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Many software systems operate in environments of change and uncertainty. Techniques for self-adaptation
allow these systems to automatically respond to environmental changes, yet they do not handle changes to the
adaptive system itself, such as the addition or removal of adaptation tactics. Instead, changes in a self-adaptive
system often require a human planner to redo an expensive planning process to allow the system to continue
satisfying its quality requirements under different conditions; automated techniques must replan from scratch.
We propose to address this problem by reusing prior planning knowledge to adapt to unexpected situations.
We present a planner based on genetic programming that reuses existing plans, and evaluate this planner on
two case study systems: a cloud-based web server, and a team of autonomous aircraft. While reusing material
in genetic algorithms has been recently applied successfully in the area of automated program repair, we find
that naively reusing existing plans for self-* planning can actually result in a utility loss. Furthermore, we
propose a series of techniques to lower the costs of reuse, allowing genetic techniques to leverage existing
information to improve utility when replanning for unexpected changes, we also find that coarsely shaped
search-spaces present profitable opportunities for reuse.
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1 INTRODUCTION
Self-* systems lower the costs of operating in complex environments of change and uncertainty by
autonomously adapting to change in pursuit of their quality objectives. One way these systems
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self-adjust is by making run-time adjustments according to an adaptation strategy, or plan. Humans
can proactively plan for various situations by hand at design time [8]. This is a form of offline
planning, requiring a painstaking consideration of the full range of possible runtime scenarios the
system may encounter. Automated techniques known as online planners seek to reduce planning
costs by synthesizing adaptation strategies at run-time [19, 34, 46, 51].

While these systems can quickly respond to the changing conditions that they were designed for,
they often struggle to handle unforeseen adaptation scenarios [10]. Such “unknown unknowns” real-
istically include, but are not limited to (1) changes in the cost or effects of available adaptation tactics
(e.g., a provider changes the pricing schedule for cloud resources); (2) changes in available adapta-
tion tactics or options (e.g., a new type of hardware or server comes to market), or (3) unexpected
changes in environmental conditions or use cases (e.g., unexpectedly surging popularity of a service,
such as via the Slashdot effect [45]). Even expensive human generated plans [8] cannot handle this
challenge, requiring expensive replanning post design time in the face of unanticipated changes.
One potential way to respond to unanticipated adaptation needs is to automatically reuse or

adapt prior knowledge to new situations. Indeed, research in artificial intelligence [1, 48] and case-
based reasoning [14, 30, 36] has explored the potential of plan reuse, using knowledge contained in
previously-created plans to speed the synthesis of new plans in response to unanticipated change.
However, the self-* context poses unresolved domain-specific challenges, since these systems must
autonomously respond to uncertainty from a number of sources throughout the adaptation cycle.
We have previously argued [9] that this is a fruitful potential domain for the application of

stochastic algorithms to self-* systems. Stochastic search techniques have been shown to be well-
suited for similar problems [3, 6, 11, 18, 41, 42, 44]. However, these approaches do not address the
challenge of replanning for new, explicitly unforeseen contexts post-design time, which we propose
to address through reusing prior plans. Intuitively, genetic algorithms should be expected to benefit
from reused information, since they operate by balancing between exploring new solutions and
exploiting existing solutions from generation to generation, in effect reusing information from
previous generations. This observation has been successfully applied in other domains, such as
automated program repair [16]. We investigate the extent to which reusing existing plans in self-*
planning can result in an improvement in the fulfilling the system’s quality objectives. Surprisingly,
we find that reusing plans directly is less effective than replanning from scratch. We further propose
a series of techniques to make reusing existing plans more efficient, ultimately obtaining a planner
that can reuse prior plans to improve the system’s quality objectives.
We present a self-adaptive systems planner, built on genetic programming, that responds to

unforeseen adaptation scenarios by reusing and building upon prior knowledge. We represent
individuals as candidate plans, evaluating individual fitness by running them against a simulated
system. Our approach explicitly takes into account the probability that individual tactics may fail,
and supports reasoning about tactic latency and planning time.

Our planner reuses past information by initializing the population with individuals based on an
existing plan. We present a series of techniques to support adapting to unexpected changes at run-
time by lowering the costs of plan reuse during evolution, and apply our approach to two case study
systems with different planning assumptions, a cloud-based web server, and a team of autonomous
aircraft, enabling an empirical study investigating the utility of plan reuse for several indicative
change scenarios. The previous version of this work [24] introduced the following key contributions:

• An investigation into plan reuse in genetic algorithm planning, finding, counter-intuitively,
that naïve reuse can lower planning utility.

• A set of techniques for lowering the cost of plan reuse, resulting in a self-* planner that can
reuse past information to respond to unforeseen changes more effectively.
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• As a sanity check, an empirical comparison of our genetic programming planner to a PRISM
MDP planner [37] that shows the genetic programming planner can produce near-optimal
plans (0.05% error in the single objective scenario and 9.4% in the multi-objective scenario).

• An investigation into the time, quality, and population diversity produced by planning with
reuse when adapting to unforeseen scenarios compared to planning from scratch. We find that
while the improvement is often slight, effective plan reuse can result in a fitness improvement.

• Results that show that the objectives emphasized in a multi-objective planner’s starting plan
can influence the quality and character of the planner’s output.

We extend this work with the following key contributions:

• Additional content from the evaluation using the Omnet case study, including greater detail
about the parameter sweep, measuring population diversity using a structural measure, and
providing data from two new unexpected change scenarios.

• An evaluation using a new case study system with a distinct domain, planning model, and
assumptions, the DART team of autonomous aircraft [17].

• An empirical comparison of genetic programming planning and plan reuse to an exhaustive
approach, a PRISM MDP planner in this new domain.

• An investigation of the benefits of plan reuse in the DART system, finding that coarsely shaped
search spaces present opportunities for significant improvement in planning effectiveness.

• A discussion of lessons learned from each case study, including implications for applying
plan reuse in other self-* systems.

The rest of the paper is as follows. Section 2 outlines necessary background. We next describe the
running example we use to both illustrate and evaluate our technique (Section 3). Section 4 details
our genetic programming self-* planning approach. Section 5 describes our evaluation; Section 6
outlines related work. Section 7 concludes and offers discussion.

2 BACKGROUND
This section overviews self-* planning (Section 2.1) and genetic programming (Section 2.2), focusing
on the background required to understand our approach.

2.1 Self-* Planners
Self-* systems typically consist of two subsystems, amanaged system and amanaging system. Many
self-* systems follow the well-known five-component MAPE-K architecture [21], shown in Figure 1.
We focus on the planning (P) component, which produces strategies consisting of tactics, ordered to
achieve a particular goal. For our purposes, tactics are architectural changes the system can perform
to respond to changes, e.g., “turn off a server at location A.” While multiple planning languages exist
for the self-* context [28, 46], our approach is closest to Stitch [8]. An online planner [46] generates
a plan at run-time, which can adapt quickly at a potential cost to optimality. An offline planner [8]
precomputes strategies to handle common cases and then chooses between them at run-time. This
allows for a fast, correct response to known or predicted situations, but cannot handle unanticipated
adaptation needs. For evaluation, we compare to a previous hybrid online/offline approach [37],
that relies in part on Markov decision processes (MDPs), formal models that can explicitly capture
probabilistic behavior. Model checkers such as PRISM [28] can use exhaustive search to compute
an optimal sequence of tactics to maximize one or more system objective (e.g., profit) for systems
formalized as MDPs.
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Fig. 1. MAPE-K Loop for self-* systems.

