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ABSTRACT
Large software systems have to contend with a significant number of
users who interact with different components of the system in various
ways. The sequences of components that are used as part of an inter-
action define sets of behaviors that users have with the system. These
can be large in number. Among these users, it is possible that there are
some who exhibit anomalous behaviors – for example, they may have
found back doors into the system and are doing something malicious.
These anomalous behaviors can be hard to distinguish from normal
behavior because of the number of interactions a system may have,
or because traces may deviate only slightly from normal behavior. In
this paper we describe a model-based approach to cluster sequences of
user behaviors within a system and to find suspicious, or anomalous,
sequences. We exploit the underlying software architecture of a system
to define these sequences. We further show that our approach is better at
detecting suspicious activities than other approaches, specifically those
that use unigrams and bigrams for anomaly detection. We show this on
a simulation of a large scale system based on Amazon Web application
style architecture.

1. INTRODUCTION
In the contemporary corporate setting, having malicious users interact

with software is potentially disastrous and can cost organizations mil-
lions of dollars. For instance, Cummings et al. [9] studied 80 cases of
fraud in the financial services sector. They found that in most cases, ma-
licious users interacted with the parts of the systems for which they had
permission to access, based on their roles in the companies. However,
such users were behaving anomalously compared to how they had be-
haved before, or how others in similar roles behaved. The impact of such
cases was as high as 28 million dollars. Similar results were found in
other sectors – government [22], information technology, telecommuni-
cations [23], and critical infrastructure sectors [21]. Suspicious behavior
can arise from the existence of compromised user accounts, rogue users,
or by less knowledgeable users who break things unwittingly.

Many challenges exist in identifying suspicious behavior since the
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number of suspicious activities is a tiny fraction of the number of normal
activities. The scale of modern systems, including the number of com-
ponents they comprise, the variety of functions that they perform, and
the diverse and large number of users that they are required to interact
with, make manual inspection infeasible.

Many approaches have been proposed to find malicious users in
review websites [16] and social media data [17, 30]. Most of these
approaches attempt to identify suspicious users based on the distribution
of the products/activities they perform [16, 17], based on the inter-arrival
time distribution [10], or based on group attacks [3, 19, 30, 33]. All of
these approaches assume that a user interacts with each component of
a system independently, i.e., the interaction pattern with a single compo-
nent (or the system as a whole) determines whether a user is suspicious.

However, software systems are actually composed of many com-
ponents, and a particular user interaction is actually a sequence of
interactions with different components as defined by its software ar-
chitecture [32]. For example, in a simple web application, assuming a
3-tier architecture, a user’s request will first interact with a web server,
then an application server, and finally a database. Suspicious users can
be detected by identifying atypical interaction sequences with these
components. For example, a user interaction that communicates with a
database, without first interacting with the web server, could signal that
the user has a back door into the database and is exfiltrating data. There-
fore, it is essential to consider sequences of user activities over the given
software architecture for detecting suspicious users. Sequences can also
be determined by examining log data. In this scenario, password access
(login followed by a password change), file transfer (login followed by
a file transfer) can be seen as a suspicious sequence of activities.

As modern software systems are large, with many users performing
activities on the system, it is essential for security analysts to focus and
prioritize their inspections on suspicious users to determine whether
their activities are dangerous to the organization or not. Thus, a good
algorithm for detecting suspicious user behavior should provide a sus-
piciousness score for each user, allowing security experts to prioritize
their inspection activites.

Informally, our problem can be stated as follows:

PROBLEM 1 (INFORMAL). Given a set of users interacting with
various components in a software system, compute a suspiciousness
score for each user.

In this paper, we describe an approach that first abstracts out the
activities carried out by all users of the system to produce sequences of
activities We then present a principled way of constructing a Bayesian
model for generating the user sequences. Finally, a statistic based on
the likelihood-based metric (which measures how much a user deviates
from other users) is used to determine the suspiciousness score of a user.



Our primary contributions are as follows:

Modeling sequences: Our approach takes into account the temporal
sequencing of activities carried out by users. It does not assume that the
activities performed by users are independent of each other.

Complex System Representation: Our approach can represent com-
plex software systems at a software architecture level of abstraction,
enabling scalability and interpretability.

Accuracy: We show that on a simulated dataset of user activities with
different percentages of anomalous users, our method was able to detect
suspicious users with significant precision and recall, and perform better
than other commonly used methods based on activity count alone.

Scoring Function: Our proposed method provides a suspiciousness
score for each user sequence, thus allowing security experts to prioritize
their inspections.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 motivates the problem and provides examples
of threat scenarios that our approach aims to handle. We describe our
approach in Section 4. We describe our evaluation in Section 5 and
conclude by discussing the results and future work in Section 6.

