
Analyzing Architectural Styles

Jung Soo Kim ∗ and David Garlan

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Abstract

The backbone of many software architectures and component integration frame-
works is an architectural style that provides a domain-specific design vocabulary and
a set of constraints on how that vocabulary is used. Given the increasing number and
complexity of architectural styles, designing a sound and appropriate style becomes
an important and intellectually challenging activity. Unfortunately, although there
are numerous tools to help in the analysis of architectures for individual systems,
relatively less work has been done on tools to help the style designer. In this paper
we show how to map an architectural style, expressed formally in an architectural
description language, into a relational model that can be automatically checked
for properties such as whether a style is consistent, whether a style satisfies some
predicate over the architectural structure, whether two styles are compatible for
composition, and whether one style refines another.

1 Introduction

The discipline of software architecture has matured substantially over the past
decade: today we find growing use of standard notations [28,32,17], architecture-
based development methods [8], and handbooks for architectural design and
notation [5,7]. And, as a significant indicator of engineering maturity, we are
also seeing a growing body of research on ways to formally analyze proper-
ties of architectures, such as component compatibility [3], performance [10],
reliability [38], style conformance [33], and many others.

One of the important pillars of modern software architecture is the use of ar-
chitectural styles [1,5,7,34]. An architectural style defines a family of related

∗ Corresponding author.
Email addresses: jungsoo@cmu.edu (Jung Soo Kim), garlan@cs.cmu.edu

(David Garlan).

Preprint submitted to Elsevier 20 January 2007

systems, typically by providing a domain-specific architectural design vocabu-
lary together with constraints on how the parts may fit together. Examples of
common styles range from the very generic, such as client-server or pipe-filter,
to the very domain-specific, such as MDS [13,12,31] and J2EE [27].

The use of styles as a vehicle for characterizing a family of software architec-
tures is motivated by a number of benefits. Styles provide a common vocab-
ulary for architects, allowing developers to more easily understand a routine
architectural design. They form the backbone of product-line frameworks, al-
lowing the reuse of architectures across many products, and supporting com-
ponent integration. By constraining the design space, they provide opportu-
nities for specialized analysis. And in many cases they can be linked to an
implementation framework that provides a reusable code base, and, in some
situations, code generators for significant parts of the system.

Consequently more and more architectural styles are being defined every day.
In many cases new styles are elaborations of existing styles. For example,
a company might constrain J2EE-based architectures to support particular
types of business services. In other situations new styles may be combinations
of other styles. For example, one might combine a closed-loop control architec-
ture with a publish-subscribe style to satisfy emerging needs for automotive
software.

Defining a new style, however, is not an easy task. One must take care that the
system building blocks fit together in the ways expected, that each instance
of the style satisfies certain key properties, and that constraints on the use of
the style are neither too strong, nor too weak. Thus defining styles becomes
an intellectual challenge in its own right. Indeed, in many ways the need
for careful design of architectural styles far exceeds the needs for individual
systems, since flaws in an architectural style will impact every system that is
built using it.

Unfortunately, despite significant progress in formal analysis of the architec-
tures for individual systems, there is relatively little to guide the style designer.
Answering questions like whether a given style specifies a non-empty set of
systems, whether it can be combined consistently with another, or whether
it will retain the essential properties of some parent style, is today largely a
matter of trial and error. In fact, today style designers typically cannot de-
tect fundamental errors in a style until someone actually tries to implement a
particular system in that style, when the cost of change is very high.

To address this gap, ideally what we would like to have is a way to formally
express and verify properties of architectural styles. Even better would be a set
of standard sanity checks that every style designer should consider. Better still,
we would hope that many of these checks could be carried out automatically.

2

In this paper we describe a technique that does exactly that with respect to
structural aspects of architectural styles. Specifically, we show how to map an
architectural style, expressed in an architectural description language, into a
relational model that can be checked for various properties relevant to a style
designer. We illustrate the approach by showing how to analyze a number of
crucial kinds of properties, including: whether a style is consistent, whether
a style satisfies some predicate over the architectural structure, whether two
styles are compatible for composition, and whether one style refines another.

In Section 2 we describe related work. Section 3 discusses architectural styles:
what they are, how they can be characterized formally, and what kinds of
properties we would like them to have. Section 4 provides an brief introduction
to Alloy and the Alloy Analyzer, the target modeling language and tool that
we will be using to check properties of styles. Section 5 then presents the
translation approach, showing how to map formal descriptions of architectural
styles into Alloy, and highlighting places where that translation is non-trivial.
Section 6 shows by example how to use the Alloy Analyzer to check properties
of an architectural style. Section 7 demonstrates how an architectural style
in real world can be analyzed using the approach presented in this paper
and explores some of the performance issues related to scaling to large-scale
styles. Section 8 discusses the strengths and limitations of the approach, and
considers future work.

2 Related Work

There are two broad areas of closely related work. The first is formal repre-
sentation and analysis of software architecture. Since the inception of soft-
ware architecture over a decade ago, there have been a large number of re-
searchers interested in formal description of architectures. These efforts have
largely focused on the definition and use of architecture description languages
(ADLs) [26]. Many of these languages were explicitly defined to support for-
mal analysis, often using existing (non-architectural) formalisms for modeling
behavior. For example, a number of ADLs have used process algebras [3,25] to
specify abstract behavior of an architecture, and to check for properties like
deadlock freedom of connector specifications. Others have used rewriting rules
[19], sequence diagrams [18], event patterns [24], and many others.

This existing body of work on analysis of software architectures has primarily
focused on the problem of analyzing the properties of individual systems.
That is, given an architectural description of a particular system, the goal is
to formally evaluate some set of properties of that system. Properties include
things like consistency of interfaces [31], performance [10,36], and reliability
[32]. While many of these analyses assume that a system is described in a
particular style (such as one amenable to rate-monotonic analysis or queuing
theoretic modeling), unlike our work, the issue of analyzing the style itself is

3

not directly addressed.

There has been some research on ways to formally model architectural styles
and their properties. Early work on this carried out Abowd et al. [1] mod-
eled styles using Z [37]. In that approach one can specify general properties
of architectural styles, but the work lacked explicit guidance on what proper-
ties should be evaluated, and it did not provide any tool-assisted support for
analysis. Other work has investigated formal properties of particular styles,
such as EJB [35] or publish-subscribe [11], but these have not provided any
general style-oriented analyses. Finally, the Acme ADL was developed with
the specific intent of providing a way to formally define architectural styles, in
general, and to check conformance between the architecture of a system and
its purported styles, in particular [15]. As we describe later, our work builds
directly on that formalism, extending the possibilities of analysis to the styles
themselves.

The second area of related research is model-based design. Independently of
software architecture, there has been a lot of research on using models to
develop and gain confidence in systems. Most of these have been targeted to
standard general-purpose modeling notations, such as UML [28], Z [37], or
B [2], as opposed to domain-specific modeling languages, such as architectural
description languages. In this work we build on these general specification
languages using Alloy [20], one such general-purpose modeling language, as
the assembly language for our own analyses.

Also closely related to our research is work on model-based software engineer-
ing [29]. In particular, the work by Karsai et al. [22] adopts a similar approach
to meta-modeling in which new kinds of modeling languages and analyses can
be defined for a particular domain. This work shares the general goals of our
approach: that it should be possible to provide customized modeling notations
and analyses to take advantage of them. However, unlike their approach, ours
is focused specifically on software architectural styles and their properties.
This makes our work less general, but at the same time allows us to tailor our
approach specifically to the needs of the architectural style designer.

3 Architectural Style

Software architecture is concerned with the high-level structure and proper-
ties of a system [34,30]. Over time there has emerged a general consensus that
modeling of complex architectures is best done through a set of complemen-
tary views [7,17]. Among the most important types of views are those that
represent the run-time structures of a system. This type of view consists of
a description of the system’s components – its principle computational ele-
ments and data stores – and its connectors – the pathways of interaction and
communications between the components. In addition, an architecture of a

4

system typically includes a set of properties of interest, representing things
like expected latencies on connectors, transaction rates of databases, etc.

While it is possible to model the architecture of a system using generic con-
cepts of components and connectors, it is often beneficial to use a more special-
ized architectural modeling vocabulary that targets a family of architectures
for a particular domain. We refer to these specialized modeling languages as
architectural styles. 1

Architectural styles have a number of significant benefits. First, styles promote
design reuse, since the same architectural design is used across a set of related
systems. Second, styles can lead to significant code reuse. For example many
styles (like J2EE or .Net) provide prepackaged middleware to support con-
nector implementations. Similarly, Unix-based systems adopting a pipe-filter
style can reuse operating system primitives to implement task scheduling,
synchronization, and communication through buffered pipes. Third, it is eas-
ier for others to understand a system’s organization if standard architectural
structures are used. For example, even without specific details, knowing that
a system’s architecture is based on a “client-server” style immediately con-
veys an intuition about the kinds of pieces in the system and how they fit
together. Fourth, styles support interoperability. Examples include CORBA
object-oriented architecture [9] and event-based tool integration [4]. Fifth, by
constraining the design space, an architectural style often permits specialized
analyses. For example, it is possible to analyze systems built in a pipe-filter
style for schedulability, throughput, latency, and deadlock-freedom. Such anal-
yses might not be meaningful for an arbitrary, ad hoc architecture - or even
one constructed in a different style.

Consequently, there are hundreds, if not thousands, of architectural styles
that are in use today (even if they are not formally named or defined as
such). Indeed, the recent industrial interest in product lines and frameworks
invariably results in the definition of new styles. Many of these styles are
specializations or combinations of existing styles. For example, a company
specializing in inventory management might provide a specialization of J2EE
that captures the common structures in that product domain. Other styles
may be defined from scratch.

3.1 Formal Modeling of Architectures

Building on the large body of existing formal modeling techniques for component-
and-connector architectures, we model an architecture using the following core
concepts that appear in most modern ADLs [26], as well as UML 2.0 [28].

1 Styles are sometimes referred to as “architecture families,” “architectural pat-
terns,” or “architectural frameworks.”

5

• Components: Components represent the principal computational elements
and data stores of a system. A component has a set of run-time interfaces,
called ports, which define the points of interaction between that component
and its environment.

• Connectors: Connectors identify the pathways of interaction between com-
ponents. Connectors may represent simple interactions, such as a single ser-
vice invocation between a client and server. Or they may represent complex
protocols, such as the control of a robot on Mars by a ground control station.
A connector defines a set of roles that identify the participants in the inter-
action. For example, a pipe connector might have reader and writer roles;
a publish-subscribe connector might have multiple announcer and listener
roles.