2.2 Genetic Programming
Genetic programming [26] (GP) is a stochastic technique modeled on the principles of biological
evolution. GP is well-suited for problems with poorly understood search landscapes, and those for
which approximate solutions are suitable [40]. Note that these conditions apply to our problem:
interacting tactics or quality attributes render the search landscape complex; large search spaces
may preclude the need for (or feasibility of) computing optimal plans; and sub-optimal plans are
often acceptable in real systems. Indeed, genetic algorithms have been successfully applied to self-*
systems [6, 11, 41], although using them to explicitly leverage prior knowledge during replanning
has not been investigated in self-* systems to the best of our knowledge.

At a high level, a GP evolves a population of candidate programs towards a goal over successive
generations. A GP represents and manipulates individual candidate solutions as trees, which are
modified and recombined using computational analogues of biological mutation, crossover, and
selection. Mutation randomly modifies one or more subtrees in an individual, supporting search
space exploration. Crossover randomly combines parent individuals to produce new children,
supporting exploitation of partial solutions. A tree-based representation admits the enforcement of
a type system over nodes [33], limiting exploration of some types of invalid solutions.

A problem-specific objective or fitness function measures how well a candidate solution satisfies
the search objectives. Fitness typically informs the probability with which an individual is selected
from one generation to the next for continued iteration, and can inform the search stopping criterion
(if an optimal value or suitable threshold is known). In contexts with multiple fitness objectives, a
multi-objective search can produce a set of individuals, or Pareto frontier, representing the best
possible trade-offs between several objectives. We use SPEA2 [50] to implement a multi-objective
search, which selects a fixed quantity of non-dominated individuals to create the next generation.

3 RUNNING SCENARIO
We first present one of our two case study systems to serve as a running example: Omnet, a
cloud-based web server adapted from prior work [37].

3.1 Scenario
Figure 2 shows a cloud-based self-adaptive website with an N-tiered architecture. User requests to
the system are distributed by a load balancer to data centers, and then to individual servers. Servers
process requests, and then return a response to the user. Each data center has servers of different
types, with different attributes. In general, the more users a server can handle, the higher its cost.
The website can also serve ads to increase profit, slowing response time.
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Fig. 2. Cloud web server architecture.

3.2 Quality objectives
The system goal is to earn profit while maintaining user satisfaction. We consider three interrelated
quality objectives: (1) System profit as generated by current users, minus operating cost (corre-
sponding to the number and cost of the servers), (2) User latency, or the mean time users have
to wait for a system response (related to the number and quality of the running servers), and (3)
User-perceived quality, the percentage of users viewing ads. These goals are in tension. For example,
while the system uses ads for revenue, they increase latency. The system can remove ads to improve
user experience and server load, while decreasing profit.

3.3 Adaptation tactics
Multiple tactics can adjust the system in pursuit of its quality objectives. These tactics can turn
on and off different types of servers, up to a maximum of five per type. Each server type has an
associated operating cost per second and a number of users it can support per second, with or
without ads. The system’s load balancer distributes requests among data centers according to a
traffic value; there are five traffic levels per data center, and traffic is distributed proportionally. The
system can modify dimmer settings on each server type, which controls the percentage of users
who receive ads (using a brownout mechanism [25] on a per-data center basis). The dimmer level
can be changed by 25% increments. At run time, each of these adaptation tactics may fail. Starting
and shutting down servers fails 10% of the time, modifying the dimmer level and increasing the
traffic level fails 5% of the time, and decreasing the traffic level fails 1% of the time.

3.4 Post-design-time adaptation
Although synthetic, this scenario illustrates a number of ways that a self-* adaptation problem
can change post-design. Quality priorities may change, e.g., the system owner might sell it to a
charitable organization that cares more about user satisfaction than profit. The effects of existing
tactics may change, e.g., the cost of adding a new server may increase or decrease based on a cloud
service provider’s fee schedule. New tactics may become available, via new data centers, server
types, or even hardware. The use case or environment may also unexpectedly change. To the best
of our knowledge, existing self-* planning technology must always replan from scratch in the face
of such adaptation changes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39. Publication date: March 2018.



39:6 Cody Kinneer, David Garlan, and Claire Le Goues

⟨plan⟩ ::= ‘(’ ⟨operator ⟩ ‘)’ | ‘(’ ⟨tactic⟩ ‘)’

⟨operator ⟩ ::= ‘F’ ⟨int ⟩ ⟨plan⟩ (For loop)
| ‘T’ ⟨plan⟩ ⟨plan⟩ ⟨plan⟩ (Try-catch)
| ‘;’ ⟨plan⟩ ⟨plan⟩ (Sequence)

⟨tactic⟩ ::= ‘StartServer’ ⟨srv⟩ | ‘ShutdownServer’ ⟨srv⟩
| ‘IncreaseTraffic’ ⟨srv⟩ | ‘DecreaseTraffic’ ⟨srv⟩
| ‘IncreaseDimmer’ ⟨srv⟩ | ‘DecreaseDimmer’ ⟨srv⟩

Fig. 3. Grammar for specifying plans for the Omnet running example. Servers (srv) can be of types A, B, C, or
D; For loops can iterate up to 10 times.

4 APPROACH
We present a planner that reuses previously-known information (Section 4.4) using GP to effi-
ciently produce nearly optimal results in a large, uncertain search space in response to unforeseen
adaptation scenarios. Our approach reuses past knowledge by seeding the starting population with
prior plans. These plans satisfied the system’s objectives in the past, but are currently sub-optimal
due to “unknown unknowns”, unexpected changes to the system or its environment that the past
plans did not address. After an unexpected change occurs, the system model must be updated
to reflect the new behavior after the unexpected change. The mechanism for synchronizing the
system model with the actual world is outside the scope of this paper; this may be done manually
(likely with less effort than replanning), or automatically [22, 49]. Section 4.4 explains how our
approach reuses prior plans, while Sections 4.1–4.3 provide the necessary technical details on
the GP implementation. We explain our approach in terms of the running example introduced in
Section 3. Section 5.2.1 explains how we modify the approach for the DART case study.
A new GP application is defined by how individuals are represented (Section 4.1); how they

are manipulated through mutation and crossover (Section 4.2); and how the fitness of candidate
solutions is calculated (Section 4.3).

4.1 Representation
Individuals in the population are plans represented as trees. Figure 3 gives a Backus-Naur grammar
for our plans. Each plan consists of either (a) one of six available tactics (described in Section 3), or
(b) one of three operators containing subplans. The for operator repeats the given subplan for 2–10
iterations; the sequence operator consecutively performs 2 subplans. The try-catch operator tries
the first subplan. If the last tactic in that subplan fails, it executes the second subplan; otherwise,
it executes the third subplan. The example plan at the top of Figure 4 uses a try-catch operator,
first attempting to start a new server at data center A. If successful, it attempts to start a server
at data center B; if not, it retries the StartServer A tactic.

