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Abstract—Decision-making approaches in self-adaptation face
a fundamental trade-off between quality and timeliness of adapta-
tion plans. Due to this trade-off, designers often have to make an
offline compromise between finding adaptation plans quickly and
finding closer-to-optimal plans that demand longer computation
times. Recent work has proposed that hybrid planning can resolve
this trade-off dynamically, achieving higher utility than either
fast or slow approaches individually. The promise of hybrid
planning is to combine multiple decision-making approaches at
run time to produce adaptation plans of the high quality within
given time constraints. However, the diversity of decision-making
approaches makes the problem of hybrid planning complex and
multi-faceted. This paper advances the theory of hybrid planning
by formalizing the central concepts and four sub-problems of
hybrid planning. This formalization can serve as a foundation
for creating and evaluating hybrid planners in the future.

I. INTRODUCTION

A typical control loop in many self-adaptive software systems
has four computational components: Monitoring-Analysis-
Planning-Execution (MAPE) [7]. Prior research has proposed
multiple approaches for the planning component to provide
decision-making at run time. Frameworks such as Rainbow [9]
apply case-based reasoning, solving new problems based on
solutions to similar problems from the past. When adaptation
is needed, Rainbow chooses an adaptation strategy (i.e., a
plan) from a predefined repertoire, which was created at design
time by domain experts based on their past troubleshooting
experience [3]. In contrast to building a repertoire offline,
automated planning techniques (e.g., model-checking [5],
reinforcement learning [12], and genetic algorithms [11]) have
been explored to generate adaptation plans at run time.

For any decision-making approach1, quality and timeliness
(of adaptation plans) are conflicting requirements. Decision
making, in essence, is a search process performed over the
space of possible decisions — more complete searches provide
better quality guarantees, but require more time to complete.
Hence, a planner can either provide a sub-optimal plan at
the moment when it is needed, or provide a higher quality
plan, risking it being late. For instance, Rainbow provides
fast and (potentially) sub-optimal decisions because it gives
greater weight to strategies that have worked in the past, and
it is difficult to have a predefined strategy for unforeseen
scenarios. Alternatively, in a non-emergency situation, a slower
deliberative approach may be chosen that fully explores a

1We use the term "decision-making approach" in a broad sense, to refer any
approach that could be used to determine adaptation plans, including strategy
selection, condition-action pairs, and planning.

large decision space to provide an optimal or near-optimal
plan. Some self-adaptive systems need to resolve the quality-
timeliness conflict at run time: urgent circumstances demand
timely actions, but over the long term the performance should be
optimized with a deliberative planning. For instance, Amazon
Web Services (AWS) are required to maintain an up-time of at
least 99.95% in any monthly billing cycle as per the service
level agreement, balancing it with other concerns such as cost
minimization.2 The perceived effectiveness of such systems
would drop drastically if their service-level constraints were
violated. In case of a constraint violation, a rapid response
is required to keep the system in a desirable state (for AWS,
maintaining availability). However, to maintain a long-term
quality, the adaptation plan should be as close to optimal as
possible, by considering other metrics as well.

To provide a run-time balance between quality and timeliness,
researchers proposed algorithms to improve the performance of
a search process [8] and heuristics to reduce a search space [1]
[2] [6]. However, these solutions are often non-trivial to develop,
yet not generalizable across multiple domains.

In contrast to system-specific solutions, our previous work
proposed a general hybrid planning approach [13] to balance
quality and timeliness at run time. Hybrid planning combines
several off-the-shelf decision-making approaches to activate
them as necessary, ideally using the most appropriate approach
in each situation. The key idea is to use a fast decision-making
approach to handle an immediate problem, but simultaneously
use a slow approach to provide an optimal solution, merging
the plans at run time. This interleaving of approaches reaps
the benefits of both worlds: providing plans quickly when the
timing is critical, while allowing optimal plans to be generated
when the system has sufficient time to do so.

Even though hybrid planning is a promising idea that is po-
tentially applicable to a wide variety of domains, its successful
implementation faces substantial challenges, which have not
yet been addressed — or even fully explored. It is difficult
to identify the conditions of compatibility between planners,
how planners need to be configured (e.g., how to choose the
planning horizon), and when to stop using one plan and start
using another. Moreover, even if some implementation of a
hybrid planner overcomes these obstacles, it is not clear how to
systematically evaluate such implementations. Hybrid planners
are sometimes compared favorably to individual planners, but
that is a relatively conservative benchmark. Currently, any
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evaluation is difficult because we lack a fundamental description
of the ideal behavior of a hybrid planner.

