
Modeling Observability in Adaptive Systems to Defend Against
Advanced Persistent Threats

Cody Kinneer
School of Computer Science
Carnegie Mellon University

ckinneer@cs.cmu.edu

Ryan Wagner
School of Computer Science
Carnegie Mellon University

rrwagner@cs.cmu.edu

Fei Fang
School of Computer Science
Carnegie Mellon University

feif@cs.cmu.edu

Claire Le Goues
School of Computer Science
Carnegie Mellon University

clegoues@cs.cmu.edu

David Garlan
School of Computer Science
Carnegie Mellon University

garlan@cs.cmu.edu

ABSTRACT
Advanced persistent threats (APTs) are a particularly troubling chal-
lenge for software systems. The adversarial nature of the security
domain, and APTs in particular, poses unresolved challenges to
the design of self-* systems, such as how to defend against mul-
tiple types of attackers with different goals and capabilities. In
this interaction, the observability of each side is an important and
under-investigated issue in the self-* domain. We propose a model
of APT defense that elevates observability as a first-class concern.
We evaluate this model by showing how an informed approach that
uses observability improves the defender’s utility compared to a
uniform random strategy, can enable robust planning through sen-
sitivity analysis, and can inform observability-related architectural
design decisions.

CCS CONCEPTS
• Security and privacy → Formal security models; Systems
security; • Computing methodologies → Artificial intelligence;
Model development and analysis.

KEYWORDS
Advanced Persistent Threats, Game Theory, Observability, Adaptive
Systems

ACM Reference Format:
Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Gar-
lan. 2019. Modeling Observability in Adaptive Systems to Defend Against
Advanced Persistent Threats. In 17th ACM-IEEE International Conference
on Formal Methods and Models for System Design (MEMOCODE ’19), Oc-
tober 9–11, 2019, La Jolla, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3359986.3361208

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6997-8/19/10. . . $15.00
https://doi.org/10.1145/3359986.3361208

1 INTRODUCTION
As society has become more dependent on software, the nature
of cyber threats has evolved. Of particular concern is the increase
in attacks known as advanced persistent threats (APTs). Rather
than one-off incidents, these attacks are marked by a highly moti-
vated and capable adversary willing to devote significant time to
conducting an attack. APTs are characterized by an extended inter-
action between the attacker and defender, with the attacker often
conducting extensive surveillance against the defender’s system to
facilitate their malicious goals. The 2013 attack against the retail
company Target, during which an attacker stole 40 million con-
sumer credit cards, is an example of such an attack [3]. Organized
crime, terrorists, and nation-states can all be APT attackers.

Self-adaptive, self-protecting, and self-healing (self-*) software
systems automatically respond to changes in their environments
to continue satisfying their quality objectives. While self-* systems
have successfully been applied to autonomously adapt to uncer-
tainty in the environment, the security domain presents unique
challenges to their design [7, 8]. First, the environment is adver-
sarial: it is attempting to cause harm and can respond to defensive
measures by changing the attack approach. This is in contrast to
other adaptation drivers (e.g., system performance, deployment
cost, internal faults, and system availability) for which average case
analysis is often sufficient, and which occur largely independently
of adaptive strategies used to improve them.

Second, security attacks are associated with a high degree of
uncertainty: the defender may know little about the identity or
techniques of the attacker. This uncertainty is complicated by the
potential for many kinds of adversaries each with different goals
and tactics, techniques, and procedures (TTPs). Moreover, attackers
may switch their tactics when they believe they have been detected.

Third, complex attacks such as APTs can take place over a long
period of time, and it is therefore difficult to spot the existence
and extent of an attack. Attack actions are rare, relative to normal
system behavior, and easily camouflaged. This lack of knowledge
directly impacts the ability of a defender to react effectively, since
it is hard to predict the likely sources of compromise and attackers’
future courses of action.

Hence, when a system is under attack, its human defenders must
balance attempting to evict the attacker from the system—which
may tip the defender’s hand and result in the attacker digging
in— versus waiting to gather more information about the attacker

https://doi.org/10.1145/3359986.3361208
https://doi.org/10.1145/3359986.3361208

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Garlan

for a more likely eviction at a later time. In this interaction, both
sides have a limited ability to observe the other, and both benefit
from concealing themselves while trying to learn more about their
opponent. To autonomously defend against these attackers, self-*
systems need to reason about the observability of both sides in the
interaction to effect an optimal defense.

One approach explored by the self-* research community is to
use game-theoretic models for analysis and planning to mitigate
security threats. Games provide an appropriate context for ana-
lyzing security because they can model the adversarial nature of
the setting together with uncertainty in predictions of attacker
behavior, and they have been shown to be effective in responding
to attacks such as a Distributed Denial of Service attacks, as well
as several APT scenarios [9, 10, 22–25, 29, 31].

However, prior games theory based approaches to self-securing
systems have not addressed the specific challenges of designing
systems robust to APT-like attacks, which include (a) the value of
increased information over time in both attacking and defending, (b)
the existence of specific tactics to proactively increase information
(on both sides), and, most importantly, (c) the need to reason about
the effects of the visibility of actions on the behavior of the other
player.

In this paper, we show how to address these challenges using
a game-theoretic approach in which observability is modeled as a
first-class concern to facilitate effective reasoning about security
threats during system design. Specifically, we introduce a model
treating the defender deployed system as a game in which the
defender can decide to attempt an eviction of an attacker based on
the knowledge at hand, wait, or even take active measures to gather
more information for use in an eviction attempt on a subsequent
turn. For example, a defender might throttle the download speed
of an attacker attempting to exfiltrate data, allowing the defender
more time to observe the attacker. In contrast, an attacker can,
with some cost, enhance their persistence in the system to evade
future eviction following a failed eviction attempt. Significantly,
the actions taken by a defender or attacker are associated with a
measure of observability that may inform the future actions of the
other player. As wewill show, this model can be used tomake robust
decisions despite uncertainty in the true probability distribution of
attacker types. Additionally, we show how the model can inform
architectural decisions at design time, and we demonstrate this in
a scenario where system designers can pay a cost to build decoys
into the system. We evaluate the model by showing, through an
example quantification, the improvement in the defender’s utility
by taking into account observability information compared to using
an uninformed approach, as well as demonstrating that the model
can scale to a practically useful time horizon. The key contributions
are therefore:

• A model of self-* APT defense: The Observable Eviction
Game (OEG) with observability as a first-class concern.

• An evaluation of the model compared to an uninformed
approach, and a demonstration that the model scales to prac-
tically useful time horizons.

• A sensitivity analysis showing the ability to provide robust
solutions in uncertain security environments.

• An exemplar scenario showing an improvement using the
model to make architectural decisions at design time.

Together, these contributions will aid software engineers to de-
sign self-* systems that are robust to APTs. The remainder of the
paper is organized as follows. Section 2 provides the necessary
background, including an explanation of APTs and the basics of
game theory. Section 3 describes our modeling approach. Section 4
evaluates the approach. Section 5 positions our contribution with
respect to the related work. Lastly, section 6 concludes.

2 BACKGROUND
This section provides background content for the rest of the paper,
including self-* systems, APTs, and game theory.