This planning language is a simplified variant of other languages such as Stitch [8]. Unlike Stitch,
our language does not consider plan applicability (guards that test state to determinewhen a plan can
be used), which we leave to future work. Note that any plan expressible in our language could be ex-
pressedwith only the try-catch operator, and that our language can represent any PRISMMDP [28]
plan (or policy) as a tree of try-catch operators with depth 2h , where h is the planning horizon.

4.2 Mutation and Crossover
Mutation may either replace a randomly selected subtree with another randomly-generated subtree,
or copy an individual unmodified to the next generation. The distribution between these choices is
a tunable parameter. Mutation imposes both size and type limitations on generated subtrees, which
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( T (StartServer A) (StartServer A) (StartServer B) )

StartServer A

StartServer A

0.10

StartServer B

0.90

987.8

0.10

1137.3

0.90

1137.3

0.10

1526.6

0.90

Fig. 4. Top: An example plan. Bottom: This plan’s system state tree.

can range from a single tactic to a tree of depth ten. The crossover operator [47] selects a subtree
in each of two parent plans (selected via tournament selection [26]) and swaps them to create two
new plans. We enforce syntax rules on both operators (e.g., requiring swapped or generated nodes
to have the correct number of children of the correct type). However, it is still possible for the
planner to generate plans that lead the system to an invalid state, e.g., a plan that tries to add more
servers than are available is syntactically correct, but invalid. We do not prevent this behavior,
instead penalizing such plans, to allow the search to break out of local optima.

4.3 Fitness
We evaluate candidate fitness by simulating the plan to measure the expected quality of the resulting
system. Because tactics might fail, we must combine multiple eventualities. Thus, conceptually,
fitness is computed via a depth-first search of all possible states that a system might reach given
a plan, captured in a system state tree. Tree nodes represent possible system states; connecting
edges represent tactic application attempts, labeled by their probability (the tactic success/failure
probability). Every path from the root (the initial system state) to a leaf represents a possible plan
outcome. Overall plan fitness is the weighted average of all possible paths through the state tree.
Path fitness is the quality of the leaf node system state, measured as one or more of profit, latency,
and user perceived quality (Section 3). Each final system state contributes to overall plan fitness,
weighted by the product of its edge probabilities.

To illustrate, Figure 4 shows a plan and its corresponding state tree. Leaf nodes are labeled with
their state fitness (profit, in this example); edges with their probability. Left transitions correspond
to tactic failure; right-transitions, tactic success. Following the right-hand transitions shows that, if
all tactics succeed, profit will be 1526.6, with an 81% probability. Following the left hand transitions
shows the expected system state if all tactics fail (1% probability). The weighted sum over all paths
(overall fitness) is 1451.14.
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Table 1. A summary of the reuse enabling approaches.

Approach Technique Rationale

scratch_ratio Generate some percentage of plans
from scratch rather than all reused.

Short plans generated from scratch
are much faster to evaluate, reduc-
ing the overall evaluation time.

kill_ratio Prematurely terminate some per-
centage of the longest evaluating
individuals.

A few very large plans can take sig-
nificantly longer to evaluate than
the rest of the population.

trimmer Reuse randomly chosen plan trim-
mings rather than entire plans.

Plan trimmings contain the infor-
mation from the initial plan, but
shorter plans are much faster to
evaluate.

The simulator takes into account planning time and tactic latency [35]. Each leaf in the state
tree represents a timeline of events (parent tactics succeeding or failing). This timeline is simulated
to obtain the fitness accrued while the plan was executing, as well as the fitness state of the system
after the plan terminates. To support reasoning about the opportunity cost of planning time, the
fitness function takes as input a window size parameter that specifies how long the system is
expected to continue accruing the fitness resulting from the provided plan. If the system will remain
in a state for a long period of time, it may be worthwhile to spend more time planning since the
system has more time to realize gains from the planning effort. On the other hand, if the system is
expected to need to replan quickly, spending time optimising for the current state may be wasted,
since this effort will need to be repeated before gains are realized. Total fitness accrued is equal
to s ∗ p + d + a ∗ (w − (t + p)), where s is the system’s initial fitness, p is the planning time, d is
the fitness accrued during plan execution, a is the fitness value after the plan is executed,w is the
window size, t is the time plan’s execution time.

In Section 5, we investigate several additional heuristic modifications to fitness computation to
manage invalid actions and plan size. These include an invalid action penalty per invalid tactic, a
verboseness penalty, which penalizes a plan proportional to its size; and a parsimony pressure kill
ratio, which assigns a fitness of zero to a random proportion of individuals larger than the average
population size. In reporting final plan fitnesses, we report actual fitness, unmodified by penalties.

4.4 Plan Reuse
Our approach reuses past knowledge by seeding the starting population with prior plans. After
the system model is updated to reflect the unexpected change, a starting population of adaptation
strategies is created. These strategies are iteratively improved by random changes via mutation
and crossover, with the most effective plans being more likely to pass into the next generation,
resulting in utility increasing over time. Seeding previously useful plans into the population allows
for useful pieces of planning knowledge to spread to other plans during crossover.

As we detail in Section 5, preliminary results show that initializing the search by naïvely copying
existing plans did not result in efficient planning, and in most cases was inferior compared to
replanning from scratch with a randomly generated starting population. This is due to the high
cost of calculating the fitness values of long starting plans, specifically, because fitness evaluation
must consider the possibility that every tactic in the plan may succeed or fail, the evaluation time
is exponential with respect to the plan size. To realize the benefits of reuse, we introduce several
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strategies for lowering this cost, including seeding the initial population with a fraction of randomly
generated plans in addition to previous plans, prematurely terminating the evaluations of long
running plans, and reducing the size of starting plans by randomly splitting these plans into smaller
plan trimmings. Table 1 shows a summary of these approaches.
To reduce the number of long starting plans that the planner needs to evaluate, we initialize a

scratch_ratio percent of the starting population with short (a maximum depth of ten) randomly
generated plans, and only seed the remaining 1 − scratch_ratio individuals with reused plans. This
reduces the amount of time spent evaluating the fitness of the starting plan in the new situation
while still allowing for the reusable parts of the existing plan to bootstrap the search.

Since the evaluation time is exponential with respect to the plan size, a few of the longest plans
can take significantly longer to evaluate than the rest of the population. To prevent wasting search
resources on excessively long plans, we introduce a kill_ratio parameter that terminates the evalu-
ation of overly long plans and assigns them a fitness of zero. When kill_ratio percent of individuals
have been evaluated, evaluation stops and all outstanding plans receive a fitness of zero. This
approach leverages the parallelizability of GP to avoid hard-coding hardware and planning problem-
dependent maximum evaluation times, but requires planning on hardware with multiple cores.
Lastly, to further reduce the cost of reuse, rather than completely copying large starting plans,

we initialize the search with small plan “trimmings” from the initial plan. Our planner generates
trimmings by randomly choosing a node in the starting plan using Koza’s node selector [27] that
can serve as the root of a new tree. This subtree is then added to the starting population. The
process is repeated until the desired number of reused individuals is obtained.