2. BACKGROUND AND RELATED WORK
Over the past few years a lot of work has been done in the field of

finding user-related anomalies. Most of that work is centered on finding
fake reviews [1, 17, 37], finding fake followers on social media [30],
finding bots on social media [10], and finding suspicious reactions to
retweet threads [14]. We can classify the approaches proposed in this
work in the following general categories:

Graph-based approaches: Graph-based approaches assume that the
data can be represented in a graph format. For instance, product review
data (e.g., at Amazon) can be represented as a bipartite graph where
nodes are users and products, and an edge is present between a partic-
ular user and a particular product if that user has reviewed/rated that
product. Most graph-based approaches for finding fraud work on simple
graphs (ignoring the node, edge labels). The most common technique
used is singular value decomposition (SVD), where similar nodes in
the graph can be clustered together based on the products that they
rated [20, 27, 30]. Techniques like belief propagation [1] and Markov
random fields [26] have also been applied to discover anomalous sub-
graphs. Additional features such as edge-labels [31] and neighborhood
information [37] have also been used to discover fraud in graphs.

Time-based approaches: A lot of work has been done in detecting
anomalous patterns in multivariate time series data [8, 25, 28, 35]. Beu-
tel et al. proposed an algorithm to find fraudulent temporal patterns in
graphs [3]. Costa et al. found that second-order temporal features, such
as inter-arrival time, could be used to detect bots on social media web-
sites [10]. Temporal patterns of reviews have also been used to detect un-
usual (and hence potentially anomalous) time periods of activity [36, 15].

Sequence Anomaly Detection: Sequence anomaly detection involves
detecting sequences that are anomalous with respect to some definition
of normal behavior. The key challenges in sequence anomaly detec-
tion are that sequences might not be of equal length, and therefore any
distance based approach cannot be applied. Transformation techniques
such as box-modeling have been proposed, where each instance is as-
signed to a box, and features over these boxes are compared [7]. Teng
et al. proposed a modeling approach to generate sequential rules from
sequences [34]. This approach requires training data, which is often not
feasible for large systems, as manual annotation of sequences is challeng-
ing due to the volume and the number of variations. Similarly, another

approach proposed by Forrest et al. [11] uses a Hidden Markov Model
(HMM) technique to detect anomalous program traces in operating sys-
tem call data. The authors train a HMM using training sequences, and
then the number of mistakes made by inputting the test sequence into the
trained HMM is the anomaly score for the given test sequence. The work
by Forrest et al. is closest to our approach; however the algorithm re-
quires training data which is hard to obtain. A popular technique that has
been used in anomaly detection is clustering points, and marking points
not belonging to any cluster as suspicious outliers. Clustering sequences
requires computing distances between all pairs of input. However com-
puting distances between sequences requires formulating a definition of
distance – which needs to be robust to variable length and misaligned se-
quences. A popular way of computing distance is counting the number
of frequent patterns (n-grams) occurring in both sequences [12].

Graph-based approaches are not robust enough to find suspicious paths
(sequences) in graphs, and hence cannot be applied in our context. In
our approach, we assume that the dataset given to us is agnostic of
time i.e., for generating sequences. We do not consider the time at
which a particular activity was done, but only what activity was per-
formed, making temporal approaches ill-suited to our context. Sequence
based approaches are closer to what we want to do. However, these
approaches have only been used in the context of bioinformatics, and
have not been applied to software architecture. Some of the mentioned
techniques require training data to differentiate between normal and
abnormal behavior, which is not feasible for all types of data. When
applied to bioinformatics, the sequence based approaches assume that
the sequences are of fixed lengths and aligned. To adapt the approach to
our context, we need to be able to deal with variable lengths (users may
interact with different numbers of components) and are not necessarily
aligned (sequences may start at different points in the architecture). Our
approach can work with unaligned, variable length sequences generated
by users interacting with a system, and represented at an architectural
level of abstraction. Additionally, our approach can create different fea-
tures based on the abstraction level with which it extracts features from
each activity, and also provides a suspiciousness score for each sequence.

3. MOTIVATING EXAMPLE AND THREAT
SCENARIO

Modern software applications are commonly deployed on flexible
infrastructures like public and private clouds. Elasticity, where parts
of the applications can be duplicated on an arbitrary number of cloud
devices, challenges traditional graph-based security methods because
of the frequent changes in the instances deployed, meaning that if care
is not taken they will be treated as different nodes in a graph. However,
these different deployments technically serve the same architectural
purpose. For example, a large-scale web system will elastically add and
remove VMs to handle variability in web traffic, but each VM performs
the same function – namely, a web server.