2.1 Self-* Systems
Many self-* systems are based on aMAPE-K loop [14]: theymonitor,
analyze, plan, and execute based on a shared set of knowledge that is
shared throughout the loop. These systems are able to detect system
and environmental state, make informed decisions based on that
information, and then adapt in response to the information gathered
to improve system utility. These types of systems can be used to
adapt to varying system loads, faults, and other conditions [5]. An
emerging use of self-* systems is real-time adaptation in reaction to
security threats. Current security systems, like intrusion prevention
systems, are rudimentary, with the primary adaptation of blocking
suspicious traffic flows. However, more sophisticated systems could
incorporate a richer set of defensive tactics [25].

2.2 Security and Advanced Persistent Threats
The security landscape has evolved to include sophisticated actors
known as advanced persistent threats (APTs). The US National
Institute of Standards and Technology (NIST) defines an APT as
“An adversary that possesses sophisticated levels of expertise and
significant resources. . . . The advanced persistent threat: (i) pursues
its objectives repeatedly over an extended period of time; (ii) adapts
to defenders’ efforts to resist it; and (iii) is determined to maintain
the level of interaction needed to execute its objectives” [16].

Each APT has a set of TTPs that is used to carry out an attack.
These TTPs include the tooling and methods used by a group of
individuals dedicated to a particular purpose, such as gathering
intelligence, stealing merchantable artifacts, or causing disruption.
In some cases, a threat actor may have multiple APT groups defined
by their distinct TTPs [1]. Because TTPs represent the accumulated
knowledge, skills, and abilities of attackers, they can be difficult to
change. However, a nation-state with multiple APT groups under
its control could reassign responsibility for attacking a target from
one APT group to another, or a single APT group could swap out
one set of tooling and command and control infrastructure for an-
other if need be. In the most sensitive operations, APT groups will
use multiple sets of TTPs, including multiple types of malware, to
ensure persistent presence even in the case of detection.

For the defender, knowledge of an attacker’s TTPs is often cru-
cial to successful attack mitigation because that knowledge can be
used to look for likely places where the system might have been
compromised and to predict future courses of action. Such knowl-
edge can be gained in several ways, such as simply waiting to see

Modeling Observability in Adaptive Systems to Defend Against Advanced Persistent Threats MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

what the attacker will do next, or putting in place active detection
mechanisms, or active measures (e.g., honeynets or camouflage).

However, the desire to know more about an attacker leads to
a particularly important challenge in deciding a course of action:
the defender can react on incomplete information, and risk an in-
complete, or failed, eviction of the attacker; or wait and even take
active measures to observe the attack, building a more complete
picture of the attacker’s TTPs in hopes of later fully evicting the
attacker. The problem is further complicated by the fact that there
is often an inverse relationship between the effectiveness of actions
that a defender can take to observe or mitigate an attack, and the
observability of those actions to the attacker.

An example of this quandary was used to describe a recent attack
on the US Office of Personnel Management (OPM) that resulted
in the loss of personal information for millions of US government
employees and contractors:

“At first, the investigators left each piece of malware in place,
electing only to throttle its ability to send outbound traffic; if the
attackers tried to download any data, they would find themselves
confined to dial-up speeds. But on April 21, [OPM senior IT strate-
gist] Mejeur and the US-CERT team began to discuss whether it
was time to boot the attackers, who would thus learn that they’d
been caught. ‘If I miss one remote-access tool, they’ll come back in
through that variant, they’ll reestablish access, and then they’ll go
dormant for six months to a year at least,’ says a US-CERT incident
responder. . . ” [2].

Today, deciding whether to observe or act is a manual process,
lacking formal foundations or ways to rigorously analyze alterna-
tive courses of action. As we elaborate in the remainder of this
paper, we propose to address this problem using game-theoretic
analyses in which observability of actions is represented as a first-
class entity. The game accounts for the fact that an attacker can
morph, with some cost, to evade eviction by a defender, and a de-
fender can decide to attempt an eviction of an attacker based on
the knowledge at hand or wait to gather more information for use
in an eviction attempt on a subsequent turn.

2.3 Game Theory
Unlike other quality attributes that a self-* systemmay optimize like
quality of service, security presents a unique challenge in the form
of an attacker. Like the self-* system itself, the attacker can take ac-
tions that affect the system, and can themselves gather information
and adapt to the behavior of the system to further their own inter-
ests. Game theory provides a framework for reasoning mathemati-
cally about interactions between multiple agents, or players [20]. A
normal-form game is defined by a tuple (N,A,u). N = {1...n} is
the set of players.A = Πn

i=1Ai is the set of joint actions, whereAi
is the set of actions for player i . u = (u1, ...un) and ui : A → R is
the payoff or utility function for player i that maps the players’ joint
action profiles to an outcome value. Each player is seeking to max-
imize their own individual utility. A player’s strategy can be pure
(i.e., take a deterministic action) or mixed (i.e., randomly choose
an action according to some probability distribution). The Nash
equilibrium (NE) of a game is the strategy profile σ = (σ1, ...σn) for
all players such that no player can gain from unilaterally changing

their strategy. That is, that each player is playing the best response
to each other player.

More complicated games with sequences of actions are often
modeled by extensive-form games (EFG), which can be represented
by a game tree where each node corresponds to a unique history
of actions taken by all players and chance from the root of the
game, and each edge corresponds to possible actions available to
the player (could be a chance player) who will choose an action
at the node. Players get payoffs at the leaf nodes of the game tree
and then the game terminates. In addition, each players’ choice
nodes can be partitioned into information sets to model the imper-
fect information in the game. A player cannot distinguish between
nodes in the same information set. A pure strategy for player i in
an EFG assigns one action for each information set of player i . Sto-
chastic behavior can be modeled by introducing a nature, or chance
player, who moves according to a fixed probability distribution. By
enumerating pure strategies for all players, we can get an induced
normal form game of an EFG and the NEs are preserved.

In complete information games, all players know the identity and
payoff functions of all other players. Bayesian games relax this as-
sumption by allowing multiple types of players and that at least one
player is unsure of the type of another player. Formally, a Bayesian
game extends the aforementioned normal-form game model by
introducing Θ = Πn

i=1Θi where Θi is the set of possible types for
player i and a common prior of joint probability distribution of
players’ types P : Θ → [0, 1]. The utility function of a player is
dependent on the players’ joint type profile and joint action profile,
i.e., ui : A × Θ → R. The Harsanyi transformation [12] converts a
Bayesian game to a normal-form game.

Stackelberg games assume two kinds of players: a leader, and
one or more followers. Rather than each player choosing a strat-
egy simultaneously, in Stackelberg games, the leader acts first and
commits to a strategy. The followers then observe the strategy of
the leader and best respond. This game type is useful in a security
context to capture the fact that a sophisticated attacker can often
observe the defender’s strategy before acting. Several approaches
exist for efficiently solving Strong Stackelberg Equilibria (SSE), in
both Bayesian and extensive form settings [17, 21, 30].

3 OBSERVABLE EVICTION GAME
Self-protecting systems dealing with APT scenarios need to auto-
matically decide between attempting to evict an attacker versus
attempting to gather more information about them, as explained in
Section 2.2. To support designing these systems, a useful model of
decision making should include the following elements:

(C-1) Multiple types of attackers, each with different goals and
available TTPs

(C-2) A defender who must choose between attempting to evict
the attacker or gathering more information, with or without
active measures

(C-3) A defender who must balance thwarting the attacker with
minimizing disruption to the system

(C-4) Eviction success should be predicated on the defender’s knowl-
edge about the attacker’s identity

(C-5) An attacker who changes their behavior and becomes more
difficult to evict after an unsuccessful eviction

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Garlan

TTP
Unknown

0.90

TTP
Known

0.10

1.00

Figure 1: Markov process for TTP observability.