5 EVALUATION
We built the genetic programming planner described in Section 4 on ECJ. 1 This section describes
our evaluation. We evaluated our approach for plan reuse using two case study systems. The first
is Omnet, a cloud-based web server described in Section 3. The second case study, DART, is a team
of autonomous drones that must detect targets in a hostile environment while avoiding threats,
described in Section 5.2.1. Section 5.1 describes the experimental setup and reports results for the
Omnet case-study. Section 5.2 does the same for the DART system. Finally, Section 5.3 provides a
discussion of our results and their implications for evolving self-* systems.

5.1 Omnet Evaluation
For the Omnet case study, we investigated the following research questions:
(1) As a sanity check, how does the GP planner’s efficiency and effectiveness compare to an

exhaustive planner?
(2) Can plan reuse improve planning utility in response to unforeseen adaptation scenarios?
(3) Does our planner’s techniques for facilitating reuse improve planning effectiveness?
(4) How does plan reuse impact population diversity?
In all experiments using Omnet, we evaluate various scenarios based on the system shown in

Figure 2 and described in Section 3. The system begins each scenario with one server of each type,
a default traffic setting of 4, and all dimmers set to 0. The experimental server ran 64-bit Ubuntu
14.04.5 LTS with a 16 core 2.30 GHz CPU and 32 GB of RAM, but was set to limit the planners to
10 GB of RAM. The GP used 8 of the available CPU cores. PRISM experiments use version 4.3.1 and
the sparse engine, unless otherwise stated. We set the planning horizon to 20 for PRISM, and the
maximum plan tree depth to 20 for the GP planner. Each experimental result is the median of 10

1ECJ is available at https://cs.gmu.edu/~eclab/projects/ecj/. The source code for our planner is available at: https://github.
com/ZackC/AdaptiveSystemsGeneticProgrammingPlanner
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Table 2. The parameter settings in the parameter sweep.

Parameter Name Tested Values

Generations 10, 30, 100
Population Size 10, 100, 1000
Crossover 0.9, 0.8, 0.7, 0.6, 0
Mutation 1, 0.4, 0.3, 0.2, 0.1
Reproduction 1, 0.4, 0.3, 0.2, 0.1
Parsimony Pressure Kill Ratio 0.2, 0.1, 0
Verboseness Penalty 10, 1, 0, 0.1, 0.01, 0.001
Invalid Action Penalty 10, 1, 0, 0.1, 0.01
Branch Pruning Threshold 10, 1, 0, 0.1, 0.01, 0.001

trial runs if randomness or timing is involved. Where statistical tests are used to assess significance,
we use the Wilcoxon rank-sum test, a non-parametric test that does not require the samples to
follow a normal distribution, and is appropriate for small sample sizes. When P < 0.05, we reject
the null hypothesis that the samples arise from the same population. In the multi-objective context,
we compute a SPEA2-defined Pareto optimal front optimizing for two or more of the given fitness
objectives. We set the SPEA2 algorithm elite set to 50. In experiments that we compare to PRISM, we
disable reasoning about tactic latency since this is not easily achieved in PRISM.Where tactic latency
is considered, we set the window size to be 10,000 seconds unless otherwise specified. Where we
compare to searches from “scratch”, we use ramped half-and-half [26] to initialize the population.

5.1.1 Comparative Study. Efficiency. As a sanity check to establish that our stochastic planner
achieves reasonable results, we first tuned and compared it to an exhaustive planner from previous
work [37], an MDP planner written in PRISM.2 We configured the planner with the same settings
as in the previous work, adding path probability to the system specification and planning for a
single environment state.
As with many optimization techniques, a GP typically includes many tunable parameters that

require adjustment. We thus performed a parameter sweep to heuristically tune the reproductive
strategy (which determines how individuals in the next generation are produced, a ratio of crossover,
mutation, and reproduction/copying) and number of generations, population size, and all penalty
thresholds (Section 4.3). We generated plans for the system’s initial configuration (Section 3), and
started each search from a minimal plan of four tactics that does not affect fitness. Table 2 shows
the parameter values covered in the sweep.
The dark point at the top of Figure 5 shows the optimal system profit (fitness) and planning

time (200 seconds) of the PRISM planner. Each gray point corresponds to a different parameter
configuration of the GP planner. Many parameter configurations allowed the GP planner to find
plans that were within 0.05% of optimal, but in a fraction of the time (under 1 second in some cases).
The best configuration that produced plans in 0.50 seconds resulted in only 0.29% error, which
demonstrates the that the planner has the potential to be used as an online planner that reacts to
change in real time. This top configuration used 30 generations each containing 1,000 individuals;
the next generation is produced 60% by crossover, 20% by mutation, and 20% reproduction; applied 0

2Because the Pandey et al. approach [37] was not named, and we assess the limitations of PRISM rather than the hybrid
element, we refer to this as the PRISM planner for the remainder of the paper.
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Fig. 5. Left: Profit versus planning time for GP parameter configurations. Many configurations produce
similar profit results to PRISM, significantly faster. Right: Pareto fronts for profit and latency from both
planners.

parsimony pressure and 0.01 verboseness penalty (i.e., a small penalty for large plans); and an invalid
action penalty of 0. We use these values in subsequent experiments unless otherwise indicated.

Search space. Next, we evaluate and compare the planners’ search space limitations. We varied
search space size by adjusting the number of available server types (t ) in our scenario, which
caused the model states to grow exponentially following the equation (6 servers_per_type ∗

5 possible_dimmer_values ∗ 5 possible_tra f f ic_values)t .
We found that PRISM can plan to maximize profit for 3 server types, with a maximum plan size

of 20 tactics. However, PRISM runs out of memory and produces no plans when given four server
types to consider, even when searching for only a single tactic. Using the explicit engine, which
requires less memory but more run-time, PRISM could produce a plan for four server types for a
plan length of up to seven. By contrast, our GP planner succeeded on the four server type case,
increasing profit from 988 in the initial state to 2993. Finally, we increased the number of data
centers from 4 to 16, a state space on the order of 1037, and successfully generated a plan after
about 9 minutes. These tests demonstrate that the GP planner can handle a very large search space,
outperforming an exhaustive planner, and provides evidence that the planner works correctly to
build confidence in our core experiments investigating plan reuse.

Multi-objective search. The GP planner can create a Pareto frontier of plans to trade-off
between multiple quality attributes, allowing system maintainers to evaluate the best possible
combinations. PRISM can also generate a Pareto frontier for two objectives. The right of Figure 5
shows the Pareto fronts for the profit and latency objectives produced by PRISM and the GP. For
this experiment, we set the planning horizon for both planners to 10. PRISM found 30 points along
the curve; the GP planner produced 89, after removing duplicates. PRISM took 1177 seconds; the
GP planner took 751 seconds. The front produced by the genetic planner roughly approximates
the front produced by PRISM, with 9.4% average error.
We also generated three-dimensional Pareto fronts for all three quality objectives with the GP

planner. PRISM cannot produce fronts in this case, and the graphs are difficult to display, but we
observe that the starting plan influenced the shape of the resulting front. If we begin with plans pre-
viously optimized for profit, we find Pareto fronts with more high-profit individuals. Starting from a
lower-quality plan, or planning from scratch, produced a broader front of lower latency individuals.
In effect, these starting plans led the search to explore more of the trade-offs between latency and
quality. We explore the trade-offs of plan reuse more directly in the next set of experiments.
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Table 3. Improvement obtained by reuse enabling techniques.

