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Abstract—Cyber-Physical systems (CPSs) are systems that
mix software and physical control, with equal prominence.
Typically, models at run time have concentrated on managing
and controlling the cyber (or software) aspects of these systems.
However, to fully realize the goals of CPS, physical models have
to be treated as first class models in these systems. This gives
rise to three main challenges: (a) identifying and integrating
physical and software models with different characteristics
and semantics; (b) obtaining instances of physical models at
a suitable level of abstraction for control; and (c) using and
adapting physical models to control CPSs. In this position
paper, we elaborate on these three challenges and provide
insight into how we are addressing these challenges in the
context of power adaptation for a robotic system.

I. INTRODUCTION

State-of-the-art self-adaptation relies on multiple layers of
models at run time to enable sophisticated decision-making
and adaptation. It is common to separate the system under
adaptation from the adaptation layers that govern control
of increasingly higher-level concerns, from specific adaptive
strategies like adding a server to managing long-term goals
of the system like user satisfaction or mission achievement.
In particular, models of the software being adapted are
used to reason about and manage software-intensive systems.
Common models used include architecture models [1], [2],
[3], [4], [5], goal and requirements models [6], [7], and
models of tasks [8].

Most self-adaptive approaches predominantly consider
sophisticated cyber models but consider physical character-
istics of the the system with less sophistication, and mostly
only insofar as modeling resources available to the software.
In architectural models, for instance, physical elements may
be abstracted as components (e.g., a motor or a gripper
component [9]), making adaptation reasoning discrete and
symbolic in most cases.

Cyber-physical systems (CPS) add physical phenomena
and interactions, such as power and timing, which makes
adaptation difficult. If physical dynamics are not accounted
for properly, the models may fail to predict the outcome
of adaptation, potentially making an adaptive system less
effective than a non-adaptive one. For example, in a robotics
context if a decision is made to reconfigure the software of
the robot to get better accuracy in localization of the robot
without considering physical characteristics like increased

power consumption of the hardware and software, then the
robot may not have enough power to achieve its task.

Fully managing CPSs requires using models of all parts of
the system - the cyber (software) and the physical models.
In trying to incorporate physical models into adaptation, we
face several challenges. First, we need to pick appropriate
formal representations for physical models. The models need
to be sufficiently expressive to represent the target behavior
of the system and the environment. Different formalism
choices may enable or disable certain kinds of analyses and
affect possible adaptations. Another challenge is obtaining
actual instances of physical models. They cannot be obtained
simply by abstraction of software or by design (as is the
case for cyber models) - often they require some experi-
mentation and data collection to build. The final challenge
is connecting physical models with proper adaptation layers
and MAPE loops. Many physical models (e.g., power) have
a systemic nature and can apply to many decisions about
software. Therefore, an important choice in the design of
self-adaptive cyberphysical systems is what parts read and
write such physical models. Also, the relationship with cyber
models is not clear - does one only adapt cyber models,
or is it an option to adapt physical models as well? E.g.,
constraining the search space, or being as first-class as cyber
models? How does this relate to functional/behavioral vs
quality/configuration adaptation?

In this paper, we first present an example that illustrates
several of these challenges. The example relates to our
work of obtaining power usage model for a service robot
based on the TurtleBot platform. We then discuss each of
the above challenges in detail. The rest of this paper is
organized as follows. Section 2 surveys existing work on
model-based self-adaptation, focusing on work in the self-
adaptive robotics domain. Section 3 presents an example
that illustrates several difficulties that arise when physical
models are used for implementing self-adaptive behaviour.
In particular, it relates our work in building a service robot
that adapts its mission in accordance with its remaining
battery capacity. Section 4 contains a detailed discussion
of the challenges associated with using physical models in
combination with software models in CPS.



II. RELATED WORK

Models at run time have been mostly used to guide self-
adaptation or verification. In the self-adaptive community,
the models have focused on various models of the software
that is being adapted (e.g., requirements, goals, architecture,
tests). There has been some work where these models
are applied to example systems that can be considered
cyberphysical systems.