We present a novel game model called the Observable Eviction
Game (OEG) that satisfies all of the above criteria. OEG is a Bayesian
game with two players, i.e., N={1,2}. Player 2 is an attacker who
seeks to compromise the system, and player 1 is a defender who
wants to minimize the attacker’s success and disruptions to the
system’s operations. There is one defender type, but the attacker’s
type is drawn from a set supporting modeling different APT threat
groups (C-1), denoted as Θ = {θ1, ..., θM }. OEG depicts sequential
actions of players and therefore can be described as an EFG.

In the remainder of the section, Section 3.1 explains how the
game proceeds and the actions available to each player, Section 3.2
explains the utility functions, Section 3.3 describes solving the game
for equilibria, and Section 3.4 provides an example quantification of
the OEG for use in the experiments described in Section 4. Together,
these provide software engineers with a new and powerful tool for
designing autonomic software systems resilient to APTs.

3.1 Actions
OEG models observability as a first-class concern and we leave out
details that are less relevant to observability. As an overview of the
game, OEG models the defender-attacker interaction in discrete
time. The attacker chooses their attack plan, i.e., TTP, at the be-
ginning of the game, which is initially unobserved or unknown
to the defender. The game lasts τ time steps. Each time step the
defender can perform an eviction attempt or perform some other
observational tactic (such as waiting or taking active measures)
to gain more information about the attacker (C-2). In addition, in
each time step, nature, or the chance player, randomly determines
whether the attacker’s attack plan will become observable to the
defender.

Rather than considering every possible path an attacker might
take through an attack tree [26] to attack the system, we consider
attacker strategies at a higher level of abstraction. The attacker’s
attack plan is described by a TTP, and the attacker may choose
among several TTPs. This is consistent with the behavior of real
APT groups (Section 2.2) since these groups often gain expertise in
a particular set of techniques and operate in a particular way. In
the remainder of the paper, we will use the terms TTP and attacker
plan interchangeably. More concretely, in time step 0, the attacker
chooses an action γj ∈ Γ = {γ1, ...γZ } that indicates their attack
plan or TTP. They will not change it unless they observe that the
defender makes an eviction attempt or takes an active measure.

In time step t ∈ {1, ...τ }, the defender can choose an action from
the set of eviction attempts Ω = {ω1,ω2, . . . ,ωL}. The success of
an eviction attempt depends on the suitability of the eviction action
to the TTP chosen by the attacker. We denote by χjl ∈ [0, 1] the
effectiveness of the defender’s eviction action ωl ∈ Ω to evict the
attackers TTP γj , which describes the probability that the attacker

can be successfully evicted, with 1 indicating always successful
and 0 indicating always unsuccessful. We assume that for each
TTP γj , there exists some eviction attempt ωl such that χjl = 1
and can successfully evict the attacker. If the defender performs
a successful eviction attempt, the attacker is immediately evicted,
ending the game. If the defender performs an unsuccessful eviction
attempt, the attacker remains in the system and is alerted to the
defender’s knowledge of them, making it more difficult for the
defender to evict them in a subsequent attempt (C-5). Instead of
modeling the attacker’s change of behavior and the defender’s
subsequent attempts in detail, we simply assume the attacker will
stay in the system until the end of the τ +F time step without being
interrupted by the defender. Equivalently in the game tree, the
failed eviction leads to a leaf node as no more actions will be taken.
This modeling approach is motivated by the high cost of a failed
eviction attempt in practice, which can result in an attacker digging
in and becomingmore difficult to evict in the future (see Section 2.2).
Since the game ends on a eviction action in either case, the defender
can only take at most one eviction action throughout the game,
and the defender can choose to not take an eviction action within
τ time steps. This model reflects the fact that a defender’s ability
to evict an APT attacker depends on the defender’s knowledge
about the attacker (C-4). If the defender knows the attacker’s TTP,
the defender can choose the most suitable eviction action with
χjl = 1. On the other hand, if the defender uses an eviction action
without knowing the TTP of the attacker, the defender may choose
an ineffective action, resulting in a failed eviction attempt.

In addition to choosing an eviction attempt, the defender can
also choose an action from the set of observational tactics Φ =
{ϕL+1,ϕL+2, . . . ,ϕL+Q } where ϕL+1 is the default tactic of “wait”
and ϕl ,∀l ∈ L + 2, ..., L +Q are active measures that can be applied.
Whether or not the attacker’s TTP is known to the defender is
determined by nature and the observation tactics chosen by the
defender. Intuitively, without any active measures taken by the
defender, the longer the attacker stays in the system, the more
observable the attacker’s TTP, i.e., the more likely the defender
learns the attacker’s TTP. We model the observability of the at-
tacker’s TTP over time as a two-state Markov process. Figure 1
shows an example TTP observability model. Initially the defender
does not know the attacker’s choice of TTP, i.e., the attacker is
in the “TTP Unknown” state. After each time step, the defender
has some chance of learning the attacker’s chosen TTP and the
attacker may move to the “TTP Known” state. We use qj ∈ [0, 1] to
denote the transition probability P(TTP Known|TTP Unknown) if
the attacker chooses TTP j. A lower qj means TTP j is stealthier
and harder to observe. The attacker remains in the “TTP Unknown”
state with probability 1 − qj . Therefore, in each time step t ≥ 1,
the chance player determines whether the attacker’s TTP becomes
known according to probability distribution ⟨qj , 1 − qj ⟩ if the de-
fender always choose to wait. If the defender learns the attacker’s
TTP, we assume that the defender will choose to evict the attacker
immediately, ending the game. If the defender does not learn the
attacker’s TTP, the game continues.

If the defender uses an active measure, qj will increase and
the defender may learn the attacker’s TTP earlier. However, the
defender takes the risk of being noticed by the attacker, resulting
in a change in the attacker’s behavior. An observational tactic ϕl

Modeling Observability in Adaptive Systems to Defend Against Advanced Persistent Threats MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

is associated with a scalar representing the effectiveness of the
tactic, denoted as xl , and scalars representing how observable the
tactic is to each attacker TTP, denoted as yjl . The first element,
xl ∈ [0, 1] describes the decrease in the attacker’s probability of
remaining hidden if the tactic is not noticed by the attacker. Let
qtj to denote the transition probability at time t . If the defender
applies ϕl at time t without being noticed by the attacker, then qtj =
1−xl (1−qt−1j). In the second element,yjl represents the probability
that the attacker notices the defender’s action ϕl , dependent on
the TTP γj they are using. This allows the model to capture the
fact that different TTPs may be more or less likely to observe the
defender’s countermeasures. In the game tree, the stochasticity
of attacker noticing the defender’s action can be represented by
having the chance player determine the observability of action ϕl
right after the defender taking action ϕl . If the attacker noticed the
defender’s action, the attacker changes their behavior and becomes
more difficult to evict, resulting in the same outcome as a failed
eviction attempt, and the game ending. The defender may take
multiple active measures throughout the game. For the default
tactic “wait”, xL+1 = 1 and yj(L+1) = 0,∀j.

3.2 Utilities
When the game terminates, each player gets a utility or payoff. We
model the attacker’s utility as the amount of time they remain in
the system multiplied by the appropriateness αi j ∈ [0, 1] of their
chosen TTP γj to their type θi . This modeling approach captures
the fact that having more time in the system gives the attacker
more opportunity to accomplish their goals. However, some TTPs
may be more aligned with their goals than others. In addition, APT
groups are often trained in a particular set of techniques amenable
to their goals, and other TTPs are not available to them. Modeling
the appropriateness of the attacker’s TTP captures these facts, as
a higher αi j indicates more alignment between the TTP and their
goal and αi j = 0 indicates that TTPγj is not available to the attacker
of type i .