This paper addresses the complexity of the hybrid planning
problem by splitting it into four subproblems: (i) selecting
scenarios to plan for, (ii) assessing planners on these scenarios,
(iii) deciding what plans to combine, and (iv) selecting the
optimal sequence of these plans. We give formal definitions
of these tasks, thus taking the first step towards a principled
theory of hybrid planning. Our a posteriori formalization can
guide, evaluate, and compare hybrid planner implementations
that approximate the ideal solutions to each subproblems.

We start with a motivating example of a cloud-based self-
adaptive system. Section II describes the foundational concepts,
used in Section III to formalize the four subproblems of hybrid
planning. The paper concludes with a discussion of our model’s
generality and its usage for evaluation of hybrid planners.
A. Motivating Example

To explain the formal framework for hybrid planning, we use
a version of a cloud-based self-adaptive system as an example.
The system has a three-tiered architecture: a presentation tier, an
application tier, and a database tier. The workload on the system
depends on the user request arrival rate, which is uncertain
since it depends on external demand.

The system’s objective is to maximize utility, which depends
on the penalty for response time and the cost of active servers.
We assume there is a penalty for each request with a response
time above some threshold. If response time is higher when
averaged across users, adaptation is needed. However, once
response time is under control, the system should bring down
the operating cost by minimizing the number of active servers.

II. FOUNDATIONAL CONCEPTS

This section defines the basic concepts needed to formalize
hybrid planning.

Definition 1 (State). A state s is a vector of values of the
system’s and environment’s variables. Time is considered as a
state variable. We denote the set of states by S .

Since time is a state variable, S is a potentially infinite set.
Moreover, time imposes an implicit total order on states in S .

Definition 2. The function τ returns the time variable of a
state. Formally, τ ∶ S → R>0
Definition 3 (Utility of state). The utility of a state is defined
as Us ∶ S → R, which is a function that maps state s to its
valuation.

In this paper, we use the a posteriori notion of utility (i.e.,
assessed after an execution). Our formalization propagates the
definition of utility from the ground truth (utility of a particular
state in a real system) to abstract notions that the MAPE loop
manipulates (e.g., planners). We use this to thus create a formal
underpinning for every planning decision of a self-adaptive
system, rooted in the utility that this action leads to.

Definition 4 (Execution). An execution e is a potentially
infinite sequence of states: e def= ⟨s1, s2, . . . ⟩. We designate a set
of executions by E .

We allow infinite executions to model reactive systems that
can execute indefinitely. However, to encode goal-oriented
systems, infinite sets and sequences can be made finite.

Definition 5 (Partial execution). For an execution e such that
e

def= ⟨s1, . . . , sj , . . . , sn⟩, a partial execution ep is a prefix of e
ending with sj where 1 ≤ j ≤ n. That is, ep

def= ⟨s1, . . . , sj⟩.
Definition 6 (Utility of execution). The utility of an execution
is defined as Ue ∶ E → R, which is a function that maps
execution e to its valuation.

Even though an execution is a potentially infinite sequence
of states, we assume its utility would be a finite value. As an
example, suppose Ue is defined as the utility of a state (in an
execution) with the maximum utility (among the states in the
execution); here, the utility of an execution would be a finite
value. In our model, we abstract away the particular function
representing the utility of executions.

We model hybrid planning in the a posteriori fashion:
some of our utility functions require perfect knowledge of
the future to be computed. Although an obstacle for direct
implementations, this model is beneficial for formalizing the
problem and its idealized solution. In fact, by using information
about the future (e.g., how much utility is accrued from an
execution), we can establish a theoretical baseline for evaluation
of downstream engineering solutions. These solutions will use
relaxations (e.g., a priori utility or expected utility) of our utility
notion to construct approximations of the idealized solution.

Definition 7 (Transition, action, and event). State transitions
are characterized by a transition function T ∶ S ×A × Z → S ,
where A is a set of the system’s actions, and Z is a set of
external events. An element � represents an empty action/event
and is present in both sets: A ∩ Z = {�}.

A self-adaptive system is characterized by controllable
actions (e.g., adding/removing a server) and uncontrollable
events (e.g., an arrival of a user request). Both actions and
events cause state transitions. T captures both asynchronous
(some action along with � event, or vice versa) and synchronous
(neither the action nor the event are �) interactions of the
system and its environment. Since the model is a posteriori,
the outcomes of actions and events are deterministic post
transition. Thus, T is a function instead of relation.