Planning Technique Utility P Value

Scratch 1.000
Scratch & kill_ratio 1.044 < 0.01
Reuse 0.962 0.06
Reuse & kill_ratio 1.072 < 0.01
Reuse & kill_ratio & scratch_ratio 1.077 0.63
Reuse & kill_ratio & scratch_ratio & trimmer 1.112 < 0.01

5.1.2 Reuse-Enabling Techniques. While the previous results inspire confidence that the planner
can be competitive with an optimal planner, our primary goal is to use the GP planner to realize
increased planning ability in response to unexpected changes through reusing prior plans. Since
preliminary results showed naïvely reusing entire plans in the starting population resulted in
poor planning performance, recall we explore several techniques for lowering the cost of reuse
(Section 4.4), the kill_ratio, scratch_ratio, and plan trimmer.

To demonstrate the usefulness of these features, we performed planning for the Request Spike +
New Data Center scenario with a planning window of 10000, incrementally enabling the proposed
reuse enabling techniques to show the improvement obtained from each feature. For comparison we
also plan from scratch both with and without using kill_ratio. When used, the values chosen were
kill_ratio = 0.75 and scratch_ratio = 0.5. These values were selected based on a parameter sweep.

Table 3 shows the results, normalized to the utility of planning from scratch without the kill_ratio,
such that this utility is 1. Using the kill_ratio improved utility to 1.044. Without any reuse-enabling
techniques, reusing plans by initializing the population with mutated versions of the starting plan
resulted in a fitness of 0.962, underperforming compared to planning from scratch. Enabling the
kill_ratio feature improved the utility obtained by reusing plans to a level slightly better than
planning from scratch while using the kill_ratio. Adding the scratch_ratio resulted in a slight
improvement of 0.005, and trimming the reused plans resulted in a further improvement of 0.035.
The scratch_ratio did not show a statistically significant improvement for this scenario, but did
for the Increased Costs scenario at the 0.05 level. Trimming plans and the kill_ratio both showed
statistically significant improvements.
These results demonstrate that while the costs of evaluating the fitness of prior plans makes

improving planning fitness through reuse nontrivial, the proposed enhancements to GP planning
can reduce this cost and achieve higher fitness than planning from scratch.

5.1.3 Unforeseen Adaptation Scenarios. We investigate the GP planner’s ability to address
unforeseen adaptation needs with plan reuse. We do this by constructing adaptation scenarios that
cover different types of adaptation needs based on different sources of uncertainty, and assessing
the planner’s ability to respond when planning with reuse compared to planning from scratch. The
considered scenarios are:

• Increased Costs. All server operating costs increase uniformly by a factor of 100, a system-
wide change.

• Failing Data Center. The probability of StartServer C failing increases to 100%, a change
in the effect of an existing tactic.

• Request Spike. The system experiences a major spike in traffic, an environmental change.
• New Data Center. The system gains access to a new server location. This location (D),

contains servers that are strictly less efficient than those at location A (i.e., they have the
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Fig. 6. Profit versus generation for all six scenarios.
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Fig. 7. Profit versus cumulative runtime for all six scenarios.

same operating cost, but lower capacity), but would be useful if there were more requests
than could be served by location A. This change is an addition of a new tactic.

• Request Spike + New Data Center. This adaptation scenario is a combination of the
Request Spike and New Data Center scenarios. This corresponds primarily to an environ-
mental change, along with the addition of a new tactic.

• Network Unreliability The failure probability for all tactics increases to 67%, a change in
the effect of an existing tactic.

For each adaptation scenario, we modified the simulator to behave according to the change
relative to the initial scenario (Section 3). We maximize profit in all experiments; box and whisker
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Table 4. Percent change reusing plans instead of planning from scratch. Statistically significant results
(P < 0.05) are shown in bold font.

Scenario 1K 10k

Increased Costs 0.02 0.81
Network Unreliability 0.01 0.10
Failing Data Center -0.02 0.14
Request Spike -0.14 -0.01
New Data Center -0.63 0.28
Request Spike + New Data Center -0.47 1.54

plots show the best individual in the population each generation over ten planner executions.
We show convergence in terms of the quality (profit) of the produced plans over GP iterations, a
machine- and problem-independent proxy for evaluation time.

Table 4 shows the percent change between planning from scratch and plan reuse for each scenario
and for two window sizes. Positive values indicate the reuse resulted in an improvement, negative
values indicate a decrease in utility compared to planning from scratch. Most values showed
a small difference that was not statistically significant. For the smaller window size, no values
were statistically significant, indicating that there is no statistical difference between plan reuse
and planning from scratch. For the larger window size, half of the scenarios showed statistically
significant improvements from planning from scratch, with the complex Request Spike + New
Data Center scenario showing the largest improvement. Since a larger window size means that
the system has more time to realize the benefits of a higher quality plan, this result is intuitive.
Additionally, since a more complex change scenario is more difficult to plan for, it follows that plan
reuse results in a greater improvement for these scenarios. While in most cases the differences are
small, these results show that our approach using plan reuse can result in fitness improvements.

Modified System or Tactics. Figure 6 shows the profit over generation produced by the GP for
two of the considered scenarios. The left of Figure 6 shows results for the Network Unreliability
scenario. For much of the first seven generations of planning, plan reuse outperforms planning
from scratch, with the two eventually converging to the same fitness at generation eight. The
Increased Costs and Failing Data Center scenarios showed similar results.

Changing Environment. The right of Figure 6 shows results for the Request Spike + New
Data Center scenario, in which the system replans for a large increase in the number of system
requests handled by previous plans (e.g., the Slashdot effect [45]). We also provide the system with a
new data center, D, to possibly use to address this issue.3 This scenario shows the most pronounced
differences between plan reuse and planning from scratch, with plan reuse performing better for
all 20 generations. The Request Spike and New Data Center scenarios alone showed a similar
pattern but was less pronounced.

Wall-clock time. Because fitness evaluation time varies by plan size, the amount of time needed
to evaluate the fitness of each generation is variable, making the number of generations an imperfect
proxy for run time. Thus, Figure 7 shows results in terms of wall-clock time for each scenario.
The Network Unreliability, Increased Costs and Failing Data Center scenarios showed similar
behavior, with only a very small benefit from reusing plans. The New Data Center and Request

3We also evaluated planning in response to the two changes independently. Both scenarios showed similar results to the
Request Spike + New Data Center, although the benefits of plan reuse are more prominent in the hybrid scenario.
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Fig. 8. Diversity versus generation for all six scenarios.