Similarly, we model the defender’s utility as the negation of the
amount of time the attacker remains in the system multiplied by
δi ∈ [1, 10], a coefficient describing how disruptive the attacker type
i is. Coefficients δi model the fact that different attackers may also
be more or less disruptive to the defender. An adversary observing
the number of orders being processed for intelligence purposes for
example, is less disruptive to the defender than one that attempts
to cause physical damage to the defender’s resources. In addition,
if the defender chooses an eviction attempt ωl or an observational
tactic ϕl , the defender pays a cost κl ∈ [0, 1]. This modeling choice
allows the OEG to model an important practical reality of defense,
that certain defensive measures that might be more effective, e.g.,
shutting down an infected server, might come at a high cost to the
defender’s operation (C-3).

Therefore, at a leaf node of the game tree, if the attacker stays in
the system forT time steps, the attacker gets a utility ofT · αi j and
the defender gets a utility of −T · δi − ν where ν is the total cost
of the defender actions. Note that if the game terminates with a
successful eviction attempt, T is the number of time steps that the
attacker has been in the system so far, and if the game terminates
due to a failed eviction attempt or an observed active measure,

T = τ + F . In this utility model, the utility for the defender depends
on the type of the attacker (through the coefficient δi), modeling
that different attacker types may have goals resulting in varying
degrees of damage to the defender.

Let Πi be the set of pure strategies for player i in the game. Given
the game model, the attacker’s pure strategy set is the same as the
set of TTPs, i.e., Π1 = Γ. A pure strategy for the defender assigns
an action for each information set at which the defender needs to
take an action from Ω ∪ Φ. Since the defender may choose to take
an active measure at each time step without being noticed by the
attacker, the set of pure strategies for the defender is exponential
in size with respect to the number of active measures. When the
attacker of type θi is following a pure strategy γj and the defender
is following a pure strategy πk (the kth pure strategy in Π2) the
utilities for the players are nondeterministic due to the existence
of the chance node. We use u1jk and u2i jk to represent the expected
utility for the defender and the attacker respectively. To find the
game equilibria, we derive the reduced normal form game [20]
where actions at irrelevant information sets are omitted, and the
computation of u1jk and u2i jk becomes necessary. Here we explain
how these quantities can be computed.

A defender’s pure strategy consists of a sequence of observa-
tional actions from Φ, followed by an eviction action from Ω. The
set of pure strategies Π2 can be enumerated by a recursive function
e(s, t, τ), which, for each timestep t ≤ τ adds the pure strategies
where the defender uses an eviction action at timestep t to the set
s . For expository purposes, we use atk to denote the action that the
defender plays in time step t when following πk . Let ϵi jk represent
the total expected time that the attacker will stay in the system.
To compute ϵi jk , we introduce a helper quantity γ ti jk ∈ R, which
returns the probability that the game reaches timestep t , that is,
the probability that the attacker is still in the system and has not
noticed the defender’s activity by timestep t . Since the defender
takes at most one eviction action, let T denote the timestep the
eviction action is taken (T = τ + 1 if no eviction action is taken)
where T ≤ τ . Then the probability γ ti jk can be obtained by the
following equation:

γ ti jk =

γ t−1i jk · (1 − qt−1j) · (1 − yt−1j) if 0 < t ≤ T

1 if t = 0
0 if t > T

Here we use yt−1j to denote the probability that the observational
tactic used in timestep t−1 is observed by the attacker, i.e.,yjl where
at−1k = ωl . The equation can be interpreted as follows: Conditioned
on that the game reached timestep t-1, the game can reach timestep
t if (1) the defender has not taken an eviction action in previous
timesteps (i.e., t ≤ T); (2) nature does not reveal the attacker’s true
TTP to the defender (the second term); (3) the attacker does not
notice the defender’s observational tactic (the third term). Note
that the second term depends on the defender’s chosen strategy πk ,
since an active measure might modify q.

The attacker’s total expected time in the system is then given
by summing the product of the probability of each possible out-
come with the time the attacker would remain in the system if that

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Garlan

outcome were to occur. This is given by:

ϵi jk =
T−1∑
t=1

(
γ ti jk ·

(
ytj · (F + τ) +

(
1 − ytj

)
· qtj · t

))
+ γTi jk ·

(
χjl ·T +

(
1 − χjl

)
· (F + τ)

)
This expression sums the product of the probability of occurrence

and the number of timesteps that the attacker remains in the system
over each timestep. The inside of the summation handles all but
the final timestep, which is treated differently since the defender’s
last action is always an eviction tactic, while the defender’s other
actions are always observational tactics. Inside the summation, the
first term is the probability that the game has not already ended
in previous timesteps. The game can end in the current timestep
in two ways. The first is by the attacker noticing the defender’s
active measure, which results in the failed eviction penalty number
of timesteps, handled by the term ytj · (F + τ). The second way the
game can end is by the defender learning the attackers TTP and
evicting them on the current timestep, which is captured by the
term (1−ytj) ·q

t
j · t . Note that the this can only occur if the attacker

has not noticed the observational tactic, hence the need to multiply
by one minus the chance that the attacker observes the defender,
and the term qtj depends on the defender’s strategy since it may
have been modified by an active measure in an earlier timestep. The
term outside the summation handles the eviction action at the end
of the defender’s chosen strategy. This is the probability that the
game does not end before this timestep, multiplied by both possible
outcomes, either the eviction succeeds and the attacker is evicted
on timestep T , given by χjl ·T , or the eviction fails resulting in the
failed eviction penalty, (1 − χjl) · (F + τ).

The defender’s utility u1i jk is given by the expected time the
attacker remains in the system, modified by how disruptive the
attacker type i is, i.e., δi . The defender also pays a cost dependent
on which defensive action is performed based on how disruptive it
is κl .

Since a defender strategy that involves non-evicting actions may
result in using different eviction actions depending on whether the
attacker is observed by the defender, the expected cost can be found
in a similar way to the expected time that the attacker remains in
the system, summing the product of the probability of each outcome
by the cost of that outcome, given by νi jk ∈ R. Due to the similarity
of this equation to ϵi jk , we omit the details of this function. The
defender’s utility is then given by u1i jk = −ϵi jk · δi − νi jk .

3.3 Computing Equilibria
In this paper, we are interested in both the Nash equilibrium and
the Strong Stackelberg equilibrium since it is often hard to know
how much the attacker knows about the defender’s strategy. To
solve the game when neither side knows the strategy profile of the
other, we use the Gambit software tools for game theory [19] to
obtain the Nash Equilibrium. If we assume that the defender acts
first as the leader in a Stackelberg game, and the attacker then best
responds to the defender’s strategy, we formulate the problem as
a mathematical program to obtain the Strong Stackelberg Equilib-
rium [6], which we solve using the Gurobi Optimizer [11]. The AI

community has made significant progress towards solving Stackel-
berg games efficiently [17, 21, 30], and we leave the investigation
of more efficient solution approaches for the OEG to future work.

Solving these equilibria in a Bayesian setting requires know-
ing or estimating the likelihood of each attacker type, the prior
probability distribution p. Since the optimal strategy may change
based on this value, and it is likely not possible to know the exact
prior probabilities in practice, the defender may wish to know how
sensitive their strategy is to variations in the prior probabilities.
This may be determined by solving the equilibrium for a range of
different probability distributions.