• Configurations: An architectural configuration (or simply architecture or
system) is a graph that defines how a set of components are connected to
each other via connectors. The graph is defined by associating component
ports with the connector roles in which they participate. For example, ports
of filter components are associated with roles of the pipe connectors through
which they read and write streams of data.

• Properties: In addition to defining high-level structure, most architectures
also associate properties with the elements 2 of an architectural model. For
example, for an architecture whose components are associated with periodic
tasks, properties might define the period, priority, and CPU usage of each
component. Properties of connectors might include latency, throughput, re-
liability, protocol of interaction, etc.

To make such definitions precise, however, we need a formal language. In
this work we use the Acme ADL [16], although many other ADLs could have
been used as well. Figure 1 illustrates the basic constructs in Acme for defin-
ing configurations. 3 The figure specifies a very simple repository architecture
consisting of two components – a database (db) and a client (client) – con-
nected by a database access connector (db access). Both components have
a single port (request and provide), and the connector through which they
interact has two roles (user and provider). The client has a single property
(avg trans per sec), its average number of transactions per second.

3.2 Formal Modeling of Architectural Styles

To define a style we add the following concepts:

2 We use the term “elements” to refer generically to any kind of architectural
structure: component, connector, port, or role.
3 In this paper we use only those aspects of Acme that are necessary to explain
our approach to style analysis. For a more thorough description of the language see
[16].

6

System simple_repository_system = {
Component client = {

Port request;
Property avg_trans_per_sec: int;

}
Component db = {

Port provide;
}
Connector db_access = {

Role user;
Role provider;

}
Attachments = {

client.request as db_access.user;
db.provide as db_access.provider;

}
}

Fig. 1. Simple repository system

• Design vocabulary: This can be specified as a set of component, connec-
tor, port and role types that are allowed to be used in defining a specific
architecture in that style. For example, a pipe-filter style would include a
pipe connector type and a filter type, and a client-server style would include
a client type and a server type, etc.

• Constraints: A style may also include constraints that describe the al-
lowable configurations of elements from its design vocabulary. Some con-
straints may restrict overall topology. For example, a pipeline architecture
might constrain the configurations to be linear sequences of pipes and fil-
ters. Or, a J2EE style might restrict clients from interacting directly with
a backend database. Other constraints may be associated with specific el-
ements. For example, a client-server connector may be constrained to only
connect clients and servers. Constraints are therefore used to restrict the
possible configurations that may be created using the design vocabulary. In
this respect a style can be viewed as the “type” of a configuration.

Styles can be related to each other in various ways. One relationship is special-
ization. A style can be a substyle of another by strengthening the constraints,
or by providing more-specialized versions of some of the element types. For
instance, a pipeline style might specialize the pipe-filter style by prohibiting
non-linear structures and by specializing a filter element type to a pipeline
“stage” that has a single input and output port. An N-tiered client-server
style might specialize the more general client-server by restricting interactions
between non-adjacent tiers.

A second important relationship is conjunction. One can combine two styles by
taking the union of their design vocabularies, and conjoining their constraints.

7

For example, one might add a database component to a pipe-filter system by
conjoining a pipe-filter style with a database style. In such cases it may be
necessary to also define new types of components or connectors that pertain
to more than one style, such as a component type that has filter-like behavior,
but that can also access a database.

Style RepositoryStyle = {
Port Type Provide = {

invariant Forall r:role in self.attachedRoles |
declaresType(r, Provider);

}
Port Type Use = {

invariant Forall r:role in self.attachedRoles |
declaresType(r, User);

}
Role Type Provider = {

invariant size(self.attachedPorts) == 1;
invariant Forall p: port in self.attachedPorts |

declaresType(p, Provide);
}
Role Type User = {

invariant size(self.attachedPorts) == 1;
invariant Forall p: port in self.attachedPorts |

declaresType(p, Use);
}
Component Type Database = {

Port provide: Provide = new Provide;
}
Connector Type Access = {

Role provider: Provider = new Provider;
Role user: User = new User;

}
invariant

Exists c: component in self.components |
declaresType(c, Database);

invariant
Exists n: connector in self.connectors |

declaresType(n, Access);
}

Fig. 2. Repository style described in Acme

A style can be formally specified as a set of architectural element types to-
gether with a set of constraints specified in first-order predicate logic. Types
may be subtypes of other types, with the interpretation that a subtype satis-
fies all of the structural properties of its supertype(s) and that it respects all
of the constraints of those types. For instance, a UnixFilter component type
may be declared to be a subtype of Filter, adding an additional constraint

8

that the ports must be named stdIn, stdOut, and stdErr.

In addition, we can define a substyle as a specialization of one or more existing
styles. As with element types the substyle must respect the constraints of the
superstyle(s). (When more than one style is used as a supertype, the new style
must be a substyle of the conjunction of the parent styles.)

Figure 2 illustrates the definition of a simple repository style in Acme. The
RepositoryStyle style includes definitions of various types of interfaces: Provide
and Use port types for components, and Provider and User roles for connec-
tors. The Database component type and the Access connector type provide
the component and connector design vocabulary.

In the example the port and role types specify constraints (termed “invari-
ants”) that constrain attachments between ports and roles. Specifically, con-
straints on ports specify that a Provide port must be attached to a Provider

role, and that a Use port must be attached to a User role. The constraints on
the roles specify that each role must be attached to some port – that is, there
are no dangling connectors. The style also includes constraints on configura-
tions dictating that at least one database and one access connector must exist
in any system in this style. Although not illustrated in this example, one can
also specify properties in type definitions. For example, the Provide port type
might specify a property such as max-trans-per-sec.

System simple_repository_system: RepositoryStyle = {
Component client = {

Port request: Use = new Use;
Property avg_trans_per_sec: int;

}
Component db:Database = new Database;
Connector db_access:Access = new Access;
Attachments = {

client.request as db_access.user;
db.provide as db_access.provider;

}
}

Fig. 3. Repository system declared using a style

To simplify specifications of constraints Acme provides a number of built-in
functions. Here, for example, attachedPorts returns the ports attached to the
role represented by self, while declaresType(e,T) returns true if an element
e is declared to have type T. The term self refers to the entity to which the
constraint is associated. For a complete list of such functions see Appendix D
of this paper and [16].

To see how this style would be used, Figure 3 shows how the system of Figure 1
would be described using the style. Note how the declaration of that system

9

is simplified, at the same time making explicit its commonality with other
systems that use the same style.

Although the example used above is relatively simple, in practice styles may
be quite complex. They may define a rich vocabulary of elements, and the
rules for configuration may be complicated. For example, the Mission Data
System (MDS) defined by NASA JPL as a style for space systems [31] includes
nine component types (actuators, sensors, etc.), twelve connector types, and
over seventy rules constraining configurations. Figure 4 shows one such rule:
it specifies that it is possible to connect only one controller to any of an
actuator’s ports. (We will revisit this style in Section 7.)

(forall compA: ActuatorT in sys.Components |
numberOfPorts(compA,CommandSubmitProvPortT) > 1

-> (exists unique compC: ControllerT
in sys.components |connected(compA, compC)))

Fig. 4. Example constraint for the MDS style

Definition of architectural styles such as MDS is a challenging intellectual ef-
fort. The style designer must worry about providing an expressive and appro-
priate vocabulary, as well as making sure that the style contains appropriate
constraints. If the constraints are too strong, it will rule out systems that
should be included; if too weak, it will allow configurations that should not
be permitted.

4 Alloy

Alloy is a modeling language based on first-order relational logic [20,21]. 4

An Alloy model consists of signature definitions and constraint definitions.
Signatures define the basic types of elements and relations between them to
be used in a model, and constraints restrict the instance space of the model.
Consider the following example:

module publication
sig Person {}
sig Book {author: Person}
sig Autobiography extends Book {}
fact {
all b1,b2:Autobiography | disj[b1, b2] => b1.author!=b2.author

}

Three Alloy signatures are defined: Person, Book, and Autobiography. The
author relation is defined over Book and Person. The Autobiography type is
defined using signature extension as a subtype of the Book type.

4 We use Alloy Version 4 in this paper.

10

An Alloy fact is a Boolean expression that any instance of a model must
satisfy. A fact might be local to a signature or global to the whole model. The
(global) fact in the above example prescribes that a person can’t write two
autobiographies. It uses the Alloy operator disj which returns true if the two
objects are distinct.

The semantics of Alloy’s subtyping is that of subsets. Additionally, subtypes
partition the elements of the supertype: no two immediate subtypes of a type
can share an element. There are two built-in types in Alloy: univ and none.
univ is the supertype of all types, and none is the subtype of all types (and
includes no elements).

Models written in Alloy can be analyzed by the Alloy Analyzer, which searches
for a model that satisfied a given Alloy specification. Depending on the type
of model, the Alloy Analyzer can be used as either a prover, which finds a
solution that satisfies the constraints in a given model, or a refuter, which
finds a counterexample that violates the assertions in a given model.

The Alloy Analyzer is a bounded checker, guaranteeing the correctness of the
result only within a specified bound of numbers of elements. To illustrate,
the following module contains a predicate and a command to analyze the
publication module:

module analysis
open publication
pred good_world[] {

all p: Person | some b: Book | b.author = p
}
run good_world for 5

When executed the Alloy Analyzer checks the predicate good world that it
is possible for everyone to write at least one book. The “for 5” directs the
analysis to be performed within the bound of at most five instances for each
of the top-level types (Person and Book in this example).

We will introduce additional details about the Alloy language as necessary
to explain our use of it for modeling software architectural styles. For further
details about Alloy refer to [21].

5 Representing Styles in Alloy

We now describe how we use Alloy to analyze properties of architectural styles.
Our approach will be to provide a set of translation rules to map Acme style
specifications into Alloy models. After translation we can then analyze various
style-related properties, finally mapping counterexamples back to the Acme
source.

11

There are three important representational requirements for any translation
scheme from an architecture style specification language (like Acme) into a
more general modeling language (like Alloy). First, one must be able to repre-
sent the four basic kinds of architectural element types that a style can define:
component, connector, port, and role types.

Second, one must be able to represent relations between types. These fall
into two sub-categories. One is containment relationships: components con-
tain their ports, connectors contain their roles, and configurations contain
instances of components, connectors, and attachments. The other kind of re-
lationship is subtyping.

Third, one must be able to represent constraints over elements and config-
urations. These constraints include the invariants explicitly declared by the
style. In addition, however, they also include other implicit generic constraints,
such as the facts that ports cannot be directly connected to other ports, and
that ports and roles cannot exist in isolation (i.e., independent of a parent
component or connector, respectively.).

We now present our translation scheme for each of these categories, illustrating
the ideas with the repository style presented in Section 3. First we show how
to translate generic element types (component, connector, etc.) and implicit
constraints into Alloy. Then we show how specific styles can be translated.
Finally, we consider some of the areas where style translation is problematic.