There has been quite a lot of work on applying self-
adaptive techniques to robotics systems, which have physical
characteristics such as batteries, physical movement, inter-
action with humans, etc. The works of Sykes et al. [3], [8],
[9] include examples from the domain of robotics, but the
models that are used at run time focus on the architecture or
structure (both behavioral and extra-functional) of the sys-
tem and the tasks of the system. Physical models are limited
to simple models of resources and environment. The most
sophisticated model of the physical aspects of the robots are
described in [9], which describes an approach for updating
environment models of a robot which conforms to Gat’s
three-layer architecture [10]. The reasons for which an envi-
ronment model might have to be updated include unmodeled
conditions, probabilistic factors, unmodeled transitions and
unmodeled historical dependencies which manifest as failure
of the robot to reach its goal. The model is encoded as a
logic program that describes the actions that can be taken
when certain conditions hold. To achieve a goal, this model
is used to generate a plan. As the robot executes different
plans, it collects execution traces for each of them. When a
success is observed, a set of hypotheses that might explain
it are generated. The traces are then examined to determine
the most likely hypothesis. The model is then updated with
a probability value that states the likelihood of success when
the conditions in the hypothesis are true. This updated model
is used by the planner to generate plans which lead to a
higher probability of success. Many of the approaches are
multi-model in that the represent and manipulate models
of tasks or policies (e.g., [11]) of a robot, in addition to
the software architecture. However, these models are not
physical models.

Physical models are used in [12] to reason about optimal
configurations of software in an unmanned underwater ve-
hicle (UUV). In this work, the software configuration has to
be sensitive to both the speed of the UUV and the amount
of power that sensors can use, while fulfilling requirements
on the number of measurements that should be taken during
a mission. They use some modifications of run-time quan-
titative verification [13] to verify that quality attributes are
being met and to choose appropriate reconfigurations if not.
The quality attributes include physical characteristics (such
as power consumption).

None of the approaches describe a methodology or frame-
work for treating physical models as first class alongside

software models.

III. MOTIVATING EXAMPLE

We will illustrate physical modeling challenges on the
example of TurtleBot ! — a personal robot that can be used
for indoor delivery, notification, and escort tasks. TurtleBot
is equipped with a Kinect depth camera to visually sense its
surroundings, navigate and avoid collisions with obstacles in
its path. Control software is based on the Robot Operating
System (ROS), which in turn executes on an on-board
computer — the Intel Next Unit of Computing (NUC) 2 — that
runs a Linux OS. TurtleBot moves using a two-wheeled base
capable of driving in straight lines and arcs, and turning in
place. The base also houses a battery that powers all system
devices.

Since it runs on a battery, TurtleBot also has a limited
amount of power and thus cannot perform tasks of indefinite
duration. Therefore, it can run out of power and shut down
in the middle of a task, which is undesirable. To prevent such
situations, offline and online power adaptation is necessary.
The former would determine, before starting a task, the
system configuration and an action plan that would satisfy
energy constraints (e.g., not running out of power in the
middle of the task). The latter would react to unanticipated
changes (e.g., driving drained more energy than expected)
in-progress and would change the configuration or the plan.

To enable power-aware adaptation for TurtleBot, two
power models are necessary:

o A power consumption model that determines for a given
task, how much energy it takes to accomplish this task.
This model is characterized by accuracy and whether
it predicts for the average, worst, or best case.

o A power state estimation model that determines for a
given the battery voltage reading, how much energy
remains in the battery. This model is characterized by
accuracy.

Building a power consumption model requires knowledge
of how much power each physical part of TurtleBot uses
for a given task. From the power perspective, TurtleBot
has three components: a base, a Kinect, and a NUC. The
power consumption of the base depends on the motion type
(driving straight and rotating drain different power), velocity
(translational and rotational), the floor material (e.g., carpet
or tile), and the slope. NUC power consumption depends on
the amount of processing that the NUC does, determined by
multiple parameters of vision and navigation algorithms (e.g,
number of processes points in a sensed set of points provided
by Kinect). Power consumption of the Kinect sensor is
mostly fixed since it delivers fixed data.