Because of this architectural interchangability, a given user’s path of
interaction with individual computing instances is generally predictable,
despite frequent changes in the individual instances. For example, a typi-
cal user request path might go from a web server to an application server
to a database, as determined by the logic of the application. However,
a subsequent request would follow the same path in the architecture, but
would likely interact with different instances of web servers, application
servers, and database servers. Using the architecture of the system as an
abstraction and examining users’ traces through that architecture allows
for an effective analysis despite the dynamic nature of the system.

Dynamic cloud infrastructures are commonplace in industrial IT
systems, some of which have suffered high-profile data breaches. A
frequent pattern in these breaches is when an attacker gains a ‘foothold’
inside a network by compromising a single server. From this server the
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Figure 1: Example architecture of Amazon Web application.

attacker will move through the network looking for vulnerable systems
of interest and, when ready, exfiltrate data by hiding it within normal
network traffic. In this attack scenario, there may be two distinct archi-
tectural traces. For example, first there might be a linear trace, during
which the attacker is finding vulnerable components of interest and,
second, a star trace in which the compromised component is contacting
other components to retrieve data.

Figure 1 shows an example Amazon web application in which a user
first interacts with a content delivery network (CDN) to retrieve static
content, a load balancer to distribute their request to an appropriate
application server, the application server, and finally a database. This
architectural pattern includes the common components of a standard
modern web architecture, and at 240 nodes is representative of a signifi-
cant enterprise web system that would exceed the capabilities for all but
the most significant web properties (e.g. Netflix, Google, Yahoo, etc.).

In Figure 2, we illustrate how Bayesian modeling of the data might
be helpful to discover suspicious users. Consider an organization, where
three primary roles exist (Figures 2a–2c). The software system of the
organization contains various components that are accessed by its users.
Each software component is represented as a node in the graph, but
our approach can be adapted to various levels of abstraction (e.g. ge-
ographic location of each deployed component). We hypothesize that
each individual within a role in the organization will create traces that
are reflective of that job role and will be similar to each other. How-
ever, an attacker or malicious user will not follow an existing pattern.
Therefore, those sequences of events will be easily identifiable, even
amongst the normal and varying behavior of legitimate users. Figure 2d
shows an example of a suspicious trace which is visibly distinct from

the normal behavior.

4. APPROACH
Sequences of user interactions with a software system can be a rich

source of information about suspicious user behaviors. We want to
provide a metric of suspicious behaviors that security experts (or down-
stream tools) can use to further examine whether a user account is
compromised/malicious. We first explain the set of symbols used in our
approach in Table 1.

Our problem, therefore, can be captured as:

PROBLEM 2 (FORMAL). Given a set of users U operating on a
software system that has a given architecture, with each user generating
a traceAu, and an abstraction function F, find and score suspicious
users based on their respective execution sequences.

Our solution to this problem requires three elements, as shown in
Figure 3:

• Behavior collection: Instrumenting the system as it runs, to de-
termine traces of user interactions as they occur and determining
how to abstract the sequence information into an analyzable form.

• Data modeling: Clustering these traces and giving each sequence
an affinity score within the cluster with which it shares the most
in common.

• Scoring anomalies: Identifying outliers as sequences that have
a high probability of being in their own cluster.
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Figure 2: User sequences overlaid on nodes in the architecture.

Symbol Description
U Set of Users
A Set of nodes in the software architecture
Au Set of nodes traced in the architecture by user u
F F: Abstraction function, which converts each activity to a set of features
Su A sequence pertaining to a user u, where each sequence is represented as a series ofF(Au), where F(a)=a is also possible.
lenu Length of sequence of user u

K Number of clusters

Table 1: Table of Symbols and their Descriptions used in this paper.

4.1 Behavior collection
For this part of our approach, we first describe the software system

as a graph. We do this by using its component and connector (C&C)
software architecture [32]. A C&C view describes the run-time config-
uration of the software in terms of nodes that perform computation or
store data (i.e., components), and edges that represent communication
between components (i.e., connectors). This can originate from the de-
sign documentation for the system, or be derived from the architectural
patterns used to develop the system (e.g., Amazon’s description of how
to construct cloud-based applications, or through common idioms such
as N-tiered architectures).

System

✓

Observed actions

Software architecture

User traces

Clustered and
scored traces

Figure 3: Overview of our approach.