5.1 Translation Overview

We begin by defining an Alloy module, cnc view, that models the basic (style-
independent) architectural types (component, connector, etc.) and a set of
implicit constraints that any architectural model must obey. For example,
a port must belong to exactly one component, ports may not be directly
attached to other ports, etc. This common module is automatically included by
the translator for every translated style. (Appendix D contains the a complete
listing of this module.)

Next we translate a given style into an Alloy module. If that style is derived
from other styles, those superstyles must also be translated into their own
modules, and imported into the target module. Finally we create a separate
module that captures the desired analyses to be performed on the target style.

The translation of a specific style is a multi-step process. First the target style
is parsed. The parsed style is then preprocessed to mitigate some of the mod-
eling incompatibilities between Acme and Alloy. For example, as explained
later, certain Acme types must be converted into integers in Alloy. Type res-
olution to resolve naming conflicts from multiple inheritance also happens at

12

this stage. The generator then applies translation rules to the preprocessed ab-
stract syntax tree. During translation each Acme element type and property
type is translated into an Alloy signature. Each Acme constraint is translated
into a named Alloy predicate. Additional Alloy facts are then automatically
added to enforce certain rules for constructing valid structures, as we will
illustrate later. 5

5.2 An Alloy Model for Shared Architectural Concepts

To create the shared architectural concepts, we model the four basic element
types as follows:

module cnc_view
sig Component {ports: set Port}
sig Connector {roles: set Role}
sig Port {comp: Component}
sig Role {conn: Connector, attachment: lone Port}

fact {~ports = comp && ~roles = conn}

Each component includes a set of ports, and each connector includes a set of
roles. Ports have a relation comp that identifies their parent component. Roles
have two relationships: one identifies the parent connector (conn), and the
other (attachment) can be zero or one port (indicated by the Alloy keyword
lone) to which the role is attached..

The fact at the end of the module guarantees that if a port appears in the
set of ports owned by a component, that component will also be the parent
associated by comp for the port. (In Alloy ∼ represents the inverse relation.)
Similarly for roles of connectors.

A logical consequence of this model is the fact that attachments may only be
between ports and roles (i.e., a port may not be directly attached to another
port), and that a role may not be attached to more than one port. However,
the model does permit various other kinds of flexibilities: roles need not be
attached to any port; a connector may have no roles at all; more than one
role may be attached to a port, etc. If a given style chooses to further restrict
topologies to eliminate these possibilities it can do so using its own constraints.

5 We use Alloy predicates instead of facts to translate constraints because predicates
are named and can be used to define other predicates for analysis. For example to
check if local constraints LC and global constraints GC of a style are equivalent, it is
necessary to check if the predicate LC <=> GC is true.

13

This model is not the only possible way of modeling shared architectural
concepts in Alloy. In an earlier version of our translator, for example, we
included a shared supertype of all of the above types, called Element [23].
However, we found that the added model complexity decreased performance
of the analyzer. In our current model we can use Alloy’s more-efficient built-in
type univ for the same purpose.

Another alternative is to model ports and roles without referring to their
parent component or connector, which in the model above is redundant in-
formation. But then one has to add additional facts to ensure that ports and
roles have unique owners.

In addition to the four element types we also model the System type. A system
is the collection of other architectural elements that construct a functional
unit, and pulls together the various parts for analysis. In style definitions, we
restrict the model to include only one system instance, denoted as self, which
represents the system to be instantiated using the defined style. It is modeled
as shown below, and augments the previous cnc view module. 6

abstract sig System {components: set Component,
connectors: set Connector}

one sig self extends System {}
fact{ self.components = Component &&

self.connectors = Connector }

5.2.1 Built-in Functions

As illustrated earlier, Acme provides a collection of built-in functions that are
used for various purposes in constraint expressions: to check type conformance
or structural connectivity, to access the parent of an element, or to manipulate
sets. For example attached(r,p) returns true if role r is attached to port p.

Alloy allows one to define functions, thereby providing a natural way to model
such built-in functions, with the exception that for Boolean functions we use
Alloy predicates. The use of predicates reduces the size of an instance of the
model, thus making analysis more efficient. Below are the built-in functions
used in the examples of this paper, as modeled in Alloy. The full set of all
such functions augments the previous cnc view module. (Definitions of all
supported built-in functions are included in Appendix D.)

pred declaresType [element: univ, type: set univ] {
element in type

}

6 The modifier abstract ensures that the Analyzer will not directly create an
instance of that signature, but only a specialization of it – which in this case is
self.

14

pred attached [r: Role, p: Port] {
r -> p in attachment

}
pred attached [n: Connector, c: Component] {

n -> c in roles.attachment.component
}
pred connected [c1: Component, c2: Component] {

some r1,r2: Role |
some p1,p2: Port |

disj[r1, r2] &&
attached[r1, p1] && parent[p1] = c1 &&
attached[r2, p2] && parent[p2] = c2 &&
parent[r1] = parent[r2]

}

As illustrated above, built-in functions may be overloaded. For example, attached
can be applied to a role and port, returning true if they are directly attached.
But it can also be applied to a component and connector, returning true if
some role of the connector is attached to some port of the component. Because
such functions have different parameter types, Alloy resolves these name con-
flicts automatically.

5.3 Translating a Style

An Acme style definition includes architectural element type definitions and
constraints associated with those types. For example, in the repository style
the Access connector type included a constraint dictating that those connec-
tors must not be dangling.

The translation of a style is broken into the translation of individual con-
stituents. The translation results are then packaged as an Alloy module that
serves as an enclosure, illustrated schematically below. Note that the common
module cnc view, which contains basic models for built-in features of Acme
language, is imported using the open command.

module RepositoryStyle
open cnc_view

// translations of type definitions
...
// translations of constraints
...

5.3.1 Translating type definitions

During translation each port and role type becomes a subtype of the built-in
type, Port or Role respectively, either as an immediate subtype or a subtype of

15

another port or role type. The same is true for each component and connector
type with respect to the built-in types Component or Connector, respectively.

To illustrate, the translation of the ports, roles, components and connectors
of the repository style are as follows:

sig Use extends Port {}
sig Provide extends Port {}
sig User extends Role {}
sig Provider extends Role {}

sig Database extends Component {provide:Provide}
sig Access extends Connector {provider:Provider, user:User}

When a subtype is defined in Alloy, all the fields defined in its supertypes are
automatically made available in the subtype definition. For example, sup-
pose there is a role user of User type. Thus, a relational join expression
user.attachment is valid since attachment is defined in the supertype Role.
The local constraints of element types are separately translated into predi-
cates, as we discuss shortly.

One subtle issue for this translation step is that the uniqueness of ports and
roles is not guaranteed with the translation above. Suppose there are two
instances a1 and a2 of Access connector type. With the model above it is
possible that a1.user and a2.user could refer to the same role. Furthermore,
it is also not enforced that the type-specific ports and roles are included in the
ports and roles relations defined in the Component and Connector signatures,
respectively. Hence, to enforce the rules of valid structure extra constraints are
needed. Consider the following additional Alloy fact added to the translation
above:

fact {
(Database<:provide) in ports
(Access<:provider + Access<:user) in roles

}

The Alloy binary operator <: denotes domain restriction that can be used to
disambiguate overloaded relations by giving a specific domain, which in this
case is either a component type or a connector type. The keyword in denotes
set inclusion. Thus by using two such facts we can guarantee that all the type-
specific ports and roles are included in the ports and roles relations. As a
result, a1.roles always gives all the roles that belong to just the connector a1
regardless of its type. The same is true for components.

From this it can be inferred that all such type-specific ports and roles are
unique. Recall that the inverse of ports and roles relations, which are comp

and conn relations respectively, are functions. Thus, there cannot be a port or

16

a role that belongs to more than one component or one connector.

Every port or role of components or connectors in a style are similarly included
in an Alloy fact statement as above. The translation function automatically
generates the fact statement by scanning the type definitions of a style.

When one of the basic elements is declared to be a subtype of another type,
translation to Alloy is straightforward, since in both Acme and Alloy subtyping
is understood as subsetting and both inherit structure. For example, Suppose
connector type ExclusiveAccess is declared to be a subtype of Access. Then
whenever an element of Access type is required in a context, it should be
still well-typed to use an element of ExclusiveAccess. In our Alloy model
substitutability is faithfully followed because when a subtype is defined, all the
fields defined in its supertypes are made available automatically in the subtype.
Thus any reference to an interface defined in a supertype of an element will
be well-typed and non-empty.

5.3.2 Translating property types and expressions

Acme supports various primitive property types and compound property type
constructors. Primitive property types are: integer, string, character, float,
enumeration, and Boolean. Compound type constructors are: set, sequence,
and record. Consequently there are various types of expressions in Acme, while
there are only three types of expressions in Alloy: integer expressions, Boolean
expressions, and object expressions. For the translation it is necessary to map
the property types in Acme into the supported types in Alloy. Similarly it is
also necessary to transform expressions in Acme into valid Alloy expressions.
We do this in a preprocessing step of the parsed Acme AST.

During preprocessing, string types and enumeration types are converted into
integer types. String values and enumerated values are converted into integer
objects. The preprocessor guarantees that different string values or enumer-
ated values are converted into the same distinct integer objects. Since equality
test is the only operator over elements of these types, there is no loss of se-
mantics in this preprocessing step.

Float types are converted into integer types, and all float values are converted
into integer values by shifting the decimal place to the right, effectively mul-
tiplying them by a power of 10. This multiplication is done consistently to all
integer values because integer values and float values might be used together
in an expression (such as comparisons between them). There is no negative
semantic side-effect of this preprocessing as long as no overflow occurs.

After preprocessing there remain only two primitive property types and ex-
pressions to translate: integer and Boolean. During the translation both types
are translated into integer object types in Alloy.

17

Alloy provides two possible representations for representing integer expres-
sions: integer values and integer objects. An integer object is constructed by
encapsulating an integer value into an object, which is used when defining
Alloy relations. Integer objects must be explicitly converted back to integer
values to be used in arithmetic or comparison expressions. (A similar distinc-
tion is found in programming languages like Java, which support both integer
values and integer objects, together with methods to convert between the
two.) Hence the translation of integer values from Acme to Alloy is context
sensitive: using integer objects for relations and integer values for arithmetic
expressions. (The translation rules listed in the Appendices define formally
what those context conditions are.)

For the Boolean expressions the translator must make a choice between a
Boolean expression and integer objects in Alloy. This decision is also context-
sensitive for similar reasons.

Acme supports three compound property type constructors: set, sequence, and
record types. Set types in Acme are directly translated into set types in Alloy.
Sequence types in Acme are translated into a partial function from integer
objects in Alloy. Record types in Acme are translated into a new signature
definition with all of the fields recursively translated.