Spike + New Data Center scenarios showed greater differences, in particular the Request Spike
+ New Data Center scenario showed a clear advantage to reusing existing plans.
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Table 5. A comparison of the Omnet and DART systems.

Omnet DART

Tactics can fail Yes No
Planner executions Once After every timestep
Plan execution Entire plan First tactic only
Changing environment Not after planning After every timestep

5.1.4 Diversity. Genetic programming balances search space exploration, to avoid local optima,
and exploitation of promising partial solutions. Solution diversity is necessary to support exploration
of good partial solutions; however, it typically decreases as the search converges [31], assuming
that the population is sufficiently diverse. To gain additional insight into plan evolvability given
different scenarios, we measured the syntactic population diversity over a search by computing the
average pairwise tree edit distance of the individuals, using the APTED algorithm [39].
Figure 8 shows population diversity across the scenarios. Diversity values from planning from

scratch, as well as reusing plans both with and without trimming are shown. The lower plot shows
diversity computed by structure only, that is, the labels of nodes in the tree are assumed to be
identical, allowing computation of the difference in the structure of trees only. Either way diversity
is measured, planning from scratch produces a highly diverse starting population that gradually
becomes less diverse as it converges towards a high quality solution.

As shown in Figure 8, reusing existing plans without first trimming them results in a less diverse
population initially. Rather than a gradual decrease in diversity as would be expected, in some
situations (such as generations 2–8 for the New Data Center) the diversity actually increases as
the population explores new plans before continuing to converge on a good solution. However,
when using the trimmer, the diversity values start high and smoothly decrease. This observation
helps to explain why trimming existing plans resulted in a more significant improvement than the
scratch_ratio alone, since the presence of smaller plan trimmings facilitates a smoother exploration
and exploitation trade-off as the population evolves.

5.2 DART Evaluation
The first case study system, Omnet, provided an example self-* system modeled on a cloud-based
web server. To investigate the utility of plan reuse in a different domain, we apply our approach to
a simulated team of autonomous aircraft called DART. Table 5 outlines the key differences between
the case study systems from a planning perspective. While the challenge of planning for tactic
failure is relaxed in this system, the planner must replan after every timestep. Additionally, only
the first tactic in the plan is executed at each timestep. Lastly, as the team moves, the system must
respond to changes in its environment.

In this evaluation, we address the following research questions for the DART system:
(1) As a sanity check, how does the GP planner’s efficiency and effectiveness compare to an

exhaustive planner?
(2) Can plan reuse improve planning utility in response to unforeseen adaptation scenarios?
Section 5.2.1 describes the DART system, including how we adapt our approach from Section 4

to handle the new case. Section 5.2.2 describes the results of the experiments involving DART.

5.2.1 DART System Description. We also evaluate our approach for plan reuse in a second case
study system inspired by a scenario from the DART systems project [17], using the same modeling
approach and parameters as related work [35]. In this case study, the system is a team of autonomous
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Fig. 9. An example trace of the DART team moving through an environment.

aerial vehicles or drones. The team flies together in formation, and a central leader drone commands
the rest of the team autonomously. The team’s mission is to fly over a predetermined path in hostile
territory, detecting targets while avoiding threats. The team’s path is divided into discrete locations,
and the team moves at a constant speed, traversing one location per timestep. The team is equipped
with noisy sensors that allow the drones to estimate the probability that a threat or target lies in
each location in their look-ahead horizon, with the accuracy of these estimates improving with each
timestep that the location is sensed. The team’s configuration influences whether the team detects
a target or is destroyed by a threat when encountered. This configuration includes the altitude of
the team, with higher altitudes offering greater protection against threats, but also reducing the
ability of the team to detect targets. The team can also change the tightness of its formation, with a
tight formation offering reduced exposure to threats, but also less sensor coverage to detect targets.
Lastly, the team can enable electric counter measures (ECM), which also decrease the chance
that a threat destroys the team, but at the cost of reducing the effectiveness of target detection.
Figure 9 shows an example simulation of the DART team moving through an environment. Each
dot indicates the position and formation of the DART team at a particular timestep. Black shapes at
the bottom of the figure indicate the positions of threats and targets in the environment.

Objectives. The team’s goal is to detect targets while avoiding threats, without knowing the
number of location of targets or threats beforehand. When the team occupies the same location as
a target, the team detects the target with some probability, which is based on the team’s altitude
and configuration. Likewise, when the team occupies the same location as a threat, the team is
destroyed with some probability based on the team’s state.

Adaptation Tactics. The team has eight adaptation tactics available. The team can ascend or
descend in altitude. Since it takes time to change altitude, a timestep is necessary before the effects
of these tactics are felt. Airspace is divided into twenty levels, and an IncAlt or DecAlt tactic
results in the team moving up or down one level in the next timestep. An additional two tactics,
IncAlt2 and DecAlt2, allow the team to traverse two altitude levels instead of one. The team can
be in either a loose or tight formation, toggled using the GoLoose and GoTight adaptation tactics.
Lastly, the team’s ECM state can be toggled by the EcmOn and EcmOff tactics. Changes to the team’s
formation and ECM state occur the same timestep as the tactic is used.

Post-design-time Adaption.We examine the usefulness of plan reuse to three types of change
scenarios, changes to the positions of the threats and targets present in the environment, changes
in the available adaption tactics, and changing the desired utility tradeoff between the survivability
of the team and the expected number of targets detected.
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Table 6. The parameter settings in the parameter sweep.

Parameter Name Tested Values

Generations 1, 10, 25, 75, 100
Population Size 1, 10, 100, 1000, 10000
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Fig. 10. Utility versus planning time for GP configurations.

Integration with GA Planner. The approach for using the GA planner is largely the same as
described in Section 4, but with a few modifications to accommodate the new planning scenario
and its assumptions. Unlike the cloud-based server scenario where tactics may fail, in this scenario,
tactics are guaranteed to succeed as long as the team has not been destroyed. On the other hand,
the DART case-study involves the system moving through a changing environment, replanning
after each timestep, while the server case-study was restricted to generating a single strategy that
is committed to after a single execution of the planner. We simplify the planning language to
include only the sequence operator and a terminal for each adaptation tactic. To evaluate fitness,
we compute the sum of the expected number of targets detected and chance of survival. Due to
these differences, the kill_ratio and trimmer reuse enabling approaches are less applicable, and are
not used. The scratch_ratio reuse enabling approach is used with a value of 0.9.

5.2.2 Parameter Sweep. To choose parameters for the GP planner for this case study, as well as
to provide a sanity comparison to an exhaustive planner, we performed a parameter sweep of the
population size and number of generations of evolution. The remaining parameters were kept from
the Omnet case study. To compare to an exhaustive planner, we compare to the probabilistic model
checking approach (PMC) presented in related work [34]. This approach models the problem as an
MDP and uses the PRISM probabilistic model checker to generate an optimal plan at each timestep.
To reduce the computing resources required by the sweep, we record results from planning for a
single timestep only in this experiment. Table 6 shows the parameter values used in the sweep.
Figure 10 shows the results of the parameter sweep. Each grey dot represents the utility and
planning time for a single combination of parameters. The black dot and horizontal line shows
the utility and total planning time obtained by model checking using PRISM. Since PRISM finds
the optimal plan, we expect it to result in the highest utility. We chose parameter values near
the knuckle point of this figure to strike a balance between plan utility and speed, settling on a
population size of 1000 individuals evolved for 30 generations.