3.4 Example Quantification
As an example, we will consider a game consisting only of two
time steps, i.e., τ = 2. We will consider two attacker types: Attacker
1, inspired by a nation-state adversary, and Attacker 2, inspired
by an organized crime group. The first attacker type will possess
more sophisticated capabilities and be primarily interested in in-
telligence gathering, while the second attacker type possesses less
sophisticated capabilities and is interested in gathering personal in-
formation to sell on the dark web. We also consider the case where
there is no attacker present. To model this case, we introduce a third
attacker type that represents the absence of an attacker. For the no
attacker case, we assume that the observability of this attacker is
always zero (modeling that there is no way to observe and evict a
nonexistent attacker).

Initially, we consider two actions for the attacker, TTP1 and
TTP2, representing two possible bins of TTPs. We consider TTP1
to be an advanced, less observable technique amenable to intelli-
gence gathering; andTTP2 to be a more basic, observable approach
developed for stealing personal information. TTP1 is then appro-
priate for the nation state attacker, and TTP2 is more appropriate
for the criminal organization. While there is a TTP that is most
appropriate for each attacker, an attacker might still choose to use a
different TTP. For example, a nation state might choose to use less
sophisticated techniques to deceive the defender or avoid reveal-
ing new exploits, while the criminal organization could potentially
obtain services from a collaborative government for a cost. The
defender observesTTP1 10% of the time, andTTP2 90% of the time.
For the purposes of this example, δ1 = 1, δ2 = 2, α11 = α22 = 1,
and α12 = α21 = 0.5. For the no attacker case, α3j = 0.

On the defender’s side, the defender has three eviction actions,
Ω = {ω1,ω2,ω3}.ω1 andω2 can fully evict TTP 1 and 2 respectively,
and ω3 is a pass tactic, an eviction action that never evicts the
attacker, but comeswith no additional cost. For expository purposes,
we will refer to these actions as e1, e2, and p in tables and figures.
The defender also has two observational actions, Φ = {ϕ4,ϕ5}. ϕ4
is the default action of waiting and ϕ5 is an active measure. We will
refer to them asw and a in tables and figures. Each of the defender’s
eviction actions successfully evicts the corresponding attacker TTP
only, that is, χjl = 1 when j = l ∈ {1, 2}. Otherwise, χjl = 0. The
costs of the eviction actions are 1 for e1 and 0.5 for e2, and 0 for
p. The defender’s first observational action is to wait, w , which
does not alter the attackers observability, but is undetectable by
any attacker TTP x4 = 1, yj4 = 0, and has no cost to the defender.
The defender’s second action represents a camouflaging tool that

Modeling Observability in Adaptive Systems to Defend Against Advanced Persistent Threats MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

0.0

0.2

0.4

0.6

11 12 21 22 e1 e2 we1 we2 wp ae1 ae2 ap
Action

P
rio

r
P

ro
ba

bi
lit

y
of

 A
tta

ck
er

 T
yp

e
1

0.00
0.25
0.50
0.75
1.00

Probability
Played

Nash Equilibrium

0.0

0.2

0.4

0.6

11 12 21 22 e1 e2 we1 we2 wp ae1 ae2 ap
Action

P
rio

r
P

ro
ba

bi
lit

y
of

 A
tta

ck
er

 T
yp

e
1

0.00
0.25
0.50
0.75
1.00

Probability
Played

Stackelberg Equilibrium

Figure 2: Nash and Stackelberg equilibria by attacker type distribution. Similar defender strategies permit a robust approach.

the defender can enable for a cost of 0.1, that makes the attacker
more observable. We set x5 = 0.95, y15 = 0.9, y25 = 0.1. By solving
equilibria for this scenario for a range of prior probability values, a
defender could identify a robust defensive strategy.

4 RESULTS
We evaluate our modeling approach by analyzing the example game
provided in Section 3.4. Performing a sensitivity analysis, we illus-
trate how the defender can choose a robust strategy effective for a
range of threat landscapes (Section 4.2). We quantify the defender’s
gain from using observability information by comparing the de-
fender’s utility at the equilibria compared to a random strategy
(Section 4.3). Additionally, we consider a simple design problem
and show how the OEG can enable the defender to choose the most
effective design (Section 4.4). Lastly, we introduce an extended
model to demonstrate scalability to practically useful problem sizes
(Section 4.5).

4.1 Example Equilibria
Given prior probabilities for each attacker type, we can compute
Nash and Stackelberg equilibria to obtain optimal strategy profiles
for each side. Recall from Section 2.3 that Nash equilibrium assumes
that both sides act simultaneously, while the Stackelberg equilib-
rium assumes that the defender acts first and commits to a strategy,
which the attacker observes and then plays the best response. We
first consider the case where the prior probability of attacker type
one is 0.35, attacker type two is 0.35, and no attacker is 0.30. In
the Nash setting, the first attacker type always plays TTP1, while
attacker type two plays TTP1 81% of the time and TTP2 the other
19%. The defender plays a mixed strategy of using e1 33% of the
time andwp the remaining 67%. The Strong Stackelberg equilibrium
on the other hand, is for both attackers to play a pure strategy of
TTP1, while the defender adopts a similar mixed strategy to the
NE, playingwp 74% of the time, and e1 the other 26%.

4.2 Sensitivity Analysis
While solving equilibria for a specific attacker type distribution is
useful, the defender may not know the exact prior probability values
in practice. In this case, a sensitivity analysis enables the defender
to choose a strategy robust to a range of possible prior values.

Figure 2 shows resulting optimal Nash and Stackelberg strategy
profiles for various values of prior probabilities of attacker type one
and two. For ease of visualization, values are shown for where the
prior probability of no attacker is 0.30. The first four values on the
horizontal axis are two-digit representations of the attacker’s strat-
egy, the attacker type followed by the attacker’s TTP. For example,
11 denotes attacker type 1 plays TTP1, while 12 denotes attacker
type 1 plays TTP2. The remaining values indicate the defender’s
strategy. The shading of the figure indicates with what probability
each action is played in the mixed strategy at equilibrium.

For the Nash equilibrium, both attackers primarily play TTP1,
with attacker type two occasionally usingTTP2. As the prior proba-
bility of attacker type one increases, attacker type two increasingly
switches from playing TTP1 to TTP2, with attacker type one also
starting to useTTP2 some of the time for very high prior probabili-
ties. The defender has two mixed strategies consisting ofwp and
e1. For the Stackelberg equilibrium, there are two optimal strategy
profiles depending on the prior probability distribution. Attacker
type one always adopts a pure strategy of TTP1, while attacker
type two mostly plays TTP1, except for when the prior probability
of attacker type is high. The defender’s strategy is very similar to
the NE case, consisting ofwp and e1.

Interestingly, the defender frequently plays the wp strategy,
showing the power of waiting to reduce uncertainty about the
attacker. Additionally, the defender only needs to choose from two
possible strategies for the entire range of the attacker type dis-
tribution (for when there is no attacker 30% of the time) when
considering both Nash and Stackelberg equilibria, allowing the
defender to adopt an optimal approach even when the prior proba-
bilities are not fully known. The defender’s optimal strategies are
also similar between Nash and Stackelberg equilibria, meaning that

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Garlan

the defender may be able to choose an optimal strategy that is
robust to the attacker knowing the defender’s strategy.