5.3.3 Translating constraints

Translation of constraints is straightforward because constraints are modeled
as Boolean expressions in both Acme and Alloy. Specifically, the translation
of the Boolean expressions of a constraint is as a named predicate definition.
As indicated before, local constraints are translated as a separate predicate.
This choice is done to support certain patterns of analysis (like checking the
equivalence of local and global constraints), because if local constraints were
translated as local facts of each signature, they could not be referenced non-
locally in the model.

To illustrate, the following Alloy constraints represent the translation of the
local and global constraints in the repository style:

pred RepositoryStyle_constraints_local[] {
all self: Provide |

(all r: self.~attachment | declaresType[r, Provider])
all self: Use |

(all r: self.~attachment | declaresType[r, User])
all self: Provider |

(#(self.attachment) = 1) &&
(all p: self.attachment | declaresType[p, Provide])

all self: User |
(#(self.attachment) = 1) &&

18

(all p: self.attachment | declaresType[p, Use])
}

pred RepositoryStyle_constraints_global[] {
some c: Component | declaresType[c, Database]
some n: Connector | declaresType[n, Access]

}

pred RepositoryStyle_constraints[] {
RepositoryStyle_constraints_local()
RepositoryStyle_constraints_global()

}

The translation of each local constraint always begins with a universal quan-
tification using self as the name of bounded variable. Use of the variable
name self simplifies the translation functions because it is a built-in object
name in Acme, representing the element that the local constraints are applied
to. Using this approach constraints are translated in a uniform way regardless
of whether they are local or global. The translation of constraints includes the
references to both local and global constraints. If needed, local or global one
can be individually referred to in any analysis of the style.

5.3.4 Limitations of translation

While most of the features provided in a style definition language like Acme
can be handled by the translator, there are several limitations that occur
because Alloy does not currently support certain forms of modeling. These
include:

• Expressions involving certain arithmetic operators such as multiplication
and division.

• Higher-order types, such as sets of sets, sequences of sets, and functions
whose signatures contain high-order types like the Acme pre-defined func-
tions superTypes or flattern.

• Recursive definitions.

6 Analyzing Styles

We now show how translated architectural styles can be effectively analyzed
using the Alloy Analyzer. Supported analyses include checking consistency
of a style, checking for satisfaction of properties of a style, checking equiva-
lence of global and local constraints, checking style compatibility, and checking
whether one style refines another.

The Alloy Analyzer works by looking for an instance of a specified model
within a scope that indicates the maximum number of elements for each top-

19

level signature. In the case of architectural styles, the scope indicates the
number of architectural elements of each type.

6.1 Checking the Consistency of a Style

A style is consistent if there exists at least one architectural configuration that
conforms to the style (i.e., satisfies the style’s structure and invariants). Consis-
tency checking is important to make sure that a style’s definition is internally
consistent. Although consistency errors can arise in a single style definition,
more typically they occur when combining other styles, since the other styles
may have been written by different people with conflicting assumptions.

Style consistency can be checked simply by using the Alloy Analyzer to gen-
erate a solution to the Alloy model of the style: if a model is found, the style
is consistent.

Consider the previous example of the repository style. Let us assume the first
two universal quantifications in the constraints had been mistakenly written
and translated as below (User and Provider are erroneously interchanged).

pred RepositoryStyle_constraints_local[] {
all self: Provide |

(all r: self.~attachment | declaresType[r, User])
all self: Use |

(all r: self.~attachment | declaresType[r, Provider])
all self: Provider |

(#(self.attachment) = 1) &&
(all p: self.attachment | declaresType[p, Provide])

all self: User |
(#(self.attachment) = 1) &&
(all p: self.attachment | declaresType[p, Use])

}

The following is the Alloy analysis module that we use to check the consistency
of the repository style.

module analysis
open RepositoryStyle
run RepositoryStyle_constraints for 10

When the command is executed, the Alloy Analyzer reports that no instance
can be found within the specified scope number. Therefore the repository style
with the mistakenly written constraints above is inconsistent (for the size of
model specified). After correcting the mistake and executing the command
again, Alloy Analyzer will find an instance, indicating that the repository
style is consistent.

20

6.2 Checking the Constructability of Specific Architectural Configurations

While consistency checking formally establishes the existence of some system
in the style, in many cases this is not as strong a check as we might like. In
particular, we may want to explore whether there exist systems that include
certain kinds of structure. Such structures may represent configurations that
we would expect to be consistent with the style specification. Or, they might
be configurations that we would expect not to be consistent.

To check if a specific architectural configuration is constructible within a given
style, it is necessary to translate the architectural configuration into Alloy
predicates and facts that require that configuration to be present in a model.
These will be in addition to the original constraints of the style. If the Alloy
Analyzer can find an instance of the fortified style, the specific architectural
configuration is constructible.

As an example, suppose that for the repository style an architect wants to
make sure that it is possible for two components to access a database at
the same time. In addition to the repository style this specific architectural
configuration is described in Acme and automatically translated into the Al-
loy model shown below. That model is combined with the constraints of the
repository style (by opening RepositoryStyle).

module analysis
open RepositoryStyle
one sig c1 extends Component { use: Use }
one sig c2 extends Component { use: Use }
one sig a1 extends Access {}
one sig a2 extends Access {}
one sig d extends Database {}

fact {c1<:use + c2<:use in ports }
pred RepositoryStyle_constructability() {

RepositoryStyle_constraints
a1.user.attachment = c1.use
a2.user.attachment = c2.use
a1.provider.attachment = d.provide
a2.provider.attachment = d.provide

}
run RepositoryStyle_constructability for 10

When the command is executed, the Alloy Analyzer reports that there is an
instance that satisfies the newly predicate, indicating that it is possible to
have two components connected to a database at the same time.

21

6.3 Checking Properties of a Style

Frequently it is useful to check whether the systems that conform to a style
also satisfy certain additional derivable properties. A property of a style can
be checked using assertion and implication. If a property P of a style is valid
for the constraints Q, the logical expression Q => P should be true for every
instance of the style.

Consider the example of the repository style. Let us define a property of
the repository style that every instance of the style must have a component
that has a Use port. The following is the analysis module to check the stated
property of the repository style.

module analysis
open RepositoryStyle
assert RepositoryStyle_property_check {

RepositoryStyle_constraints[] =>
some c: Component | some p: c.ports |

declaresType[p, Use]
}
check RepositoryStyle_property_check for 10

When the command is executed, the Alloy Analyzer reports there is no coun-
terexample that violates the assertion within the specified scope number. This
follows from the original Acme constraints that there must be a connector of
Access type that has a role of type User, and it must be attached to a port of
type Use that belongs to a certain component. Therefore, the property of the
repository style that there must be a component that has a Use port is valid.

6.4 Global and Local Constraint Equivalence

There are often several ways in which one can add constraints to a style. One
is to do it at a global level. For example, Figure 4 is a global constraint (or
universally quantified predicate) for the MDS style that expresses a property
about attachments to ports of actuators. Another alternative would be to
include local constraints associated directly with the ports and roles to achieve
an equivalent effect.

In general, a global constraint is easier to understand and specify. However,
local constraints are more efficient to evaluate incrementally by tools, and may
provide better error reporting when they are violated. As a consequence, it
is sometimes useful to specify constraints locally, and then check that they
collectively imply some global constraint.

The equivalence of local and global constraints can be checked using bi-

22

implication and assertion. If a conjunction of local constraints L of a style
is equivalent to a global constraint G, the Boolean expression L <=> G
should be true for every instance of the style.

Again, consider the example of the repository style. The first four universal
quantifications in the constraints are local constraints associated with types
of ports and roles. Let us assume there are alternative global constraint as
shown below. The following is the analysis module to check the equivalence
between them.

module analysis
open RepositoryStyle
pred RepositoryStyle_constraints_global_alt[] {

all p: Port | all r: Role | attached[r,p] =>
(declaresType[p, Use] <=> declaresType[r, User]) &&
(declaresType[p, Provide] <=> declaresType[r, Provider])

}
assert equivalence_check {

RepositoryStyle_constraints_local[] <=>
RepositoryStyle_constraints_global_alt[]

}
check equivalence_check for 10

When the command is executed, the Alloy Analyzer reports that there is a
counterexample that violates the assertion. This means that the local and the
alternative global constraints of the repository style are not equivalent. Closer
inspection of the counterexample reveals that the alternative global constraints
permit a system to have unattached roles of User type or Provider, while this
is prohibited in case of the local constraints. After adding the Boolean expres-
sions below to the body of the alternative global constraints and executing the
command again, Alloy Analyzer reports there is no counterexample within the
specified scope number, which means the local and the fixed alternative global
constraints of the repository style are equivalent.

all r: Role |
(declaresType[r, User] || declaresType[r, Provider]) =>

#(r.attachment) = 1

6.5 Compatibility of Styles

It is often the case that real world systems employ multiple styles at the same
time. Different styles can be used in different levels of architectural hierarchy
or at the same level. Unfortunately, some styles cannot be mixed together
because their constraints conflict. It would be helpful if we can check for this
condition.

23

Compatibility of styles can be checked by evaluating the consistency of the
merged style. A new merged style is written by importing all the styles to check
compatibility. The constraints of the merged style are the conjunction of the
constraints of included styles. If the merged style is consistent, the imported
styles are compatible.

Consider the previous example of the repository style and a new pipe-and-filter
style introduced below. We will test if these two styles are compatible.

module pipe_and_filter
open cnc_view
sig Input extends Port {}
sig Output extends Port {}
sig Source extends Role {}
sig Sink extends Role {}

sig DataSource extends Component{output: Output}
sig DataSink extends Component{input: Input}
sig Filter extends Component{input: Input,

output: Output}
sig Pipe extends Connector {source: Source, sink: Sink}

fact {
(Filter<:input + Filter<:output +
DataSource<:output + DataSink<:input) in ports
(Pipe<:source + Pipe<:sink) in roles

}

pred pipe_and_filter_constraints[] {
all p:Input | all r:p.~attachment |

declaresType[r, Sink]
all p:Output | all r:p.~attachment |

declaresType[r, Source]

all r:Source | one p:Output | attached[r, p]
all r:Sink | one p:Input | attached[r, p]

some Filter
some Pipe

all c:Filter | all p:c.ports |
declaresType[p, Input] || declaresType[p, Output]

all n:Pipe | all r:n.roles |
declaresType[r, Source] || declaresType[r, Sink]

}

The following is the analysis module to check if the repository style and the

24

pipe-and-filter style are compatible.

module analysis
open RepositoryStyle
open pipe_and_filter

pred compatibility_check[] {
RepositoryStyle_constraints[]
pipe_and_filter_constraints[]

}
run compatibility_check for 10

When executed the Alloy Analyzer reports that there is a solution, indicating
that the repository style and the pipe-and-filter style are compatible, and that
it is safe to use both of them when defining a system.