Secondly, we monitor the execution of the software system to extract
users’ activities while they are interacting with the system, to produce
interaction traces or sequences. A sequence is the order in which users
interact with components along communication paths. The sequences
can be abstracted out by defining an abstraction function F over the
connected components. For example each component along the com-
munication path in our example can be represented by the type of server
(CDN, database, etc.), or by the location where it is placed (Europe, US,
Japan, etc.), or a combination of both. Abstraction reduces noise that
might have crept into the system due to multiple nodes of the same type,
and allows us to leverage various pieces of contextual information (e.g.
geographic location of deployment) to enhance the effectiveness of the
technique. Different definitions of abstraction functions can find differ-
ent types of suspicious behavior. These sequences can be employed to
characterize paths over the underlying software architecture graph. For
example, if a user accesses component 1 (e.g., a web page) which then
interacts with component 2 (e.g., a server) which in turn accesses data
component 3, and next component 1 again, followed by component
3, we can represent this user as the path 1→ 2→ 3→ 1→ 3, or if
we define abstraction function to be the type of component, it can be
defined as Web Server→ Server→ Data. Figure 4 shows an example
of extracting this information. We can get this information either by
accessing log files, or in previous work we have been able to do this as
the system executes [5, 6].

4.2 Data Modeling
For the task of finding suspicious sequences, we use a model-based

approach. Specifically, the approach assumes that each user sequence
belongs to a cluster, and sequences not belonging to any cluster can
be marked as suspicious. As previously explained, standard clustering
approaches cannot be used in this context, since defining distances
between sequences is non-trivial. Therefore, we use a model-based ap-
proach, specifically the software architecture, to characterize each of the
sequences and consequently how similar or how different the sequences
are from each other. It has been shown elsewhere that model-based
approaches for clustering sequences are better for highly dynamic and



large scale data [4].
In our model-based approach, we assume that each user has a role

within the organization, and we further assume that the activities a user
carries out during a session is dependent on that role. For example,
a data analyst in a corporate marketing department will interact with
specific software systems and databases relevant to their job duties.
However, another user, an accountant in finance, will interact with dif-
ferent software systems and databases. In each of these roles the users
can select various actions from a set of possible actions relevant and
allowed for that job function. This could be represented as a generative
model in the following way:

1. A user implicitly chooses what cluster she belongs to. This
assignment may depend on her role, or the task that she wants to
perform.

2. Given the cluster, then her behavior, in the form of a sequence
of activities, is generated from the model by using an activity
distribution related to that cluster.

As in any model-based approach, it is assumed that data from differ-
ent users are generated independently. Our current approach assumes
that a user is equally likely to belong to any cluster and does not use any
type of additional knowledge, such as the users role in the organization.
Furthermore, the input to the clustering algorithm is the number of
clusters (K) as found by the BIC algorithm and the sequence data. A
potential enhancement to our method in the evaluation of real world
datasets, is to get such information from the dataset itself (e.g., the
number of valid roles and which users are assigned to role). In our
algorithm, each cluster is associated with an nth-order Markov chain.1

The probability of an observed sequence x0,x1,x2...xd belonging to a
particular cluster ck is given by:

p(x|ck)=p(x0,ck).
i=d∏
i=1

p(xi|xi−1,ck)

where p(x0,ck) is the probability of x0 being the starting state of se-
quences in cluster ck, and p(xi|xi−1) is the transition probability of
moving from state i−1 to state i in the model specified by cluster ck.

Each cluster can be represented by a transition matrix that captures
the probability of moving from one state to another in a sequence be-
longing to some cluster. These transition matrices are represented by
θ= (θ1,θ2,θ3....θk). Algorithm 1 starts by initializing all the transi-
tion matrices randomly, and also initializing sequences into clusters
randomly. Then, it keeps on alternating with E-step and M-Step until it
reaches convergence. E-Step assumes that transition matrices are fixed,

1The order of the Markov chain can be increased based on scalability
and the history of states to include.

1

2

3

4

Time User Resource
00:01:01 A 1
00:01:05 A 2
00:01:10 B 1
00:01:11 A 3
00:01:15 B 3
00:01:17 A 4
00:01:18 B 4

Figure 4: Traces of two users from log files modeled as paths on a
graph. Nodes represent resources or components (e.g. a server) and
edges represent the transition of the users interaction from one software
component to another.

and assigns each sequence to a cluster that maximizes the probability of
observing that sequence in the given data. M-Step assumes that cluster
assignments are fixed, and updates the transition matrix that can best
explain the cluster assignments. For experimental purposes, we have set
the convergence condition as one in which there is little change (10−4)
in the log-likelihood of the data.