However, since our sweep focused on a single timestep only rather than a complete simulation,
we found that these parameter values could not be used to generate plans from scratch. This is
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because the search space in the first few timesteps of the simulation is very coarse, with almost all
plans resulting in a utility of zero. This occurs because the team always starts at the highest altitude
level, but cannot detect targets until the team is close to the lowest level. Thus, the team receives
an expected fitness of zero unless a very specific sequence of tactics (many consecutive commands
to descend and few commands to ascend), which is unlikely to be generated at random with only
a population size of 1k. We discovered in preliminary experiments that a population size of 10k
provides enough sampling to allow the planner to converge to a good solution. Therefore, when
planning from scratch, either for purposes of comparison or finding starting plans to reuse, we use
a population size of 10k. When we reuse existing plans however, we use a population size of 1k.

5.2.3 Plan Reuse. To evaluate the benefit of plan reuse in DART, we investigate three unexpected
change scenarios.

• Environment Only. The location of threats and targets in the teams path is changed, an
environmental change.

• Environment + No Survivability. Utility is determined solely by the expected number of
targets detected without adding the survivability likelihood a change in the system objectives
in addition to an environmental change.

• Environment + Slow Descend. The system different configuration of threats and targets,
as well as not having access to the DecAlt2 tactic. An environmental change and a change in
available tactics.

For each unexpected change scenario, we performed ten simulations and measured the utility
and planning time. Each simulation uses a different random seed, resulting in a different randomly
generated environment. We use the same ten random seeds for each scenario, permitting easy
comparison. Each simulation has a path length of 40 and thus runs for 40 timesteps. At each
timestep, the planner is executed for the current system and environment state, using the initial
population dictated by the scenario. The system then executes the first tactic in the plan returned
by the planner, and the simulation continues to the next timestep, until the team is destroyed or
until the team reaches the end of the path.
For the Environment Only and Environment + No Survivability Requirement scenarios,

initial plans are collected by running a simulation with the scenario conditions, and saving the
best plan from all 40 timesteps. When reusing these plans, the starting population is created by
generating a new plan from scratch 90% of the time, and using a randomly chosen plan from the
repertoire otherwise. The initial population for the Environment and Slow Descend scenario
could not be generated in this way, because the lack of the DecAlt2 tactic means that it is much
more difficult for the planner to discover a plan to descend enough to be in range of the targets,
resulting in planning from scratch to fail to produce a plan with better than zero utility, even
when we increase the population size to 100k. Instead, we manually created a plan to guide the
system towards the ground, consisting of 16 consecutive DecAlt tactics. When generating an initial
population for this scenario, a plan is generated from scratch 90% of the time, and the manually
created starting plan is mutated and added to the initial population for the other 10%.

Fitness by Timestep. Figures 11 and 12 show the average fitness of the best available plan in the
population during the execution of the planner, for each timestep, and for each reuse scenario. Note
that the utility values for the last timestep are transformed by shifting them down by 4.5 to avoid
increasing the vertical axis for this timestep. Figure 11 shows how the fitness changes between
each generation of evolution. For the first few timesteps, planning from scratch significantly
underperforms all three reuse scenarios for the first five generations of planning. This is not true for
the remaining timesteps however, and the most notable pattern for the remaining timesteps is that
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Fig. 11. Utility versus generation by timestep.
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Fig. 12. Utility versus runtime by timestep.

reusing plans from the Environment and Slow Descend reuse scenario tends to underperform
compared to the other starting plans.

Figure 12 shows fitness versus wall clock time. Again, there is a wide gap between planning from
scratch and all three reuse scenarios for the first three timesteps. Overall, the Environment Only
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Fig. 13. Left: Utility versus generation. Right: Utility versus planning time

and Environment + No Survivability Requirement scenarios perform better than planning
from scratch for the first 30 seconds of planning. The Environment + Slow Descend scenario
sometimes outperformed planning from scratch in the first 30 seconds of planning, but usually
underperformed compared to the other reuse approaches.

These results show that plan reuse is most beneficial in the first few timesteps of planning. This is
due to the coarse shape of the search space at the start of the scenario. Since the team always starts at
the highest level of altitude at the start of the simulation, and targets can only be detected when the
team is close to the bottom, the planner must discover a very specific sequence of tactics to maneuver
the team down (many descend tactics with few ascend tactics), before any plan will have a non-zero
fitness. Once the planner has a plan reaching such an altitude, any further mutation to the plan
results in a small fitness delta, enabling the planner to improve the utility of successive generations.

Aggregate Fitness. Figure 13 shows the utility during planning aggregated over all time steps,
giving an overall picture of how various reuse scenarios compare to planning from scratch. When
considering the number of generations the Environment + Slow Descend performs the worst, with
the other three approaches being fairly close to one another. From the wall clock time perspective
however, all three reuse approaches outperform planning from scratch for as long as they are
running. The Environment + No Survivability Requirement scenario performed about the
same as the Environment Only scenario. The Environment + Slow Descendwas the least effective
reuse scenario, but still outperformed planning from scratch during its execution.

Actual Utility. Figure 14 shows the distribution of final results of the simulations for each planning
approach (as opposed to the expected utility), as well as a planner using PRISM. The first boxplot
shows achieved utility. While the reuse approaches and planning using the GP from scratch all
resulted in mostly similar distributions, we see that using an exhaustive planner results in about
2.5 more targets detected on average compared to the other approaches. The right plot shows the
average decision time the planner took on each timestep to produce a plan. Using PRISM took around
25minutes per timestep. Planning from scratch using the GP required about fiveminutes. The fastest
approaches were the three approaches using plan reuse, which terminate in under one minute.

5.3 Discussion
Our evaluation of two case study systems revealed several insights for the design of self-* systems
resilient to unexpected changes. Reusing plans for the Omnet system revealed that naïve reuse can
result in less effective planning than replanning from scratch. In this system, the loss of planning
effectiveness stemmed from the long evaluation time necessary to compute the fitness of large
plans when we consider that tactics may fail. In this case, applying reuse enabling approaches,
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scratch_ratio, kill_ratio, and trimmer, to manage the size of candidate plans while maintaining
existing planning information can mitigate this problem and improve on planning from scratch.
The DART system on the other hand, which does not consider the possibility of tactic failure,

significantly reduces the amount of time required for fitness evaluation. Plans in this system are
short and simple compared to the Omnet system that requires complex branching plans to manage
responding to the success or failure of adaptation tactics. A challenge to using GP for planning for
DART is the character of its search space. The Omnet system, while requiring large and complex
branching plans to accommodate uncertainty in tactic success, seems to benefit from a smooth,
easy to explore search space. Any tactic tends to result in a change to the system’s fitness, allowing
the GP to make steady progress towards convergence on a high quality solution. The DART case
study on the other hand, exhibits a search space with a large coarse region where no sequences of
tactics under a certain length results in any change to fitness. However, after the team discovers
a plan to maneuver close enough to the ground to potentially detect targets or be destroyed by
threats, the search space smooths and plan improvement becomes possible. This property of the
problem reveals an opportunity where plan reuse can significantly improve the effectiveness of
planning. When an existing plan can guide the system from the coarse to the smooth part of the
search space, significant reduction in the planning time is possible.