6.6 Checking Overlapping Styles

A more interesting and practical use of multiple styles in a system is to create
architectural elements that have multiple types, each type taken from a differ-
ent style. Such architectural elements form an overlapping zone of styles, and
they must satisfy the constraints from multiple styles. It is desirable to know
in advance if such an overlapping zone of multiple styles can exist.

To check if styles can overlap in this way, in addition to what was done to check
if styles are compatible, it is necessary to define new types for the architectural
elements in the overlapping zone and include a Boolean expression that states
the existence of instances of the new types and all the constraints from the
imported styles. Then checking the consistency of the modified merged style
is sufficient to check if the styles can overlap.

Building on the previous example of checking the compatibility of the reposi-
tory style and the pipe-and-filter style, let us assume we want to have a new
element that can act both as a filter and can access the database. We need to
check if such a filter can actually exist. The following is the analysis module
to check the existence of such a new filter.

module analysis
open cnc_view
open RepositoryStyle
open pipe_and_filter

sig UserFilter extends Filter {use: Use}
fact{ UserFilter<:use in ports }

pred overlapping_check[] {

25

some UserFilter
RepositoryStyle_constraints[]
pipe_and_filter_constraints[]

}
run overlapping_check for 10

When the command is executed, the Alloy Analyzer reports that there is
no solution within the specified scope, indicating that it is not possible to
instantiate the new UserFilter type. Closer inspection of the constraints of
the pipe-and-filter style reveals that a filter can only have ports of Input

type or Output type, which prevents a filter from having an extra port of Use

type. Since the filter port constraint is stronger than is needed, we decide
to remove that constraint from the pipe-and-filter style and executing the
command again, Alloy Analyzer reports there is a solution, indicating that
we can use the repository style and the pipe-and-filter style with the new
UserFilter type.

6.7 Checking Style Refinement

A style Sr is a refinement of a style Sa if all instances of Sr also satisfy
the constraints of the Sa. When a style is directly declared to be a substyle
of another style, it is sufficient to check the consistency of the substyle to
guarantee the refinement relation because all the constraints of superstyle
also apply to the substyle automatically.

However in some situations there may be no explicitly declared substyle re-
lation. Consider the previous pipe-and-filter style and a new Unix-pipe style.
Note that Unix-pipe style uses different element type names such as StdIn
instead of Input. We will check whether the Unix-pipe style is a refinement of
the pipe-and-filter style.

module unix_pipe
open cnc_view

sig StdIn extends Port {}
sig StdOut extends Port {}
sig StdErr extends Port {}
sig ErrIn extends Port {}

sig Source extends Role {}
sig Sink extends Role {}

sig Filter extends Component {si: StdIn,
so: StdOut, se: StdErr}

sig CharInput extends Component {so: StdOut}
sig CharOutput extends Component {si: StdIn}

26

sig ErrOutput extends Component {ei: ErrIn}

sig Pipe extends Connector {source: Source,
sink: Sink}

fact {
(Filter<:si + Filter<:so + Filter<:se +
CharInput<:so + CharOutput<:si + ErrOutput<:ei)

in ports
(Pipe<:source + Pipe<:sink) in roles

}

pred unix_pipe_constraints[] {
all p:StdIn | some n:Pipe | attached[n.sink, p]
all p:StdOut | some n:Pipe | attached[n.source,p]
all p:StdErr | all r:p.~attachment | declaresType[r, Source]
all p:ErrIn | all r:p.~attachment | declaresType[r, Sink]

all r:Source | some p:r.attachment |
declaresType[p, StdOut] || declaresType[p,StdErr]

all r:Sink | some p:r.attachment |
declaresType[p, StdIn] || declaresType[p,ErrIn]

some Filter && some Pipe && lone ErrOutput

all n:Pipe | some e: StdErr |
attached[n.source, e] =>

(some c:CharOutput | attached[n,c]) ||
(some c:ErrOutput | attached[n,c])

}

The following is the analysis module to check if the Unix-pipe style is a re-
finement of the pipe-and-filter style. The constrants of the pipe-and-filter was
taken and element type names were properly renamed to those of Unix-pipe
style.

module analysis
open pipe_and_filter
open unix_pipe
pred modified_constraints[] {

all p:(StdIn+ErrIn) | all r:p.~attachment |
declaresType[r, Sink]

all p:(StdOut+StdErr) | all r:p.~attachment |
declaresType[r, Source]

all r:Source | one p:(StdOut+StdErr) |attached[r,p]
all r:Sink | one p:(StdIn+ErrIn) |attached[r,p]

27

some Filter
some Pipe

all c:Filter | all p:c.ports |
declaresType[p, StdIn] || declaresType[p, StdOut] ||
declaresType[p, ErrIn] || declaresType[p, StdErr]

all n:Pipe | all r:n.roles |
declaresType[r, Source] || declaresType[r, Sink]

}
assert refinement_check {

unix_pipe_constraints[] => modified_constraints[]
}
check refinement_check for 10

When the command is executed, the Alloy Analyzer reports that there is a
counter-example to the assertion, indicating that there is no refinement re-
lation between the pipe-and-filter style and the Unix-pipe style. Closer in-
spection of the modified constraints of the pipe-and-filter style reveals that a
filter can only have ports of StdIn type, StdOut type, ErrIn type, or StdErr

type, which prevents a filter from having other types of ports. This con-
straint is overly restrictive. After removing the last two constraints in the
modified constraints, the Alloy Analyzer reports that there is no counterex-
ample, which indicates that the refinement relation is satisfied.

7 Case Study: MDS Style

To investigate the scalability of our approach to a larger, more realistic exam-
ple, we formalized and analyzed NASAs Mission Data System (MDS) [13,12,14,31].
MDS is an experimental architectural style for NASA space systems developed
at the Jet Propulsion Lab. It consists of a set of component types (e.g., sen-
sors, actuators, state variables), and connector types (e.g., sensor query). It
also includes a number of rules that define legal combinations of those types.
When modeled in Acme the MDS style consists of 22 port types, 22 role types,
9 component types, 12 connector types, and 76 constraints.

The component types included in MDS are as follows:

28

SchedulerT A scheduler component is used to coordinate real-time
scheduling of tasks with and MDS architecture.

ExecutableT A component type that is combined with other compo-
nent types to designate a component as one that is asso-
ciated with a separate thread

ExecutiveT A component that sets high-level objectives of and MDS
system.

ControllerT A controller is responsible for delegating the goals to
other states, or for issuing commands to adaptors to
achieve the state, if there are goals associated with a
state variable.

ActuatorT An actuator represents the interface between a controller
and the hardware. Commands are issued to actuators to
get the spacecraft to do something.

EstimatorT An estimator is responsible for examining all of the avail-
able cues (other states, sensors, or goals) and updating
state variables periodically to provide a current best es-
timate of the states value based on available evidence
(command history, other states, sensor values, etc.).

SensorT A sensor represents an interface to hardware sensor, for
use by estimators.

StateVarT A state variable contains the record of the state over time,
and goals associated with the state.

HealthStateVarT A health state variable stores a discrete set of data. For
example, they may be used to store the history of com-
mands sent to an actuator by a controller.

Figure 5 graphically illustrates a system that can be constructed in the MDS
style. It uses 7 component types and 7 connector types defined in the MSD
style to define a simple temperature control system. A temperature sensor
(TSEN) feeds sensed data to a temperature estimator TEST), which in turn
updates a temperature state variable (CTSV). The health status of the temper-
ature sensor is stored in SHSV. An executive component (EXEC) sets the target
temperature, while a controller (TCON) sends commands to a heater actuator
(SACT).

The rules in MDS were initially defined in English and had to be hand trans-
lated into Acme constraints. Appendix E contains a complete list of 19 rules
as specified by NASA engineers. These resulted in 72 Acme invariants for the
style.

29

Fig. 5. MDS style example

A simple example of such a rule is “For any given Sensor, the number of
Measurement Notification ports must be equal to the number of Measurement
Query ports (rule R5A)”, but in general MDS rules are much more complex.
For example one of their rules reads:

“Every estimator requires 0 or more Measurement Query ports. It can be
0 if estimator does not need/use measurements to make estimates, as in
the case of estimation based solely on commands submitted and/or other
states. Every sensor provides one or more Measurement Query ports. It can
be more than one if the sensor has separate sub-sensors and there is a desire
to manage the measurement histories separately. For each sensor provided
port there can be zero or more estimators connected to it. It can be zero
if the measurement is simply raw data to be transported such as a science
image. It can be more than one if the measurements are informative in the
estimation of more than one state variable.”

Formulating such complex constraints by hand throughout the description of
a style may introduce mistakes and/or unwanted side-effects. Moreover, with
such complexity simply understanding the style itself becomes a challenging
task. Therefore, the automated analysis support presented in this paper can
potentially provide significant benefits in dealing with the complexity of the
style and gaining insight into it.

30

To investigate the scalability of the analysis, we first translated the MDS style
described in Acme into an Alloy model. Then we performed a consistency check
on the translated Alloy model using bound ranging from 3 to 11 (objects of
each top-level type). Using a 2GHz AMD CPU and 2GB memory, we executed
the analysis using Alloy Analyzer Version 4 beta3 with MiniSat as the SAT
solver. Each consistency check provided an instance for the translated Alloy
model, confirming that the MDS style is consistent within the bounded limit.

The following graph shows the time spent for the analysis. As is evident, with
a bound of 11 the Analyzer was reaching its limit of tractability for this style
.

Fig. 6. Performance of the MDS style consistency check

Although formal consistency of our MDS model was easily demonstrated, a
more significant check was to investigate candidate architectures that con-
tained certain minimal structures. In the new consistency check we added
constraints to require at least one controller, actuator, estimator, sensor, and
state variable components. 7

module analysis
open MDSFam

run { MDSFam_constraints && some ControllerT

7 To do this we increased the number of ports used to generate the instance, since
in general a given component may have several ports. For example, in the MDS
style each actuator component or state variable component has a minimum of three
ports.A general rule of thumb that we found was that usually twice as many ports
as components lead to a better check.

31

&& some ActuatorT && some EstimatorT
&& some SensorT && some StateVarT } for 5 but 10 Port, 10 Role

The Alloy Analyzer found the following instance with the new consistency
check, taking about 12 minutes to complete.