Algorithm 1 Model-based sequence clustering algorithm
Input: Number of clusters(K) and sequence data
Output: Cluster assignments and scores
1: Initialize cluster assignments z1,z2,...zn
2: Initialize transition probability matrices θ1,θ2,...θk
3: while Not Converged do
4: E-Step: Assign each sequence to most likely cluster
5: for i=0 to n do
6: zi= argmaxzip(x|ci)
7: end for
8: M-Step:Update transition matrices θ1,θ2,...θk
9: for z=1 to k do

10: for all sequences in cluster z do
11: Count number of transition edges from a to b in the

sequence.
12: Update transition matrix θz
13: end for
14: end for
15: end while

However, the model also requires as input the number of clusters. For
large datasets, figuring out the number of clusters can be a problem be-
cause sequence clustering is sensitive to this parameter. A different num-
ber of clusters could potentially produce very different results, which
might not be consistent with what we are trying to capture, or explain the
data well. To come up with an appropriate number of clusters, we em-
ploy the Bayesian information criterion [29] as described in Algorithm 2.

Algorithm 2 BIC Algorithm
Input: Candidate range of number of clusters (kmin,kmax)
Input: Number of iterations iters
Output: Number of clusters
1: for k=kmin to kmax do
2: for i=0 to iters do
3: Cluster using Algorithm 1.
4: Compute log-likelihood l(D;θ)for partition obtained using

Algorithm 1 .
5: Calculate BIC value = l(D;θ)− klog(n)

2
6: end for
7: Choose highest BIC value for this cluster k
8: end for
9: Return k corresponding to highest BIC values among all clusters

4.3 Scoring
We need to assign to each sequence a suspiciousness score. This is the

likelihood of the occurrence of a particular sequence, given the model of
the system as represented by a set of sequences accepted to be normal
behavior. Thus, the suspiciousness score is a statistic based on the
likelihood of the data. Low likelihood would mean that the given model
cannot explain this particular sequence, thus establishing that sequence
as an outlier. Therefore, the suspiciousness score is inversely propor-
tional to the likelihood of the model. However, the score also takes
into account the length of the sequence because a longer the trace has



moreterms, which might lead to a higher negative log-likelihood. There-
fore we define the suspiciousness score of a given sequence as follows:

suspu=
−logLikelihood(u)

lenu

5. EXPERIMENTS
We conducted experiments to answer the following questions:

• Q1. Effectiveness: How well does the approach perform in
terms of precision and recall?

• Q2. Signal to Noise Ratio: How does the proposed approach
scale when decreasing signal to noise ratio?

• Q3. Effect of architecture size: How does the architecture’s
size affect the accuracy of the proposed approach?

• Q4: Effect of abstraction function: How do the results change
given different abstraction functions?

We compared our approach with two naive baseline methods: unigram
and bigram. Each baseline approach is based on the distribution of the
activities in a sequence. Unigram is based on the distribution of activ-
ities while bigram, is based on distribution of pair of activities. In our
approach, we used used GFADD [24], which computes an outlier score
based on the density of the set of points in the given feature space, to
compute outlying sequences. This approach is similar to the approaches
that take into account activity distribution of users [2, 16].

In this section, we first present out dataset generation setup, and then
we consider the four questions noted earlier.

5.1 Dataset
We model the architecture used for evaluating our approach after the

reference architecture employed for Amazon Web application hosting.2

An example of an instance that we employed for our experiments is
shown in Figure 1. We incorporate two geographical areas (U.S. and
Europe), each of which includes:

• A content delivery network (e.g., Amazon CloudFront) that de-
livers dynamic content to users and optimizes performance via
smart request routing.
• A set of load balancers that distribute incoming application traffic

among multiple Web application servers.
• A set of application servers to process requests that may be

deployed, for example, on Amazon EC2 instances.
• Columnar Databases that host application data specific to a par-

ticular region.

In addition to these geographical zones, the architecture also includes
high-availability distributed databases that host additional application
data and are shared by the different geographical areas (represented as
node clusters on the right-hand side of Figure 1). This architecture style
is a classic N-tier Cloud system, of the kind that is used by a number
of large organizations to store their data and provide scaleable access
to many clients.