6 RELATEDWORK
Planning: The artificial intelligence (AI) community has produced a considerable body of research
in planning, including but not limited to probabilistic approaches like MDP [20, 32]. Some of
this work demonstrates the benefits of plan reuse, such as by reusing parts of existing plans
that target particular goals in new situations that share those goals [48]; concurrently executing
and dynamically switching between plans designed to handle contingencies [4]; modifying plans
produced under assumed optimal conditions to handle common problems found in simulation [29];
or iteratively transforming simple plans to produce complex plans [1]. Case-based plan adaption [36]
explicitly reuses past plans in new contexts, in which context GAs have been explored directly [14,
30], e.g., by injecting solutions to previous problems into a GA population to speed the solution of
new problems. Although the mechanism is similar, our approach is importantly novel in that it
addresses a broader class of uncertainty.

Reinforcement learning has been applied to self-* systems to learn at runtime usingQ-learning [19,
23]. Like our approach, this technique could be used to aide in adapting to unexpected changes,
and like GP, this technique balances exploration of possible alternatives and exploiting solutions
that achieve the best results. Our approach is different from reinforcement learning because our
approach utilizes a model of the system and environment. While reinforcement learning has the
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advantage of learning online without needing to synchronize a model with the environment, the
system will likely perform suboptimally while it performs random actions to learn. This might often
be undesirable in many production systems, especially if such actions could result in irreparable
damage to the system or others.
A number of works address the problem of updating system models when they become out of

sync with reality, such as focusing on architectural evolution [2], identifying when unexpected
changes occur for to assist humans in evolving the system [43], or evolving models at runtime [49].
Self-* planning:Mutliple PRISM MDP planners appear in the self-* literature [5, 34, 37]. These
techniques are typically offline, as is manual human planning [8], and produce good plans but
have issues with problem size limitations. Much of the other work in this space focuses on online
planning, e.g., reactively regenerating failing parts of a plan [46] or using hill-climbing [51] (another
stochastic technique) to generate plans quickly in exchange for a moderate loss of optimality. Our
work focuses in particular on plan reuse to handle uncertainty, and is not reactive.

Plato and Hermes [41] use genetic algorithms to reconfigure software systems (in the domain
of remote data mirroring) to respond to unexpected failures or optimize for particular quality
objectives. The search problems (representation, operators, and fitness function) differ from ours,
commensurate with the different domain. However, the key distinction is our focus on information
reuse to handle uncertainty. That is, although both Hermes and our approach are initialized with
existing adaptation strategies, we focus explicitly on the utility of alternative starting strategies in
the face of unanticipated scenarios. We also compare a GP planner to an optimal planner. GAs have
also been used to optimize across multiple quality objectives in quality of service composition [6],
and to optimize architectures and associated service providers in self-architecting systems [11].
This prior work broadly substantiates the utility of stochastic algorithms in an self-* planning
context, but otherwise focuses on very different domains than we do.

In our own previous work [24], we investigated the potential of plan reuse to improve replanning
effectiveness in repose to unexpected changes. In this work, we extend our prior paper with a
new case study system with a different planning model and assumptions, the DART [17] team of
autonomous aircraft. Using this case study, we identify properties of the search space particularly
amenable for improvement via plan reuse.
Our initial position [9] identified key research questions that we address in this work, further

expanding upon our prior concept in several ways: a more expressive individual representation
inspired by true planning languages [8], a significantly more efficient fitness evaluation strategy, a
series of techniques for supporting plan reuse by reducing the search cost, a comparative evaluation
to an exhaustive planner [37], an experimental study investigating the trade-offs of plan reuse
when adapting to unforeseen scenarios, and support for multi-objective search [50].
Search-based software engineering: The field of Search-Based Software Engineering (SBSE) uses
meta-heuristic and stochastic search to solvemultiple software engineering problems [15]. There has
been considerable recent success in reusing and improving existing programs [3], similar to the way
we reuse and improve existing plans. Such methods have been applied to self-adaptive systems and
architectural design and evolution [7, 38], set configuration parameters for systems with strict qual-
ity requirements [13], and improving self-adaptive system test cases [12]. However, such work does
not directly tackle the problem of self-adaptive planning, or improve on previous plans, and the re-
search space of SBSE as applied to such systems remains underinvestigated, despite its potential [16].

7 CONCLUSION
Future generation systems will operate in complex environments of change and uncertainty. Self-*
systems lower the costs of operating in such conditions by autonomously adapting to change in
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pursuit of their quality objectives, and planning is an important component of these approaches.
We propose to use stochastic search to deal with unexpected adaptation strategies, specifically by
reusing or building upon prior knowledge. Our GP planner can handle a very large search space
(over 1037 possible states), can produce plans to within 0.05% of optimal, and can effectively plan
with respect to multiple system quality objectives.

Our core results demonstrate the feasibility of reusing past knowledge in unexpected adaptation
scenarios, and that the nature of both the scenario and of that prior knowledge influences its
effectiveness. While naïvely reusing existing plans can actually result in worse performance than
planning from scratch, effectively utilizing prior plans can reduce the number of generations
required to reach a good plan for various scenarios, but whether this translates into run-time
savings depends on both the size of the starting plan and its relationship to the new scenario. Our
diversity analysis corroborates these results. The DART case study also shows how search spaces
with large coarse regions particularly stand to benefit from plan reuse.

There exist several limitations and threats to the validity of our results. First, our parameter
tuning is heuristic, performing a coarse test of one set of parameters before a finer-grained sweep;
it is possible that the best configuration is located in an area that seemed less promising initially.
Additionally, while we took care in our implementation of the PRISM MDP planner, mistakes in
our implementation could affect our results. We mitigate the risks of bias in our Java GP planner
representation by releasing it publicly for review and replication.

Additionally, our results may not generalize to other systems, or to other unexpected adaptation
scenarios. We mitigate this risk by building our evaluation on two case study systems from dif-
ferent domains, a cloud system used to assess prior work [37], and a team of autonomous aerial
vehicles [17], both designed to approximate real-world systems. We constructed our evaluation
scenarios to sample as much of the space of possible unanticipated adaptation needs as possible, and
leave the investigation (or even a taxonomization) of additional such scenarios to future work. Other
future research directions include autonomously determining when to replan, and investigating
how the system model can be kept up to date with reality.

As systems become larger and more complex, the difficulty of planning for the unexpected will
only increase. We show that knowledge reuse is a promising tool for addressing unexpected changes,
while being underexplored in the self-* context. Future work in plan reuse in self-* systems has
the potential to enable the next generation of autonomous systems to quickly respond to changes
unforeseen at design time.
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