Fig. 7. An MDS system constructed by Alloy analyzer and translated into Acme

One interesting consequence of this process was that while the analysis con-
firmed the consistency of the requested structure with respect to the style, it
yielded a counter-intuitive example. In particular, the generated model uses
a single connector to connect a controller, actuator and estimator. This was
hardly the intention of the original MDS style, and indicates that despite the
large number of rules in MDS, the given formalization is under-constrained.
This caused us to go back and refine the style specification adding new rules
to eliminate structures that should not be included.

8 Conclusion and Future Work

As we have illustrated, the use of a model generator, such as the Alloy Ana-
lyzer, can provide substantial benefits to the style designer in terms of checking
critical properties of styles. These properties include style consistency, validity
of specific structures, implied properties, refinement, equivalence of global and
local constraints, and checking for compatibility between styles.

Since specification languages such as Acme have the expressive power of first-
order predicate logic, such properties are in general undecidable and typically
require mathematical proof. This makes it unlikely that in practice style de-
signers will actually be able to check these properties by hand. Hence, having
an semi-automated tool to assist in this effort represents a major advance.

However the approach has some limitations. First, since the Alloy-based model

32

generator can only work over finite models, for many systems one can only
approximate a solution. That is, if the tool says there is no problem within a
given model size, it may be that this holds for all models, or only for those of
that finite size. Experience has shown, however, that if a specification has a
flaw, it can usually be demonstrated by relatively small counterexample.

A second potential limitation is the degree of automation. In general, a tool
like the Alloy Analyzer requires the specification of both a model and a prop-
erty to check against it. In our approach the model comes for free: once you
have specified an architectural style, our tool automatically generates the Al-
loy model. However, our current implementation requires one to specify the
properties that Alloy must check. In some cases this is trivial, such as checking
for style consistency, but in others (such as checking whether a style implies
some property or whether global and local constraints are equivalent) the style
designer must specify the property to check in Alloy. In future work we hope to
provide a set of automated properties specified in the Acme source language,
and have the tool also automate their translation.

A third issue is the need to relate counterexamples back to the source specifica-
tion. While it is straightforward to automate the reverse translation between a
generated Alloy model and an instance in Acme, a more tricky issue is under-
standing what flaw in the design caused the counterexample to be generated
in the first place. This problem is common to any model checking approach,
and is an area of active research in that community [6].

A fourth area is that of performance. While today’s sat solver-based model
checkers (like Alloy) can handle a large number of variables, they are still
limited in the size of the model that can be checked. As we indicated, our
own experience with Alloy is that when the model bound approaches 15 top-
level architectural elements, or when the model contains a large number of
component and connector types, it may take some time to check a property, if
it is indeed tractable at all. Thankfully, most of the flaws we find in practice
require relatively simple models to generate.

A final limitation of our current tool is the fact that it only deals with struc-
tural properties of architectural styles. It does not handle, for example, archi-
tectural behavior, dynamic changes to architectural models, and expressions
over Acme properties and other quality attributes. However, those extensions
are not intrinsic limitations, and we believe the current structural analysis
techniques can be naturally extended to include other kinds of analyses. This
remains an active area for future work by us and other research groups.

33

Acknowledgements

This research was sponsored by the US Army Research Office (ARO) under
grants DAAD19-01-1-0485 and DAAD19-02-1-0389, and by the National Sci-
ence Foundation under Grant No. CCR-0113810, by NASA under the High
Dependability Computing Program. The views and conclusions contained in
this document are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the ARO, NASA,
the U.S. government or any other entity. We thank Dan Dvorak, Kirk Rein-
holtz, Kenny Meyer, and Robert Rasmussen for their help in understanding
MDS. Earlier versions of this work benefited greatly from comments by Orieta
Celiku, as well as Marcelo Frias, Juan Galeotti, and Nazareno Aguirre from
the University of Buenos Aires. We also thank members of the ABLE research
group for their constructive comments on this research.

References

[1] Gregory Abowd, Robert Allen, and David Garlan. Formalizing style to
understand descriptions of software architecture. ACM Transactions on
Software Engineering and Methodology, October 1995.

[2] J. R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, 1996.

[3] Robert Allen and David Garlan. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, July 1997.

[4] Daniel J. Barrett, Lori A. Clarke, Peri L. Tarr, and Alexander E. Wise. A
framework for event-based software integration. ACM Trans. on Software
Engineering and Methodology, 5(4):378–421, October 1996.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern Oriented Software Architecture: A System of Patterns.
John Wiley & Sons, 1996.

[6] Sagar Chaki, Alex Groce, and Ofer Strichman. Explaining abstract
counterexamples. In Foundations of Software Engineering (SIGSOFT FSE),
pages 73–82. ACM SIGSOFT, October 2004.

[7] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architectures:
Views and Beyond. Addison Wesley, 2002.

[8] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software
Architectures: Methods and Case Studies. Addison Wesley Longman, 2001.

[9] The Common Object Request Broker: Architecture and specification. OMG
Document Number 91.12.1, December 1991. Revision 1.1 (Draft 10).

34

[10] A. DiMarco and P. Inverardi. Compositional generation of software architecture
performance qn models. In 4th Working IEEE/IFIP Conf. on Software
Architecture (WICSA04), Oslo, Norway, June 2004.

[11] Jürgen Dingel, David Garlan, Somesh Jha, and David Notkin. Towards a formal
treatment of implicit invocation. Formal Aspects of Computing, 10:193–213,
1998.

[12] Daniel Dvorak. Challenging encapsulation in the design of high-risk
control systems. In Proceedings of the 2002 Conference on Object Oriented
Programming Systems, Languages, and Applications (OOPSLA92), Seattle,
WA, November 2002.

[13] Daniel Dvorak, Robert Rasmussen, G. Reeves, and Alan Sacks. Software
architecture themes in JPL’s Mission Data System. In Proceedings of the AIAA
Space Technology Conference and Expo, Albuquerque, NM, 1999.

[14] Daniel Dvorak and Kirk Reinholtz. Separating essential from incidentals,
an execution architecture for real-time control systems. In Proc. 7th
IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, Austria, 2004.

[15] David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in
architectural design environments. In Proc. of SIGSOFT’94: The 2nd ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 179–
185. ACM Press, December 1994.

[16] David Garlan, Robert T. Monroe, and David Wile. Acme: An architecture
description interchange language. In Proceedings of CASCON’97, pages 169–
183, Ontario, Canada, November 1997.

[17] IEEE. IEEE recommended practice for architectural description of software
intensive systems (IEEE std 1471-2000), 2000.

[18] P. Inverardi and M. Tivoli. Deadlock-free software architectures for com/dcom
applications. Elsevier Journal of Systems and Software, 65(3):173–183, 2003.

[19] Paola Inverardi and Alex Wolf. Formal specification and analysis of software
architectures using the chemical, abstract machine model. IEEE Transactions
on Software Engineering, Special Issue on Software Architecture, 21(4):373–386,
April 1995.

[20] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM
Transactions on Software Engineerng and Methodology, 2002.

[21] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006.

[22] Gabor Karsai and Janos Sztipanovits. A model-based approach to self-adaptive
software. IEEE Intelligent Systems, 14(3):46–53, May 1999.

[23] Jung Soo Kim and David Garlan. Analyzing architectural styles with Alloy. In
Workshop on the Role of Software Architecture for Testing and Analysis 2006
(ROSATEA 2006), Portland, ME, July 2006.

35

[24] David C Luckham, Lary M. Augustin, John J. Kenney, James Veera, Doug
Bryan, and Walter Mann. Specification and analysis of system architecture
using Rapide. IEEE Transactions on Software Engineering, Special Issue on
Software Architecture, 21(4):336–355, April 1995.

[25] Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Programs.
John Wiley and Sons, 1999.

[26] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Transactions
on Software Engineering, 26(1):70–93, January 2000.

[27] Sun Microsystems. J2ee information site. URL: http://java.sun.com/javaee/.

[28] OMG. Unified modeling language. URL: http://www.uml.info/.

[29] OMG. Unified modeling language. URL: http://www.omg.org/mda.

[30] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–
52, October 1992.

[31] Roshanak Roshandel, Bradley Schmerl, Nenad Medvidovic, David Garlan, and
Dehua Zhang. Understanding tradeoffs among different architectural modelling
approaches. In Proc. of the 4th Working IEEE/IFIP Conf. on Software
Architectures, Oslo, Norway, June 2004.

[32] SAE. SAE AADL information site. URL: http://www.aadl.info/.

[33] Bradley Schmerl and David Garlan. Acmestudio: Supporting style-centered
architecture development. In Proc. of the 26th International Conference on
Software Engineering (ICSE), 2004.

[34] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[35] Joao Pedro Sousa and David Garlan. Formal modeling of the Enterprise
JavaBeans component integration framework. In Proc. of FM’99 – Formal
Methods: World Congress on Formal Methods in the Development of Computing
Systems, number 1709, pages 1281–1300, Toulouse, France, November 1999.
Springer Verlag, LNCS.

[36] Bridget Spitznagel and David Garlan. Architecture-based performance
analysis. In 10th International Conf. on Software Engineering and Knowledge
Engineering (SEKE’98), San Francisco, CA, June 1998.

[37] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.

[38] Bedir Tekinerdogan and Hasan Szer. Software architecture reliability analysis
using failure scenarios. In 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05), pages 203–204, 2005.

36

Appendix

Appendix A: Abstract Syntax of Acme Language

The following abstract syntax is a subset of Acme language that is translatable
to Alloy language using the technique presented in this paper. For the parts
of Acme language that are not included below please refer to Section 5. Note
that the following syntax is desugarized and abstract which may be different
from the concrete Acme syntax.

Style := style id [extends id +] Declaration *

Declaration :=

fun id : ArbiType ((id : ArbiType)*) Expr

| type id extends ElemType Declaration *

| type id = PropType

| type id = enum id +

| type id = record (id : PropType)+

| element id : ElemType

| property id : PropType [= Value]

| invariant Expr

| id . id to id . id

Value := Expr | < Expr * > | [(id = Expr)+]

ElemType := [id /] id | element | component | connector | port | role

PropType :=
[id /] id | integer | set [id /] id | set integer

| seq [id /] id | seq integer

ArbiType := ElemType | set ElemType | PropType

id := < identifier >

37

Expr :=

! Expr

| Expr BinaryOp Expr

| [id /] id (Expr *)

| id .Expr

| Expr .Reference

| Quantifier id : Expr | Expr

| { Expr * }

| select id : Expr | Expr

| collect id . id : Expr | Expr

| Literal

| id

BinaryOp := or | -> | <-> | and | == | != | < | > | <= | >= | + | -

Reference :=
components | connectors | ports | roles

| attachedports | attachedroles

Quantifier := forall | exists | exists unique

Literal := true | false | < integer >

38

Appendix B: Translation Function Signatures and Custom Notations

It is assumed that there are AcmeSyntax and AlloySyntax types, which rep-
resent valid Acme and Alloy descriptions respectively. A new type Kind is
defined to distinguish different Alloy expressions during translation. Note that
Tx[[]] returns not only the translated expression but also the kind of the
translated expression.

