10th USENIX Sympo-

sium on Networked Systems Design and Implementation, pages 313-328.
USENIX Association, Apr. 2013.

[12] Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley R. Schmerl,
Peter Steenkiste: Rainbow: Architecture-Based Self-Adaptation with
Reusable Infrastructure. ICAC 2004: 276-277

[13] Mor Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action

[14] Zack Coker, David Garlan, Claire Le Goues: SASS: Self-Adaptation Using
Stochastic Search. SEAMS@ICSE 2015: 168-174

[15] Dongsun Kim and Sooyong Park, Reinforcement Learning-Based Dy-
namic Adaptation Planning Method for Architecture-based Self-Managed
Software, SEAMS’09, Vancouver, Canada

[16] A. Pandey, G. A. Moreno, J. Càmara, and D. Garlan, Hybrid planning
for decision making in self-adaptive systems, in International Conference
on Self-Adaptive and Self-Organizing Systems, ser. SASO 2016, 2016, pp.
12-16.

[17] Javier Cam̀ara, David Garlan, Bradley Schmerl, Ashutosh Pandey, Optimal
planning for architecture-based self-adaptation via model checking of
stochastic games, SAC 2015: 428-435

[18] Barry Porter, Roberto Rodrigues Filho, Losing Control: The Case for
Emergent Software Systems using Autonomous Assembly, Perception and
Learning, in International Conference on Self-Adaptive and Self-Organizing
Systems, SASO 2016

[19] M. Beetz and D. McDermott, "Improving robot plans during their
execution," in International Conference on AI Planning and Scheduling,
AIPS ’94, 1994.

[20] Gupta, N.; Nau, D. "On the Complexity of Blocks-World Planning" (PDF).
Artificial Intelligence. 56: 223-254

[21] Roykrong Sukkerd, Javier Cam̀ara, David Garlan, Reid G. Simmons:
Multiscale time abstractions for long-range planning under uncertainty.

SEsCPS@ICSE 2016


	Introduction
	Motivating Example
	Foundational Concepts
	Decomposition of the Hybrid Planning Problem
	Problem-Planner Path Selection
	Problem-Planner Reachability
	Planner Rating
	Planning Problem Selection

	Discussion
	Evaluation of Hybrid Planners
	Generality

	References