Consider a scenario that we will use to illustrate the
challenges. TurtleBot needs to navigate to a target spot

Uhttp://www.turtlebot.com
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through a building. Two paths are available: a shorter path
through a crowded hallway, and a longer path through a
mostly empty hallway. Using the shorter path would lead to
the robot driving with slower speed and potentially stopping
to let humans clear the path, whereas for the longer path can
be driven with a faster speed and fewer if any interruptions.
Depending on the specific parameters of this scenario, either
of the two paths may turn out to be energy-optimal and
(independently) time-optimal.

IV. CHALLENGES

Our position is that all models (physical and software)
should be treated equally in the running system for verifica-
tion and adaptation. Existing techniques for models at run
time tend to favor software models, but physical models also
need to be defined, monitored, and manipulated in similar
ways to software models. Furthermore, these models and
analyses of them need to be integrated to provide a holistic
view of the run time state of the cyberphysical system.

To achieve this vision, there are a number of challenges
that need to be addressed. First, identifying and integrating
the required models needs to consider the vastly different
modeling characteristics between software and various phys-
ical domains. Second, deriving and defining the physical
models is challenging because of uncertainty and evolution
over time because of changes in physical properties. Third,
physical and software models need to be adapted and con-
sider in any adaptation decisions that need to be made on
the system at run time.

In this section, we discuss these three major challenges,
giving some insight into how we are addressing them in our
research.

A. Selecting Modeling Formalism

Modern engineering methods for cyber-physical systems
offer a multitude of possible formalisms for physical aspects.
These formalisms vary in degree of their mathematical
sophistication. Some are based on differential equations
(e.g., Modelica), often used to describe continuously timed
systems, for instance, physical movement. Signal-flow mod-
els (e.g., Simulink) can be used to approximate and simulate
differential equations. For systems with multiple modes, one
can use variations of automata such as timed automata or
probabilistic automata. Formalisms are usually accompanied
by tool environments that support model manipulation and
analysis.

Not all formalisms are, however, equally useful to model
all physical aspects of a system. The chosen formalism needs
to fit the purpose and context in which it is used. One of the
issues is to do with expressiveness. For example, if power
predictions for a wheeled robot should output real numbers,
formalisms that only use integers (e.g., Promela) would not
fit this purpose.

A formalism’s expressiveness determines what objects
and dynamics can be described. For physical models, im-
portant formalism properties include linearity, treatment of
continuity, and the underlying mathematical theories (which
constrain permitted functions and numbers). For instance, if
a formalism is restricted to polynomial functions (e.g., the
input language of KeYmaera [?]), it may be challenging or
even impossible to accurately describe system dynamics that
are traditionally modeled with transcendental functions (such
as movement along a curve written down with trigonometric
functions).

Merely modeling a physical system is rarely the final
goal; rather, one usually aims to execute analyses on a
model to provide some value in the engineering process.
For the power model of TurtlebBot, the goal of analysis is
predicting whether the robot has enough energy to complete
a given task. That is an example of an online analysis,
but many analyses are done offline (i.e., at design time).
For instance, determining the center of mass of a physical
structure is a common offline analysis. Formalism choice
is often dominated by the tradeoff between expressiveness
and feasible analyses: one aims to use the least expres-
sive formalism possible, given that it captures the needed
phenomena. Otherwise, if the formalism’s expressiveness is
high, analysis may be infeasible and costs of usage may be
prohibitive due to complexity.

In addition to the requirement of different formalisms for
different physical aspects, there is also the challenge that
different physical characteristics require different expertise
to model. For example, modeling the mechanical aspects
of the TurtleBot requires understanding physical mechanics,
whereas modeling power consumption requires electrical
engineering expertise. As cyber-physical systems scale and
incorporate different aspects of physicality, the likelihood
that a domain expert who understands all the modeling
characteristics of the system decreases.