Kind := {bex, num, obj}

Ts[[]] : AcmeSyntax → AlloySyntax

Td[[]] : AcmeSyntax → AlloySyntax

td[[]] : AcmeSyntax → AlloySyntax

T t[[]] : AcmeSyntax → AlloySyntax

T i[[]] : AcmeSyntax → AlloySyntax

Tx[[]] : AcmeSyntax → (AlloySyntax×Kind)

Fact[[]] : AcmeSyntax → AlloySyntax

fact[[]] : AcmeSyntax → AlloySyntax

Cl[[]] : AcmeSyntax → AlloySyntax

Cg[[]] : AcmeSyntax → AlloySyntax

bex : (AlloySyntax×Kind) → AlloySyntax

num : (AlloySyntax×Kind) → AlloySyntax

obj : (AlloySyntax×Kind) → AlloySyntax

img : (AlloySyntax×Kind) → AlloySyntax

kind : (AlloySyntax×Kind) → Kind

kind() : AlloySyntax → Kind

A custom notation S [i..j//k | sep] is used throughout the definition of the
translation functions. Given the Alloy description S it returns a new Alloy
description which is the concaternation of sequential S [l/k] by replacing l
with the integers between i and j. A separator sep is placed between any
S[l/k] and S[l+1/k] . A recursive definition of the custom notation is shown
below.

39

S [i..j//k | sep] = ⊥ (if i > j)

S [i..j//k | sep] = S [i/k] (if i = j)

S [i..j//k | sep] = S [i/k] sep S [i+1..j//k | sep] (if i < j)

40

Appendix C: Translation Function Definitions

Ts[[]] is applied to a Acme description of a style, thereafter other transla-
tion functions are applied to partial Acme descriptions recursively. Str1 Str2

denotes concaternation of Str1 and Str2. S[i..j//k|sep] binds stronger than con-
caternation, so parentheses are used in the definition of translation functions
to override the precedence.

Ts[[style id [extends id +] d *]] =

module Ti[[id]] open cnc view [(open Ti[[idk]]) [1..n//k | ⊥]]

Td[[dk]] [1..n//k | ⊥]

fact { none (+ Fact[[dk]]) [1..n//k | ⊥] in ports + roles }

pred Ti[[id]] constraints local() { Cl[[dk]] [1..n//k | &&] }

pred Ti[[id]] constraints global() { Cg[[dk]] [1..n//k | &&] }

pred Ti[[id]] constraints() {

Ti[[id]] constraints local() && Ti[[id]] constraints global() }

41

The translation functions are partially defined. For example Fact[[]] is defined
only for element type definitions. It is assumed that translation functions are
not applied to Acme descriptions that are not defined with the functions. For
example in case of S [1..3//k | sep] if S [2/k] is not defined, it is equivalent
to S [1/k] sep S [3/k] .

Td[[type id extends et d *]] = sig Ti[[id]] extends Tt[[et]] { td[[dk]] [1..n//k | ,] }

Td[[type id = pt]] = sig Ti[[id]] extends Tt[[pt]] { }

Td[[type id = enum id +]] =
abstract sig Ti[[id]] { }

one sig Ti[[idk]] [1..n//k | ,] extends Ti[[id]] { }

Td[[type id = record (id : pt)+]] = sig Ti[[id]] { Ti[[idk]] : Tt[[ptk]] [1..n//k | ,] }

Td[[element id : et]] = one sig Ti[[id]] extends Tt[[et]] { }

Td[[property id : pt [= v]]] = one sig Ti[[id]] extends Tt[[pt]] { }

Td[[fun id : t ((id : t)*) e]] =
fun Ti[[id]] (Ti[[idk]] : Tt[[tk]] [1..n//k | ,])

: Tt[[t]] { Tx[[e]]obj }

td[[element id : et]] = Ti[[id]] : Tt[[et]]

td[[property id : pt [= v]]] = Ti[[id]] : Tt[[pt]]

Tt[[set t]] = set Tt[[t]]

Tt[[seq t]] = Int -> lone Tt[[t]]

Tt[[[id1 /] id2]] = [Ti[[id1]] /] Ti[[id2]]

Tt[[element]] = Element

Tt[[component]] = Component

Tt[[connector]] = Connector

Tt[[port]] = Port

Tt[[role]] = Role

Tt[[integer]] = Int

Ti[[size]] = #

Ti[[< identifier >]] = < identifier >

42

Fact[[type id extends et d *]] = (Ti[[id]] <: fact[[dk]]) [1..n//k | +]

fact[[element id : et]] = Ti[[id]]

Cg[[property id : pt = e]] = Ti[[id]] = Tx[[e]]obj

Cg[[property id : pt = < e * >]] = Ti[[id]] = (Int k -> Tx[[ek]]obj) [1..n//k | +]

Cg[[property id : pt = [(id = e)+]]] = (Ti[[id]] . T i[[idk]] = Tx[[ek]]obj) [1..n//k | &&]

Cg[[idc . idp to idn . idr]] = Ti[[idc]] . T i[[idp]] = Ti[[idn]] . T i[[idr]] . attachment

Cg[[invariant e]] = Tx[[e]]bex

Cl[[type id extends et d *]] = all self : Tt[[et]] | Cl[[dk]] [1..n//k | &&]

Cl[[property id : pt = e]] = self . Cg[[property id : pt = e]]

Cl[[property id : pt = < e * >]] = self . Cg[[property id : pt = < e * >]]

Cl[[property id : pt = [(id = e)+]]] = self . Cg[[property id : pt = [(id = e)+]]]

Cl[[invariant e]] = Cg[[invariant e]]

43

(as , obj)bex = int as = 1

(as , bex)bex = as

(as , obj)num = int as

(as , num)num = as

(as , bex)obj = if as then Int 1 else Int 0

(as , num)obj = Int as

(as , obj)obj = as

(as , k)img = as

(as , k)kind = k

kind(declaresType) = bex

kind(declSubtype) = bex

kind(attached) = bex

kind(connected) = bex

kind(reachable) = bex

kind(contains) = bex

kind(isSubset) = bex

kind(#) = num

kind(parent) = obj

kind(union) = obj

kind(intersection) = obj

kind(setdiff) = obj

kind(< identifier >) = obj

44

Tx[[! e]] = (! Tx[[e]]bex , bex)

Tx[[e1 or e2]] = (Tx[[e1]]bex || Tx[[e2]]bex , bex)

Tx[[e1 -> e2]] = (Tx[[e1]]bex => Tx[[e2]]bex , bex)

Tx[[e1 <-> e2]] = (Tx[[e1]]bex <=> Tx[[e2]]bex , bex)

Tx[[e1 and e2]] = (Tx[[e1]]bex && Tx[[e2]]bex , bex)

Tx[[e1 == e2]] =
(Tx[[e1]]bex <=> Tx[[e2]]bex , bex)

if Tx[[e1]]kind = bex ∨ Tx[[e2]]kind = bex

Tx[[e1 == e2]] =
(Tx[[e1]]num = Tx[[e2]]num , bex)

if Tx[[e1]]kind = num ∨ Tx[[e2]]kind = num

Tx[[e1 == e2]] =
(Tx[[e1]]img = Tx[[e2]]img , bex)

otherwise

Tx[[e1 != e2]] =
(Tx[[e1]]bex !<=> Tx[[e2]]bex , bex)

if Tx[[e1]]kind = bex ∨ Tx[[e2]]kind = bex

Tx[[e1 != e2]] =
(Tx[[e1]]num != Tx[[e2]]num , bex)

if Tx[[e1]]kind = num ∨ Tx[[e2]]kind = num

Tx[[e1 != e2]] =
(Tx[[e1]]img != Tx[[e2]]img , bex)

otherwise

Tx[[e1 < e2]] = (Tx[[e1]]num < Tx[[e2]]num , bex)

Tx[[e1 > e2]] = (Tx[[e1]]num > Tx[[e2]]num , bex)

Tx[[e1 <= e2]] = (Tx[[e1]]num =< Tx[[e2]]num , bex)

Tx[[e1 >= e2]] = (Tx[[e1]]num >= Tx[[e2]]num , bex)

Tx[[e1 + e2]] = (Tx[[e1]]num + Tx[[e2]]num , num)

Tx[[e1 - e2]] = (Tx[[e1]]num - Tx[[e2]]num , num)

45

Tx[[[id1 /] id2 (e *)]] =
([Ti[[id1]] /] Ti[[id2]] (Tx[[ek]]obj [i..j//k | ,])

, kind(Ti[[id2]]))

Tx[[id . e]] = (Ti[[id]] . Tx[[e]]obj , obj)

Tx[[e . components]] = (Component , obj)

Tx[[e . connectors]] = (Connector , obj)

Tx[[e . ports]] = (Tx[[e]]obj . ports , obj)

Tx[[e . roles]] = (Tx[[e]]obj . roles , obj)

Tx[[e . attachedports]] = (Tx[[e]]obj . attachment , obj)

Tx[[e . attachedroles]] = (Tx[[e]]obj . ∼ attachment , obj)

Tx[[forall id : et | e]] = (all Ti[[id]] : Tx[[et]]obj | Tx[[e]]bex , bex)

Tx[[exists id : et | e]] = (some Ti[[id]] : Tx[[et]]obj | Tx[[e]]bex , bex)

Tx[[exists unique id : et | e]] = (one Ti[[id]] : Tx[[et]]obj | Tx[[e]]bex , bex)

Tx[[{ e * }]] = (none (+ Tx[[ek]]obj) [1..n//k | ⊥] , obj)

Tx[[select id : et | e]] = ({ Ti[[id]] : Tx[[et]]obj | Tx[[e]]bex } , obj)

Tx[[collect id1 . id2 : et | e]] = ({ Ti[[id1]] : Tx[[et]]obj | Tx[[e]]bex } . T i[[id2]] , obj)

Tx[[true]] = (Int 1 , obj)

Tx[[false]] = (Int 0 , obj)

Tx[[< integer >]] = (< integer > , num)

Tx[[id]] = (Ti[[id]] , obj)

46

Appendix D: cnc view Module Specification

///
// This module models the built-in features (types and functions) of the
// Acme language. Therefore any translated module of an Acme style should
// import it. This module additionally contains definitions of several
// predefined funtions for convenience.
///

module cnc_view

//...
// Built-In Types
//...

sig Component {ports: set Port}
sig Connector {roles: set Role}
sig Port {component: Component}
sig Role {connector: Connector, attachment: lone Port}

fact {~ports = component && ~roles = connector}

abstract sig System {components: set Component, connectors: set Connector}
one sig self extends System {}
fact{ self.components = Component && self.connectors = Connector }

//...
// Built-In Type Functions
//...