Unfortunately, we could not have access to a real, large-scale system.
Therefore, validation of our approach began with the generation of
a large scale software architecture, where we could simulate realistic
behavior of a large number of users. The first step was to codify the
kinds of components and connectors, and rules governing their correct
configuration, into an Acme style [13] that could be used to govern the
generation of a correct architecture. To generate the architecture of an
2https://aws.amazon.com/architecture/

1 abstract sig comp { conns : set comp } // Abstract component
2 //No component must be connected to itself
3 fact { all n:comp | not n in n.conns }
4 //Content Delivery Network, Load Balancer, and Application Server
5 sig CDN, LB, AS extends comp { }
6 // All components must be reachable at least from one CDN
7 fact { some c:CDN | all n:comp−CDN | n in c.∗conns }
8 //CDNs must be connected only to LBs
9 fact { all c:CDN.conns | c in LB }

10 //Each CDN must be connected at least to some LB
11 fact { all c:CDN | some l:LB | l in c.conns }
12 // LBs must be connected only to AS
13 fact { all l:LB.conns | l in AS }
14 ...

Listing 1: Alloy architecture specification excerpt.

Amazon Web application, we translated this style to Alloy [18], a lan-
guage based on first-order logic that allows modeling structures (known
as signatures) and the relations between them as constraints. In partic-
ular, we use Alloy to formally specify the set of topological constraints
of the architecture, and then use the Alloy analyzer tool to automatically
generate models that satisfy those constraints. Listing 1 shows the en-
coding of the basic signatures for part of the Amazon Web architecture
that includes the declaration of content delivery network components,
load balancers, and some of the topological constraints that determine
how components of these types should be connected among them.

Since Alloy does not scale to generate models satisfying the con-
straints with an arbitrary number of instances of the different signatures,
we divided our Alloy specification into two parts that describe differ-
ent sub-architectures: (i) geographical area, including content delivery
networks, load balancers, application servers, and databases, and (ii) dis-
tributed databases. Next, we ran the Alloy analyzer several times on
(i) and (ii) to obtain different instances of the sub-architectures, that we
then merged in order to obtain an architecture much larger than what
we would be able to construct by directly trying to generate the overall
architecture from a monolithic Alloy specification.

This generated architecture is then input to a simulator that creates
user traces by following valid connections within the software archi-
tecture. Transitions from one node within the architecture to another
are chosen randomly among the valid connections. These transitions
are performed after a simulated "think time" that is chosen randomly
between 1 and 30 seconds. At each node the trace has a randomly
chosen probability, between 1% and 25%, of "returning" (i.e., being the
end point of the user trace). The path is then reversed back through the
system again with another simulated “think time”.

Additionally, two different patterns of anomalies were randomly in-
jected into the dataset, at rates varying between 1% and 40%, depending
on the experimental run. The first type of anomaly had a "star" pat-
tern where the traces interacted with a set of nodes, each interaction
originating at the same node. The second is a linear trace through a
randomly determined set of nodes. These patterns are representative of
the different types of attack scenarios discussed in Section 3. The output
of the simulations was a set of traces, which included both normal and
suspicious behaviors.

5.2 Results

Effectiveness. We apply the approach to the simulated dataset with the
injected anomalies. Keeping the architecture size at 240 nodes, and the
percentage of injected anomalies at 10%, we compared our approach
with the other baseline approaches. To measure the effectiveness, we
use standard precision and recall metrics. We show the results in Fig-
ure 5a. As you can see, our approach was able to rank all suspicious
users perfectly (ideal line being y=1 till x=1) and also outperforms the
baseline unigram and bigram approaches.



(a) Size: 240 components
Anomalies: 10%
F(a)=Type(a)

(b) Size: 240 components
Anomalies: 1%
F(a)=Type(a)

(c) Size: 240 components
Anomalies: 5%
F(a)=Type(a)

(d) Size: 240 components
Anomalies: 20%
F(a)=Type(a)

(e) Size: 240 components
Anomalies: 40%
F(a)=Type(a)

(f) Size: 100 components
Anomalies: 10%
F(a)=Type(a)

Our Approach

Unigram
Bigram

Legend:

(g) Size: 240 components
Anomalies: 10%
F(a)=Type(a) & F(a)=a

Figure 5: Precision/Recall graphs for the experiments.

Signal to Noise Ratio. To further evaluate the effectiveness of our ap-
proach, we varied the percentage of anomalies in the data while keeping
the size of the architecture constant. We plot this in Figures 5b–5e. We
discovered that our approach still performed consistently well with up
to 40% of injected anomalies.

Effect of Architecture Size. Further, we evaluated our approach on
different architecture sizes. Keeping the percentage of injected suspi-
cious sequences as 10%, we changed the architecture size and applied
our approach, using sizes of 100 and 240 total nodes. The results are
presented in Figure 5f and again show that our performance is robust to
the size of architecture. In fact, it appears that the baseline approaches
perform worse for larger size systems (c.f., Figure 5a), perhaps because
of the limited amount of contextual information that they use, which
our approach exploits.