These challenges lead us to the position that: It is a
fruitless exercise to develop a unified modeling formalism
that covers all aspects of a cyberphysical system. Rather,
we have been exploring the approach that allows engineers
to work within the formalism required for their domain
and within their area of expertise, and to integrate those
models through abstraction and relation. Abstraction fac-
tors out crucial commonalities of models into a simplified
space (in a metamodel language, a universal format for all
models traces, etc.). Once that space is constructed, some
elements of models are related through it. That relation is
checked for consistency properties on the structure [14] and
semantics [15]. Furthermore, beyond integrating the models
through abstraction and relation, the analyses that may be
performed on the different models needs to be coordinated.
We need to ensure that an analysis is never applied to a
model that violates the assumptions of the analysis. Since
such violation can originate from updating a model by



another analysis, analyses must be executed in the correct
order. In [16] we developed an analysis integration approach
that uses contracts (assumptions required for the analysis to
be valid, and guarantees provided by the analysis) to spec-
ify dependencies between analyses, determine their correct
orders of application, and specify and verify applicability
conditions in multiple domains. In [17] we list some of the
ways in which we can deal with the inevitable dependency
loops that occur in complex cyber-physical systems with
many models and analyses.

Because of the dynamics of a cyber-physical systems,
the fidelity of the models, and uncertainty in operating
environments, these models and relationships need to be
maintained at run time, as we discuss in the coming sections.

B. Obtaining Physical Models

Once a formalisms for modeling various aspects of a
system are decided, they are used to build models for the
specific system at hand. To use a physical model at run
time successfully, the model has to rank well enough on
several model value factors — characteristics of a model
that determine how much value it provides in run-time
adaptation. The concrete factors may vary by system, but
we distinguish three categories of model value factors:

1) Analytical power — the capacity of the model to pro-
vide conclusions (estimates, predictions) with required
precision, granularity, and horizon. Analytical power is
in part determined by the formalism, and partially by
the model itself. For instance, a power model learned
from a single run of TurtleBot would not accurately
predict another run’s power consumption.

2) Fragility — dependency of the model’s analytical power
on the model’s assumptions, and how difficult it is to
carry over the model to a new context from the original
target context. For example, if a power model does
not easily carry over from one surface material (e.g.,
carpet) to another (e.g., tiles), it is said to be fragile
with respect to surface material. If a model is to be
used across multiple contexts, its fragility needs to be
mitigated.

3) Computational cost — the amount of computation
needed to perform the required analyses. Again, al-
though a formalism sets the overall expectations of
computational costs, the model itself may contribute
to them. For example, a state model with redundant
states may slow down its traversal by a model checker.
Computational costs often correlate with time needed
for analysis, which is often critical during a self-
adaptive system’s execution.

Ideally, requirements on these value factors would de-
termine the approach to building a physical model. Unlike
cyber models that are often created through abstraction and
(re-)engineering the modeled software, physical models may

be built with various approaches. For the purposes of this
paper, we distinguish two ways of building physical models:

o From first principles: the phenomena are modeled di-

rectly using an appropriate physical theory. For exam-
ple, a robot wheel may be modeled mechanically to
derive the power it takes to move [18]. First-principles
models may be calibrated to suit the target context, but
the primary emphasis is on the theoretical abstractions.

o Data-driven: the phenomena are studied indirectly, by

collecting data and creating statistical models of this
data. Data-driven models do not necessarily use or
reflect the physical theories about the reality. To build a
model for TurtleBot power consumption from data, one
could multiple experiments with repetitive movement
tasks (e.g., spinning on the floor for 15 minutes) and use
regression to extract the model from the experimental
data [?].

It is challenging to align model building decisions to
ensure that model value factors meet the requirements.
Before a theoretical model is constructed or data is collected,
it is difficult to tell what margins of errors and prediction
horizons a model can tolerate. It is also hard to set an
expectation regarding how a model would respond to context
switches.

Our position is that for physical models, approaches to
building models significantly affect the resulting value of
the model. Therefore, model-building decisions need to be
carefully considered in the light of model value factors.
There is little formal guidance on making model-building
decisions in this way, and more such guidance is needed.

We followed this approach in the case of robot power
model by examining the implications of the two model-
building approaches on the specific power model values.
We concluded that predictions over a high horizon (up to
an hour of operation) with relatively low precision (error
up to 10% is acceptable) can be accomplished by a data-
driven model. A first-principles model, on the other hand,
could have highly precise and granular predictions on the
order of minutes, but their error would accumulate for long
horizons. Thus, a data-driven model was more preferable
from the perspective of analytical power.