Since the OEG has many parameters that must be set, we per-
formed an exploratory analysis to understand how the game param-
eters affect the equilibrium strategies for each side. In this study,
we randomly sampled 400000 concrete games from the parameter
space. Each game used the same set of tactics and number of at-
tackers as described in Section 3.4, but with different parameter
values. The game parameters were chosen randomly between 0− 1,
with the exception of the δ parameters which were chosen between
1 − 10. We performed this sweep for both the Nash and Stackel-
berg equilibriums, with half of the trials solved for Nash and half
for Stackelberg equilibria. Timesteps ranged between 1 − 10. After
recording the equilibrium strategies for each side for each trial,
we constructed decision trees to predict the probability that each
pure strategy is played in the mixed strategy equilibrium, using the
game parameters as predictors. Decision trees were constructed
using the ctree [13] package for the R language for statistical
computation [28].

The decision tree shown in Figure 4 predicts the number of
timesteps that the defender chooses to wait on average, for the
trials that used τ = 10. Each node in the tree represents a decision
point, and is labeled with a decision variable. Edges are labeled with
the decision criteria. The leaves of the tree show the distribution of
the predicted variable from data instances that satisfy the criteria
on every edge from the root to the leaf. This tree shows that the
defender should primarily consider the prior probability that there
is no attacker in the system (the root node), and the observability
of the attacker’s TTPs (the remaining nodes) when deciding how
long to wait. The leaves on the right side of the tree are generally
higher, indicating that the defender waits longer when the chance
that their is no attacker in the system is higher. This makes sense
intuitively since the defender can minimize the chance that they
pay an unnecessary eviction cost by not taking premature action
when the presence of an attacker is less likely. The defender also
waits more often when the attackers TTPs are more observable,
since the defender is more likely to successfully evict the attacker
by observation in these cases. We also observe that the defender
waits less on average when the observability for the two available
TTPs are different. This is likely due to the defender being able
to exploit their knowledge about the attackers observability, for
example, if TTP1 is very observable and TTP2 is very stealthy,
and the defender cannot observe the attacker after waiting a few
timesteps, the defender concludes that if an attacker is present they
are likely using the stealthier TTP and can thus make an educated
eviction attempt.

While we only show one decision tree in this paper due to space
constraints, we also constructed trees to predict the probability
that the defender should use an active measure or pass, and the
probability that an attacker should use a particular TTP. We found
that the attacker primarily considered the amenability of each TTP
to themselves and the other attacker, as well as the prior proba-
bility values. The defender’s probability to pass rather than evict
blindly could be predicted primarily with the prior probability that
no attacker is present, the observability of each TTP, and the cost of
eviction actions. Using an active measure was predicted by consid-
ering the effectiveness of the active measure and the observability

of the attackers TTPs. Interestingly, whether the game was solved
for Nash or Stackelberg equilbria did not appear as a predictor in
the decision trees, supporting the idea that defenders can generate
strategies that apply to both contexts. While used for interpreta-
tion purposes in this paper, we note that the general approach
of constructing machine learning models over a parameter space
could also be used to approximate equilibrium strategies. Such an
approach could mitigate scalability concerns by enabling systems
to quickly adapt when the parameters are not known until runtime.

4.3 Comparison to Uniform Random
To evaluate the utility of considering this observability information
to the defender, we compare the defender’s utility from playing
the strategy specified by the equilibria to an uninformed uniform
random strategy (that is, the mixed strategy where the defender
chooses all available actions with equal probability). When con-
sidering the simultaneous move case, we test against an attacker
who plays according to the NE. When considering the Stackelberg
case, the attacker best responds to the defender’s uniform random
strategy. The left side of Figure 3 shows the defender’s utility from
playing according to the equilibrium, and according to a uniform
random approach for both Nash and Stackelberg assumptions. The
vertical axis shows the defenders utility, while the horizontal axis
shows the prior probability of attacker type one.

These graphs show a significant utility benefit from an informed
eviction policy. When operating under the Nash assumptions, there
is a 20% difference between the equilibrium strategy and the uni-
form random approach. Under Stackelberg conditions, utility gain
ranges between 22 − 32%.

4.4 Informing Architectural Choices
Weevaluate howmodeling observability can improve utility through
informing system design choices that can be modeled as changes
to the parameters of the Observable Eviction Game. The concrete
illustrative design problem we consider is how many honeypot
decoy systems the defender should build into the system, assuming
that each decoys has costs and benefits. The defender can deploy
at most 17 decoys. With each additional decoy, the defender pays a
flat cost of 0.03 to their utility, but the probability that the attackers’
TTPs are observed is increased. Each additional decoy makesTTP1
5% more observable, and TTP2 0.5% more observable.

The right side of Figure 3 shows the optimal number of decoys
to build into the system based on the attacker prior probability
for Nash and Stackelberg assumptions (left), and the defender’s
change in utility from using the decoys (right). When using Nash
assumptions, the defender should use all 17 decoys when the prior
probability of attacker type one is < 65%, and use zero otherwise.
When considering Stackelberg assumptions, the defender should
always use all decoys.

The right side of Figure 3 shows the improvement the defender
obtains by building the optimal number of decoys into the system
for various prior probabilities, for both Nash and Stackelberg equi-
libria. Where the cost of building decoys into the system outweighs
the benefits of greater attacker observability, zero decoys are chosen
and the fitness change is zero. When beneficial however, the de-
fender can gain up to 0.3 utility, a percentage difference of up to 28%.

Modeling Observability in Adaptive Systems to Defend Against Advanced Persistent Threats MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

−1.5

−1.4

−1.3

−1.2

0.0 0.2 0.4 0.6
Prior Probability of Attacker Type 1

D
ef

en
de

r's
 U

til
ity

Defender Plays

equilibrium
uniform random

Nash Equilibrium

−1.5

−1.4

−1.3

−1.2

0.0 0.2 0.4 0.6
Prior Probability of Attacker Type 1

D
ef

en
de

r's
 U

til
ity

Defender Plays

equilibrium
uniform random

Stackelberg Equilibrium

0

5

10

15

0.0 0.2 0.4 0.6
Prior Probability of Attacker Type 1

O
pt

im
al

 N
um

be
r

of
 D

ec
oy

s

Equilibrium

Nash
Stackelberg

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6
Prior Probability of Attacker Type 1

D
el

ta
 D

ef
en

de
r's

 U
til

ity

Equilibrium

Nash
Stackelberg

Figure 3: Left two graphs: Defender’s utility by attacker type distribution for Nash and Stackelberg equilibria, showing util-
ity improvement from playing the equilibria. Right two graphs: Optimal system design and change in defender’s utility by
attacker type distribution, showing the utility improvement the defender obtained by selecting an optimal design.

na

≤ 0.451 > 0.451

q.TTP2.

≤ 0.271 > 0.271

q.TTP1.

≤ 0.614 > 0.614

n = 45545

0

2

4

6

8

10
n = 29370

0

2

4

6

8

10

q.TTP1.

≤ 0.373 > 0.373

n = 75693

0

2

4

6

8

10
n = 127209

0

2

4

6

8

10

q.TTP1.

≤ 0.288 > 0.288

q.TTP2.

≤ 0.605 > 0.605

n = 21158

0

2

4

6

8

10
n = 13722

0

2

4

6

8

10

q.TTP2.

≤ 0.342 > 0.342

n = 29151

0

2

4

6

8

10
n = 56292

0

2

4

6

8

10

Figure 4: Decision tree predicting the number of timesteps
the defender waits on average in an equilibriummixed strat-
egy.