Effect of Abstraction Function. The abstraction function can have a
significant impact on the performance of the the proposed approach.
This is shown in Figure 5g. As illustrated, the accuracy with abstraction
functionF(a)=a is much lower than when we abstract each machine
to the type of machineF(a)=Type(a). In this experiment we looked
at the least abstract and most abstract function for our scenario. This
demonstrates that our approach is flexible with respect to the abstraction
function, and in fact finding the right abstraction function will be key
to the practical application of our approach.

6. CONCLUSIONS
In this paper we described an approach to find and score suspicious

execution sequences generated by a user due to their interactions with
software mapped to an underlying software architecture. Our method
exploits contextual information about the technical system, specifically

the software architecture, to provide an appropriate abstraction and a
model-based clustering technique clusters a users sequence through this
model together to determine how likley they are to have occurred. The
lower the score, the more suspicious they are.

Model-based approach: The proposed model-based approach ex-
ploits contextual knowledge behind sequence generation over software
architectures, and provides a robust framework for detecting suspicious
sequences.
Scoring function: We proposed a likelihood-based statistic to score

each user sequence on the basis of its suspiciousness.
Accurate and Scalable: We showed that when our approach was

tested on simulated data, it performed better than the given baselines
that used unigrams and bigrams distribution. Our approach also scaled
well to different architecture sizes and different percentage of injected
anomalies, although it is sensitive to the specific abstraction function
used when mapping to an architecture.

For future work, we would like to do further analysis of our algorithm
to understand better the scope and limitations. For example, though
240 node system represents significant sized enterprise systems, they
do not represent extremely large scale systems like Netflix or Google
search. Furthermore, we have only showed two ends of the spectrum on
using the abstraction function: either treat each node as a unique node
in the graph or group them all together using their type. Partitioning the
node-space using different properties could prove interesting.

Another area of future work is to test our approach on real data. In
our experiments, because of a lack of availability of real data, we relied
on expertise of the kinds of traces and anomalies that are typical for
such systems to guide our simulation. Despite this, we hope that real
data would confirm our results. We would also like to experiment on
different styles of systems.



Acknowledgments
This work is supported in part by the National Security Agency. The
views and conclusions contained herein are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the National Security Agency or the U.S. gov-
ernment.

7. REFERENCES
[1] AKOGLU, L., CHANDY, R., AND FALOUTSOS, C. Opinion

fraud detection in online and by network effects. ICWSM (2013).
[2] AKOGLU, L., MCGLOHON, M., AND FALOUTSOS, C. Oddball:

Spotting anomalies in weighted graphs. In PAKDD (2010),
pp. 410–421.

[3] BEUTEL, A., ET AL. Copycatch: stopping group attacks by
spotting lockstep behavior in social networks. In WWW (2013).

[4] CADEZ, I., HECKERMAN, D., MEEK, C., SMYTH, P., AND
WHITE, S. Visualization of navigation patterns on a web site
using model-based clustering. In KDD (2000).

[5] CASANOVA, P., GARLAN, D., SCHMERL, B., AND ABREU, R.
Diagnosing architectural run-time failures. In In Proceedings of
the 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (2013).

[6] CASANOVA, P., SCHMERL, B., GARLAN, D., AND ABREU, R.
Architecture-based run-time fault diagnosis. In In Proceedings of
the 5th European Conference on Software Architecture (2011).

[7] CHAN, P. K., AND MAHONEY, M. V. Modeling multiple time
series for anomaly detection. In ICDM (2005).

[8] CHENG, H., TAN, P., POTTER, C., AND KLOOSTER, S.
Detection and characterization of anomalies in multivariate time
series. In SDM (2009), pp. 413–423.

[9] CUMMINGS, A., LEWELLEN, T., MCINTIRE, D., MOORE, A.,
AND TRZECIAK, R. Insider threat study:illicit cyber activity
involving fraud in the US financial services sector. Special Report,
CERT, Software Engineering Institute (2012).

[10] FERRAZ COSTA, A., ET AL. Rsc: Mining and modeling
temporal activity in social media. In KDD (2015).

[11] FORREST, S., W. C., AND PEARLMUTTER, B. Detecting
intrusions using system calls: Alternate data models. In In
Proceedings of the 1999 IEEE ISRP (1999).

[12] FU, Y., SANDHU, K., AND SHIH, M.-Y. Clustering of web users
based on access patterns. Web Usage Analysis and User Profiling
(2000), 21–38.

[13] GARLAN, D., MONROE, R. T., AND WILE, D. Acme:
Architectural description of component-based systems. In
Foundations of Component-Based Systems, G. T. Leavens and
M. Sitaraman, Eds. Cambridge University Press, 2000, pp. 47–68.