The fragility of our data-driven power model left much
to be desired: we could not predict power consumption
in new contexts (e.g., a different surface material) without
additional data collection. However, we can reuse data col-
lection protocols and equipment to rapidly re-build models
as needed. Moreover, our team did not possess the expertise
in electrical, mechanical, and chemical engineering to build
first-principles models for wheels, motors, and the battery
of TurtleBot — especially parameterized models that could
be rapidly adapted to new situations.

Due to the discussed reasons, we chose to pursue a
data-driven power model for TurtleBot. We collected power
consumption data from multiple motor tasks, executed up to



30 minutes. Then this data was cleaned from outliers and fed
into linear regression. Although the result was satisfactory,
more guidance on how model building decisions affect
model value would have helped streamline the decisions
and perhaps build a higher-precision model. However, it is
unclear whether this is the right approach. Having systematic
processes for guiding model choice will be crucial going
forward, especially as the size and complexity of these
systems increases.

C. Using Physical Models in Adaptation

Traditionally, self-adaptive behavior has been imple-
mented by reconfiguring software components of a system.
This is not enough for CPS: we need to make adaptation
decisions regarding the physical aspects of the system, too.
For instance, for TurtleBot, physical variables like speed can
be adapted along with cyber variables such as the number
of iterations in the localization algorithm.

The constructed physical models may be used in several
ways to make adaptation decisions in the target system. First,
and most commonly, they might be used to estimate the
current state of the system. Second, physical models can be
used for prediction of physical actions. For example, there
are no on-board devices on the TurtleBot to measure the
remaining battery capacity directly. But, the output voltage
from the battery can be measured, and an estimate of the
remaining battery capacity can be made based on that.
Third, the models might be used to search for an adaptation
strategy that satisfies the given constraints. In this case, the
search needs to be sensitive to the relationships between the
different models.

Aside from adapting the system, physical models them-
selves might have to be updated because of changing phys-
ical conditions. For instance, if the power model is consis-
tently giving optimistic projections, it may be that wear and
tear on the robot reduced the efficiency of movement. There
are multiple ways to respond to this situation: (re-)learning,
calibration, updating ontology, and so on.

Thus, using physical models in adaptation is a two-part
challenge:

« How to organize decision-making to adapt the system

based on cooperative use of its models?

o« How to organize decision-making to adapt models
based on their model value (as described in the previous
subsection)?

Our position is that physical models should be treated as
first-class entities in adaptation, thus given equal importance
as cyber models. The value of each physical model needs to
be tracked throughout the system execution, and the models
should be adapted as needed.

The way we approach implementing this position is by
giving the system self-awareness of some aspects of model-
building, described in the previous subsection. Since the
system needs to manipulate its models, it needs to operate

under the same concerns as do the engineers that built
the original version of the model. In TurtleBot’s case, the
robot should continuously monitor how good predictions are
and evaluate the precision of the models, adapting when
the precision becomes unacceptable. It is, however, not
advisable to constantly improve the models due to the risk
of overfitting.

V. CONCLUSION

Physical models are as important as cyber models when it
comes to model-based adaptation of cyber-physical systems.
However, we face several significant challenges in using
physical models in adaptation. One needs to carefully select
a formalism. The method of obtaining the model influences
the scope of applicability and the analyses we can run on the
model. As our experience with power modeling suggests,
sophisticated experimental protocols can help collect and
abstract data properly. A set of guidelines for selecting
formalisms and picking experiments would help develop
custom models for systems.

Another set of challenges is associated with using physical
models in adaptation. Contextual sensitivity, information
hiding, and maintaining models at runtime are among the
prominent challenges in adapting via physical models. De-
pending on the type of model, different model qualities need
to be prioritized for successful adaptation.

We thus come to a conclusion that modern model-based
self-adaptive systems lack in treatment of physical phenom-
ena. To improve the state-of-the-art of self-adaptive CPS,
first, new approaches are needed that focus on bringing to-
gether cyber and physical models — not blindly but by taking
into accounts their characteristics and features. Furthermore,
we envision model management environments that help
construct, relate, and maintain heterogeneous CPS models
more systematically, as opposed to having individual tools
for each kind of model.
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