4.5 Scalability
To evaluate the scalability of the Observable Eviction Game to real-
world sizes, we extended the provided quantification from Section 3
by relaxing the limit on the number of timesteps τ . For scalability
experiments, we assume a uniform distribution between the three
attacker types. To evaluate scalability, we solve the game for an in-
creasing number of timesteps until the game could not be solved in
a time budget of one hour for both Nash and Stackelberg equilibria.
Each runtime is the median of five executions. Scalability exper-
iments were performed on a desktop computer running Ubuntu
18.04 with a 3.5GHz CPU and 8GB of RAM. Figure 5 shows the
results of this experiment. While it is expected that computing Nash
equilibria for large games is much more computationally difficult,
the results show that solving for 25 timesteps can be done quickly
(under 15 seconds). However, solving the Nash Equilibrium for 26
timesteps could not be computed in the time budget of one hour.

Stackelberg games are known to be computationally easier to
solve, and we found that games of up to 65 timesteps can be solved

0

5

10

15

0 5 10 15 20 25
Number of Timesteps

T
im

e
in

 S
ec

on
ds

Equilibrium

Nash
Stackelberg

Figure 5: Runtime versus number of timesteps for Nash and
Stackelberg equilibria.

in seconds, while 300 timesteps can be solved in under an hour.
Our purpose in this paper is to introduce a model that captures im-
portant aspects of APT defense that cannot be handled by existing
approaches, and we leave investigating efficient solutions strategies
to future work, though we note that the OEG can model zero-sum
situations which are easier to solve, and the AI community hasmade
significant progress in efficiently solving large games [4, 27, 30].

4.6 Discussion
This section provides a discussion of limitations (Section 4.6.1) and
opportunities for further work (Section 4.6.2).

4.6.1 Limitations. For this investigation, we make a number of
simplifying assumptions, such as restricting the number of attacker
types and available TTPs, and limiting the defender to a small set
of actions. We do not claim that this example quantification gen-
eralizes exactly to the real world security landscape. Rather, we
attempted to capture the fundamental concepts in the interaction,
a defender that defends against multiple attacker types, a choice
between gathering more information or attempting to evict, a de-
fender with limited observability in the strategy of the attacker, an
attacker that observes the defender’s eviction attempt and reacts,
and a general-sum payoff structure where the defender balances
between evicting the attacker and avoiding disruption to the sys-
tem. While the results will be sensitive to the values we choose for
the payoff structure, we argue that the results nonetheless show
the utility of the OEG as a model of observability in APT defense,

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Garlan

and demonstrate how this modeling approach facilitates reason-
ing about the choice between information gathering and evicting
attackers in self-* systems, as well as design choices involving ob-
servability that can be modeled as parameters to the OEG.

4.6.2 Future Work. This work opens the door for a number of
promising research directions. While we assume optimal behavior
from the attacker, in practice humans do not often behave optimally.
The attackers might have subjective preferences in TTPs. This
captures the fact that attacker groups have familiarity with certain
tools, and are accustomed to operating in a certain way. Deviating
from these normal behaviors would be costly to the attacker, so
they might choose to use a suboptimal strategy from the defender’s
perspective. Applying a model of bounded rationality from game
theory could help model this dynamic.

Another direction for investigation is how the defender’s strat-
egy should change in multiple interactions with the same attacker
groups. For example, a defender may choose to allow the attacker to
remain in their system even when they know that an eviction would
be successful to gain more information about the attacker for use
in future interactions. Future work could also investigate defending
against concurrent attacks, or attackers that can use multiple TTPs
at once. Additionally, future work should model attacker TTPs at a
lower level of abstraction, such as paths through an attack tree.

5 RELATEDWORK
Work by Pawlick et al. [22] is the most similar to our work, also
balancing the defender’s choice between evicting an attacker versus
waiting for more information. Their approach uses an infinite hori-
zon MDP, and the defender gains information about the attacker
by keeping them in honeypots. However, this work does not con-
sider multiple attacker types with different goals and capabilities.
Their approach also does not model how the information gained
by the defender improves the defender’s eviction ability, and as-
sumes that an eviction attempt would always be successful. The
OEG explicitly models the fact that the defender’s ability to evict
the attacker depends on the information that they have obtained
through observation.

FlipIt [29] is a two-player game that reasons about security sce-
narios where an attacker may periodically gain full control of an
asset, with each side trying to maintain control as much as possible.
Uncertainty is modeled by not revealing the owner of a resource
until a player actually moves, which comes at a cost. This work is
similar to ours since there is some uncertainty about the attacker’s
actions. The FlipLeakage extension [10] by Farhang et al. is most
similar to our work. In this model, the attacker gains information
about the defender while they control assets, and this information
improves the attacker’s capability. By contrast, we consider multi-
ple types of attackers with different goals and capabilities, and we
also model how information is leaked from the attacker to the de-
fender, with information about the attacker’s identify and methods
improving the defensive capabilities of the defender.

Many other approaches also apply game theory to different
dimensions of the problem of advanced persistent threats, includ-
ing using prospect theory to model attackers with bounded ra-
tionality [31], modeling attackers with continuous payoff distribu-
tions [15] to facilitate reasoning about the defender’s uncertainty of

the attacker’s payoffs in Bayesian Stackelberg Security Games, and
using a risk mitigation approach [23] in a zero-sum game to manage
uncertainty in attacking payoff values, actions, and system state.
Other work addressing APTs includes modeling defense-in-depth
as a finite sequence of nested two-person zero-sum games [24].
Fang et al. [9] model an APT as a security game with the attacker
choosing a path through the system. This model can be used to
determine the attacker’s optimal path through the system, but does
not explicitly address uncertainty in observability on either side
or consider multiple attacker types. Marecki et al. [18] investigate
dealing withmultiple adversary types over multiple rounds of Stack-
leberg games. While these approaches represent important steps
towards well defended self-protecting systems, our approach is the
first to include the value of increased information over time in both
attack and defense, specific tactics to gain information for both
sides, and the need to reason about the effects of observability of
actions on the behavior of the other player.

6 CONCLUSION
Advanced persistent threats represent a significant challenge for
self-* systems and security software engineering more generally.
Uncertainty about the identity of the attacker, including their TTPs
and goals, complicates the defender’s task. Information flow be-
tween the attacker and defender influences the results of the in-
teraction for both sides, yet the observability of both sides in the
APT interaction is a neglected area in the automated defense of
systems. We presented a model of APT interaction, the Observable
Eviction Game, that captures uncertainty about the kind of attacker,
the attacker’s actions in the system, and the attacker’s limited ob-
servability into the knowledge of the defender. We evaluated this
model with an example that we compare to an uninformed defen-
sive strategy, as well as an empirical sensitivity analysis showing
how our model enables self-* systems to make robust decisions in
uncertain security environments. A comparison of using equilibria
generated form the model versus a random approach showed that
the model results in a significant improvement of 20-32%. Lastly, we
showed that the model has potential to scale to practically useful
time horizons, such as 300 timesteps in the Stackelberg case. These
results are a step towards designing self-* software systems that can
automatically defend themselves from an array of APT attackers
with awareness of information exchange on both sides.

ACKNOWLEDGMENT
This research supported in part by the National Science Founda-
tion (CCF-1618220). This material is based upon work supported
by the NSA under Award No. H9823018D0008. Co-author Fang is
supported in part by the U.S. Army Combat Capabilities Devel-
opment Command Army Research Laboratory under Cooperative
Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA).
This research supported in part by a grant from the CyLab Security
and Privacy Institute at Carnegie Mellon University. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.