[14] GIATSOGLOU, M., CHATZAKOU, D., SHAH, N., FALOUTSOS,
C., AND VAKALI, A. Retweeting activity on twitter: Signs of
deception. In PAKDD (2015).

[15] GUNNEMAN, S., GUNNEMAN, N., AND FALOUTSOS, C.
Detecting anomalies in dynamic rating data: A robust
probabilistic model for rating evolution. In KDD (2014).

[16] HOOI, B., SHAH, N., BEUTEL, A., GÜNNEMANN, S.,
AKOGLU, L., KUMAR, M., MAKHIJA, D., AND FALOUTSOS,
C. BIRDNEST: bayesian inference for ratings-fraud detection. In
Proceedings of the 2016 SIAM International Conference on Data
Mining, Miami, Florida, USA, May 5-7, 2016 (2016),
pp. 495–503.

[17] HOOI, B., SONG, H. A., BEUTEL, A., SHAH, N., SHIN, K.,
AND FALOUTSOS, C. Fraudar: Bounding graph fraud in the face

of camouflage. In KDD (2016).
[18] JACKSON, D. Software Abstractions: Logic, Language, and

Analysis. The MIT Press, 2006.
[19] JIANG, M., ET AL. Catchsync: catching synchronized behavior in

large directed graphs. In KDD (2014).
[20] JIANG, M., ET AL. Inferring strange behavior from connectivity

pattern in social networks. In PAKDD (2014).
[21] KEENEY, M., CAPELLI, D., KOWALSKI, E., MOORE, A.,

SHIMEALL, T., AND ROGERS, S. Insider threat study: Computer
sabotage in critical infrastructure sectors. In CERT Program and
Software Engineering Institute (2005).

[22] KOWALSKI, E., CAPPELLI, D., AND MOORE, A. Insider threat
study: Illicit cyber activity in the government sector. Software
Engineering Institute (2008).

[23] KOWALSKI, E., CAPPELLI, D., AND MOORE, A. Insider threat
study: Illicit cyber activity in the information technology and
telecommunications sector. Software Engineering Institute (2008).

[24] LEE, J. Y., KANG, U., KOUTRA, D., AND FALOUTSOS, C. Fast
anomaly detection despite the duplicates. In WWW Companion
(2013).

[25] LI, X., AND HAN, J. Mining approximate top-k subspace
anomalies in multi-dimensional time-series data. In VLDB (2007),
pp. 447–458.

[26] PANDIT, S., ET AL. Netprobe: a fast and scalable system for
fraud detection in online auction networks. In WWW (2007).

[27] PRAKASH, B., ET AL. Eigenspokes: Surprising patterns and
community structure in large graphs. PAKDD (2010).

[28] RAMASWAMY, S., RASTOGI, R., AND SHIM, K. Efficient
algorithms for mining outliers from large data sets. SIGMOD 29
(2000), 427–438.

[29] SCHWARTZ, G. E. Estimating the dimnesson of a model. Annals
of Statistics 6 (1978), 461–464.

[30] SHAH, N., BEUTEL, A., GALLAGHER, B., AND FALOUTSOS,
C. Spotting suspicious link behavior with fbox: An adversarial
perspective. In ICDM (2014).

[31] SHAH, N., BEUTEL, A., HOOI, B., AKOGLU, L.,
GUNNEMANN, S., MAKHIJA, D., KUMAR, M., AND
FALOUTSOS, C. Edgecentric: Anomaly detection in
edge-attributed networks. arXiv preprint arXiv:1510.05544
(2015).

[32] SHAW, M., AND GARLAN, D. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall, 1996.

[33] SHIN, K., HOOI, B., AND FALOUTSOS, C. M-zoom: Fast
dense-block detection in tensors with quality guarantees. In
ECML/PKDD (2016).

[34] TENG, H., C. K., AND LU, S. Adaptive real-time anomaly
detection using inductively generated sequential patterns. In
Proceedings of IEEE Computer Society Symposium on Research
in Security and Privacy (1990).

[35] VAHDATPOUR, A., AND SARRAFZADEH, M. Unsupervised
discovery of abnormal activity occurences in multi-dimensional
time series with applications in wearable systems. In SDM (2010),
pp. 641–625.

[36] XIE, S., WANG, G., LIN, S., AND YU, P. Review spam
detection via temporal pattern discovery. In KDD (2012),
pp. 823–831.

[37] YE, J., AND AKOGLU, L. Discovering opinion spammer groups
by network footprints. In COSN (2015).