// Returns true if ’element’ declares that it satisfies ’type’.
pred declaresType [element: univ, type: set univ] {

element in type
}

// Returns true if ’subtype’ declares that it is a subtype of ’supertype’.
pred declaredSubtype [subtype: set univ, supertype: set univ] {

subtype in supertype
}

// "satisfiesType" should be translated into a type predicate (tentative).
// "typesDeclared" cannot be modeled because it returns high-order value.
// "superTypes" cannot be modeled because it returns high-order value.

//...
// Built-In Connectivity Funcitons
//...

47

// Returns true if role ’r’ is attached to port ’p’.
pred attached [r: Role, p: Port] {

r -> p in attachment
}

// Returns true if connector ’n’ is attached to component ’c’.
pred attached [n: Connector, c: Component] {

n -> c in roles.attachment.component
}

// Returns true if component ’c1’ is directly connected to component ’c2’
// by at least one connector.
pred connected [c1: Component, c2: Component] {

some r1,r2: Role |
some p1,p2: Port |

disj[r1, r2] &&
attached[r1, p1] && parent[p1] = c1 &&
attached[r2, p2] && parent[p2] = c2 &&
parent[r1] = parent[r2]

}

// Returns true if port ’p1’ is directly connected to port ’p2’
// by at least one connector.
pred connected [p1: Port, p2: Port] {

some r1,r2: Role |
disj[r1, r2] &&
attached[r1, p1] &&
attached[r2, p2] &&
parent[r1] = parent[r2]

}

// Returns true if component ’c2’ is reachable from component ’c1’.
pred reachable [c1: Component, c2: Component] {

some cs: set Component-c1-c2 |
(one c: cs+c2 | connected[c1, c]) &&
(one c: cs+c1 | connected[c2, c]) &&
all c: cs |

some c3, c4: cs+c1+c2-c |
disj[c3, c4] &&
connected[c, c3] &&
connected[c, c4] &&
no c5: cs+c1+c2-c-c3-c4 | connected[c, c5]

}

//...
// Built-In Ownership Funcitons

48

//...

// Returns the component in which port ’p’ is instantiated.
fun parent [p: Port]: Component {

p.component
}

// Returns the connector in which role ’r’ is instantiated.
fun parent [r: Role]: Connector {

r.connector
}

// "parant" is implemented only for ports and roles.

//...
// Built-In Set Functions
//...

// Returns true if set ’b’ contains object ’a’.
pred contains [a: univ, b: set univ] {

a in b
}

// Returns true if set ’a’ is a subset of set ’b’.
pred isSubset [a: set univ, b: set univ] {

a in b
}

// Returns the union of set ’a’ and set ’b’.
fun union [a: set univ, b: set univ]: univ {

a + b
}

// Returns the intersection of set ’a’ and set ’b’.
fun intersection [a: set univ, b: set univ]: univ {

a & b
}

// Returns the difference of set ’a’ and set ’b’.
fun setdiff [a: set univ, b: set univ]: univ {

a - b
}

// "size" should be translated into the cardinality operator #
// because Alloy functions cannot return integer value directly.
// "flattern" cannot be directly modeled because the input is high-order value.
// "sum" and "product" cannot be directly modeled because they require recursion.

49

//...
// Predefined properties
//...

// Returns true if components in ’cs’ form star structure.
pred predefined_topology_star [cs: set Component] {

one core: cs |
(all node: cs-core | connected[core, node]) &&
no node1,node2: cs-core | disj[node1,node2] && connected[node1, node2]

}

// Returns true if components in ’cs’ form linear structure.
pred predefined_topology_linear [cs: set Component] {

some c1, c2: cs |
disj[c1, c2] &&
(one c: cs-c1 | connected[c1, c]) &&
(one c: cs-c2 | connected[c2, c]) &&
all c: cs-c1-c2 |

some c3, c4: cs-c |
disj[c3, c4] &&
connected[c, c3] &&
connected[c, c4] &&
no c5: cs-c-c3-c4 | connected[c, c5]

}

// Returns true if components in ’cs’ form ring structure.
pred predefined_topology_ring [cs: set Component] {

#cs != 0
all c: cs | predefined_topology_linear[cs-c]

}

// Returns true if components in ’cs’ do not form a cycle.
pred predefined_no_cycle [cs: set Component] {

no cs’: set cs | predefined_topology_ring[cs’]
}

// Returns true if each component in ’cs’ is connected to at least one component.
pred predefined_no_unconnected_component [cs: set Component] {

all c: cs | some c’: Component | connected[c, c’]
}

// Returns true if each component in ’cs’ is attached to at least one connector.
pred predefined_no_unattached_component [cs: set Component] {

all c: cs | some roles.attachment.component.c
}

50

// Returns true if each connector in ’ns’ is attached to at least one component.
pred predefined_no_unattached_connector [ns: set Connector] {

all n: ns | some n.roles.attachment.component
}

// Returns true if all ports of each component in ’cs’ is attached.
pred predefined_no_unattached_port [cs: set Component] {

all p: component.cs | some attachment.p
}

// Returns true if all roles of each connector in ’ns’ is attached.
pred predefined_no_unattached_role [ns: set Connector] {

all r: connector.ns | some r.attachment
}

51

Appendix E: Mission Data System Configuration Rules

The following configuration rules and guidelines were provided by NASA for
the Mission Data Systems architectural style.

Rule 1: Every controller requires 1 or more Command Submit ports. Every
actuator provides 1 or more Command Submit ports. An actuator can have
more than 1 if it has separately commandable sub-units and there is a
desire to manage the command histories separately. There must be exactly
one controller port connected to each actuator port.

Rule 1A: If actuator A has more than one Command Submit ports then all
such ports must be connected to the same controller C. This ensures that
control of A is the responsibility of a single controller C.

Rule 2: Every actuator requires 1 or more Command Notification ports, one
per Command Submit port. Every estimator provides 0 or more Command
Notification ports; it can be 0 if the estimator has no need to be event
driven. For every actuator Command Notification Port there may be 0 or
more estimators connected to it.

Rule 2A: For any given actuator the number of Command Submit ports and
Command Query ports and Command Notification ports must be equal, i.e.,
there must be a 1:1:1 association among them.

Rule 2B: If estimator E has a Command Notification connection with actu-
ator A, then it must also have a Command Query connection with A for the
same command history. Otherwise it will be getting command notifications
with no way to obtain the commands that were submitted.

Rule 3: Every estimator requires 0 or more Command Query ports; it can
be 0 if there is no command evidence for a particular state. Every actuator
provides 1 or more Command Query ports. For each actuator-provided port
there can be 0 or more estimators connected to it. It can be more than 1
if command submittal is informative to more than one estimator. Though
unusual, it can be 0 if no estimator chooses to use command submittal
evidence, instead relying on other sources of evidence.

Rule 4: Every estimator requires 0 or more Measurement Query ports. It can
be 0 if the estimator does not need/use measurements to make estimates, as
in the case of estimation based solely on commands submitted and/or other
states. Every sensor provides 1 or more Measurement Query ports. It can
be more than one if the sensor has separate sub-sensors and there is a desire
to manage the measurement histories separately. For each sensor-provided
port there can be 0 or more estimators connected to it. It can be zero if
the measurement is simply raw data to be transported, such as a science
image. It can be more than one if the measurements are informative in the
estimation of more than one state variable.

Rule 5: Every sensor requires 1 or more Measurement Notification ports, one
per Measurement Query port. Every estimator provides 0 or more Measure-
ment Notification ports. It can be 0 if the estimator has no need to be event

52

driven. For every sensor port there may be 0 or more estimators connected
to it.

Rule 5A: For any given sensor the number of Measurement Notification ports
must equal the number of Measurement Query ports.

Rule 5B: If estimator E has a Command Notification connection with ac-
tuator A, then E must also also have a Command Query connection with
A for the same command history. Otherwise it will be getting command
notifications with no way to obtain the commands that were submitted.

Rule 6: Every state variable provides exactly 1 State Query port. There can
be any number of components connected to that port. It would be suspicious
if there were no connections at all, but it is valid for states that are estimated
purely for transport to another deployment.

Rule 7: Every estimator requires 1 or more State Update ports, one per state
variable that it estimates. Every state variable provides exactly 1 State
Update port, and has exactly 1 estimator connected to it.

Rule 8: Every state variable requires exactly 1 State Notification port and
can have any number of other components connected to it.

Rule 8A: If component C has a connection to the State Notification port of
state variable S, then C must also have a connection to the State Query
port of S. Otherwise, C will be getting notifications with no way to obtain
the updated state.

Rule 9: Every executable component provides exactly 1 Execute port. There
must be a 1-to-1 association of thread scheduler ports to executable com-
ponent ports.

Rule 10: No two ports of a component should be connected to the same
target port. This could happen due to a cut-and-paste error where, say, a
controller has two State Query ports connected to the same state variable.

Rule 11: Every connection must be ”property compatible.” System engineers
will specify properties at four levels: component type, component instance,
port type, and port instance. For example, suppose that there is a single
position and heading controller for the six wheels of a rover, and that it
requires 12 Command Submit ports (6 for steering and 6 for driving). Here
are examples of properties at each of the four levels:
• component type: property = executable, controller
• component instance: property = position and heading
• port type: property = steering, multiplicity=1
• port instance: property = left-front
Thus, in attempting a connection, property checking at the port instance
would prevent a left/right error, and property checking at the port type
would prevent a steering/driving error as well as a multiplicity error (0
connections where exactly 1 is required).

Note for Consideration: There ought to be enough information specified
in properties such that there is only one valid arrangement of connections
(or that all possible arrangements are equivalent). Otherwise, system en-
gineers are leaving something unsaid, open to creative interpretation by

53

others downstream in the development process. Thus, we should view the
property information as part of a prescription. In addition to the prescrip-
tion, we need to specify requirements on evolution so that thread manage-
ment (for example) while creating, configuring, and connecting components
is specified.

Rule 12: There are several ”don’t do this” kind of rules. For example, never
connect a controller to a sensor (because then it is doing its own private
estimation), and never connect an estimator to a Command Submit port of
an actuator (because only a controller is allowed to submit commands).

Rule 13: For every estimator/controller pair where the controller controls a
state variable that is estimated by that estimator, the order of dispatch
for the pair of executables must be deterministic. If either the estimator or
controller or both are connected to executable hardware adapter(s), then the
hardware adapter(s) must be included in the deterministic ordering check.

54