Modeling Observability in Adaptive Systems to Defend Against Advanced Persistent Threats MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

REFERENCES
[1] [n.d.]. Advanced Persistent Threat Groups. https://www.fireeye.com/current-

threats/apt-groups.html. Accessed: 2018-04.
[2] [n.d.]. Inside the cyberattack that shocked the US government. https://www.

wired.com/2016/10/inside-cyberattack-shocked-us-government/. Accessed:
2018-04.

[3] [n.d.]. Target: 40 million credit cards compromised. http://money.cnn.com/2013/
12/18/news/companies/target-credit-card/index.html. Accessed: 2018-02-15.

[4] Noam Brown and Tuomas Sandholm. 2018. Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals. Science 359, 6374 (2018), 418–424.

[5] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. 2009. Evaluating the
Effectiveness of the Rainbow Self-adaptive System. In Proc. of Workshop on Soft.
Eng. for Adaptive and Self-Managing Syst. (SEAMS ’09). IEEE Computer Society,
Washington, DC, USA.

[6] Vincent Conitzer and Tuomas Sandholm. 2006. Computing the optimal strategy
to commit to. In Proceedings of the 7th ACM conference on Electronic commerce.
ACM, 82–90.

[7] Premkumar T Devanbu and Stuart Stubblebine. 2000. Software engineering for
security: a roadmap. In Proceedings of the Conference on the Future of Software
Engineering. ACM, 227–239.

[8] Ahmed Elkhodary and Jon Whittle. 2007. A survey of approaches to adaptive
application security. In Software Engineering for Adaptive and Self-Managing
Systems, 2007. ICSE Workshops SEAMS’07. International Workshop on. IEEE, 16–
16.

[9] Xupeng Fang, Lidong Zhai, Zhaopeng Jia, and Wenyan Bai. 2014. A game model
for predicting the attack path of APT. In Dependable, Autonomic and Secure
Computing (DASC), 2014 IEEE 12th International Conference on. IEEE.

[10] Sadegh Farhang and Jens Grossklags. 2016. FlipLeakage: a game-theoretic ap-
proach to protect against stealthy attackers in the presence of information leakage.
In Int. Conf. on Decision and Game Theory for Security. Springer.

[11] LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. http:
//www.gurobi.com

[12] John C Harsanyi and Reinhard Selten. 1972. A generalized Nash solution for
two-person bargaining games with incomplete information. Management Science
18, 5-part-2 (1972).

[13] Torsten Hothorn, Kurt Hornik, and Achim Zeileis. 2015. ctree: Conditional
inference trees. The Comprehensive R Archive Network (2015), 1–34.

[14] JeffreyO. Kephart andDavidM. Chess. 2003. The Vision of Autonomic Computing.
Computer 36, 1 (2003).

[15] Christopher Kiekintveld, Janusz Marecki, and Milind Tambe. 2010. Methods
and algorithms for infinite Bayesian Stackelberg security games. In International
Conference on Decision and Game Theory for Security. Springer.

[16] Richard Kissel. 2011. Glossary of key information security terms. Diane Publishing.
[17] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. 2017. Robust Stackel-

berg Equilibria in Extensive-Form Games and Extension to Limited Lookahead.
arXiv:cs.GT/1711.08080

[18] Janusz Marecki, Gerry Tesauro, and Richard Segal. 2012. Playing repeated Stack-
elberg games with unknown opponents. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2. International
Foundation for Autonomous Agents and Multiagent Systems.

[19] Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy. [n.d.].
Gambit: Software Tools for Game Theory, Version 16.0.1. http://www.gambit-
project.org. Accessed: 2018-02.

[20] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. 2007. Algo-
rithmic game theory. Vol. 1. Cambridge University Press Cambridge.

[21] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind Tambe, Fernando
Ordonez, and Sarit Kraus. 2008. Playing Games for Security: An Efficient Exact
Algorithm for Solving Bayesian Stackelberg Games. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems -
Volume 2 (AAMAS ’08). International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC.

[22] Jeffrey Pawlick, Thi Thu Hang Nguyen, and Quanyan Zhu. 2017. Optimal Tim-
ing in Dynamic and Robust Attacker Engagement During Advanced Persistent
Threats. CoRR abs/1707.08031 (2017). arXiv:1707.08031

[23] Stefan Rass, Sandra König, and Stefan Schauer. 2017. Defending against advanced
persistent threats using game-theory. PloS one 12, 1 (2017).

[24] Stefan Rass and Quanyan Zhu. 2016. GADAPT: A Sequential Game-Theoretic
Framework for Designing Defense-in-Depth Strategies Against Advanced Per-
sistent Threats. In Decision and Game Theory for Security, Quanyan Zhu, Tansu
Alpcan, Emmanouil Panaousis, Milind Tambe, andWilliam Casey (Eds.). Springer
International Publishing, Cham.

[25] Bradley Schmerl, Gabriel A Moreno, Andrew Mellinger, Javier Camara, and
David Garlan. 2014. Architecture-based self-adaptation for moving target defense.
Technical Report. Carnegie Mellon University Pittsburgh United States.

[26] Bruce Schneier. 1999. Attack trees. Dr. Dobb’s journal 24, 12 (1999).
[27] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

et al. 2017. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815 (2017).

[28] R Core Team et al. 2013. R: A language and environment for statistical computing.
(2013).

[29] Marten Van Dijk, Ari Juels, Alina Oprea, and Ronald L Rivest. 2013. FlipIt: The
game of “stealthy takeover”. Journal of Cryptology 26, 4 (2013).

[30] Jakub Černý, Branislav Boýanský, and Christopher Kiekintveld. 2018. Incremental
Strategy Generation for Stackelberg Equilibria in Extensive-Form Games. In
Proceedings of the 2018 ACM Conference on Economics and Computation (EC ’18).
ACM, New York, NY, USA, 151–168. https://doi.org/10.1145/3219166.3219219

[31] Liang Xiao, Dongjin Xu, Caixia Xie, Narayan B. Mandayam, and H. Vincent Poor.
2017. Cloud Storage Defense Against Advanced Persistent Threats: A Prospect
Theoretic Study. IEEE J.Sel. A. Commun. 35, 3 (March 2017).

https://www.fireeye.com/current-threats/apt-groups.html
https://www.fireeye.com/current-threats/apt-groups.html
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
http://money.cnn.com/2013/12/18/news/companies/target-credit-card/index.html
http://money.cnn.com/2013/12/18/news/companies/target-credit-card/index.html
http://www.gurobi.com
http://www.gurobi.com
http://arxiv.org/abs/cs.GT/1711.08080
http://www.gambit-project.org
http://www.gambit-project.org
http://arxiv.org/abs/1707.08031
https://doi.org/10.1145/3219166.3219219

	Abstract
	1 Introduction
	2 Background
	2.1 Self-* Systems
	2.2 Security and Advanced Persistent Threats
	2.3 Game Theory

	3 Observable Eviction Game
	3.1 Actions
	3.2 Utilities
	3.3 Computing Equilibria
	3.4 Example Quantification

	4 Results
	4.1 Example Equilibria
	4.2 Sensitivity Analysis
	4.3 Comparison to Uniform Random
	4.4 Informing Architectural Choices
	4.5 Scalability
	4.6 Discussion

	5 Related Work
	6 Conclusion
	References