In our model, we only consider Markovian domains, where
the state after a transition only depends on the current state —
not on the sequence of states that preceded it [18]. We also
assume that all transitions take time: the future state’s time is
always larger than that of the previous state’s.

Definition 8 (Plan). A plan π is a total function π ∶ S → A.
A mapping from a state s ∈ S to an action a ∈ A suggests a to
be executed in s. We denote a set of plans as Π.

Definition 8 is general enough to capture different types
of plan. For instance, universal plans such as MDP policies
could be linked directly to the state-action mapping provided
by the function π [8]. This definition also captures sequential
plans since the time state variable can be used to maintain the
ordering of actions during execution.



Definition 9 (Environment). The environment is a function
o ∶ S → Z encoding which event happens in each state. A set
of environments is designated as O.

Our abstraction of o for events is analogous to π for actions.

Definition 10 (Realization). The realization function R ∶ Π ×
O×S → E maps a plan π, an environment o, and an initial state
si ∈ S to the execution e produced by the system executing in
those conditions. That is, R(π, o, si) = e.
R requires o and π as an input since both influence

transitions.

Definition 11 (Utility of plan). The utility of a plan π given
an environment o and an initial state si is a function Uπ ∶
Π×O×S → R that returns the utility of that plan’s realization.
That is, Uπ(π, o, si) def= Ue(R(π, e, si)).

By linking the utilities of plans and executions, we have
extended the ground truth to the internal reasoning of planners.
This bridge lets us establish utility-based comparison of
concepts that normally exist before execution happens. Thus,
we trade implementability for a theoretical way of putting value
on planning decisions.

Definition 12 (Planning problem). A planning problem ξ is
a tuple (S , si,A, T, o,Ue), where si ∈ S is the initial state.
Solving a planning problem means optimizing Ue by providing
a plan for given S , si, A, T , and o. A set of planning problems
is denoted by Ξ.

Self-adaptive systems have flexibility in choosing adaptation
scenarios to investigate. For instance, the system can choose its
lookahead horizon: should it consider a future of one minute
or one hour ahead of the current moment [17]? The space of
such decisions is encoded as Ξ.

Definition 13 (Planner). A planner is a function ρ ∶ Ξ → Π
that solves a planning problem ξ and produces a plan π. We
designate a set of planners by Ψ.

Most planner implementations allow numerous customiza-
tions. We formalize these customizations as individual planners
in Ψξ without loss of generality: each planner is always
evaluated independently and with respect to some ξ.

Definition 14 (Problem-Planner Compatibility Relation). A
problem ξ and a planner ρ are compatible if ρ can solve ξ,
denoted (ξ, ρ) ∈ Υ, where Υ ∶ Ξ ↔ Ψ is a problem-planner
compatibility relation. Given ξ, Ψξ ⊆ Ψ is a set of planners
that are compatible with ξ (i.e., Υ[ξ] def= Ψξ).

In practice, some planners (e.g., deterministic ones) are
not applicable to problems (e.g., ones with non-deterministic
transitions) that do not match their input format or algorithmic
parameters. Nevertheless, often several planners can solve
the same problem. For instance, several decision-making
approaches are applicable in self-adaptive cloud systems: case-
based reasoning [9], automated planning [14], and reinforce-
ment learning [15]. Υ encodes such restrictions, naturally
constraining the domain of planner functions in Definition 13.

Definition 15 (Utility of partial execution). The utility of
partial execution Uep for a pair of a problem and a planner is
a function Uep ∶ Ψξ ×Ξ× S → R maps a planner ρ, a planning
problem ξ, and a state send to the utility of the partial execution
ep induced by them: Uep(ρ, ξ, send)

def= Ue(ep).

Definition 16 (Utility of planner). The utility of a planner ρ,
given a compatible ξ, is a function Uρ ∶ Ψ×Ξ→ R that returns
a real number — the performance of plan ρ(ξ). This function is
defined via the utility function for plans: Uρ(ρ, ξ) def= Uπ(ρ(ξ)).

Definition 17 (Utility of planning problem). The utility of a
planning problem is a function Uξ ∶ Ξ ×Ψ → R that, given ξ
and Ψξ, returns the maximum utility among all Ψξ:

Uξ(ξ,Ψξ) def= max
ρ∈Ψξ

Uρ(ρ, ξ)

Let us illustrate these definitions with the cloud-based
system from Section I-A. To adapt that system, Ψ contains
two planners, based on Markov Decision Processes (MDP,
ρmdp) [18] and case-based reasoning (CBR, ρcbr). MDP is
slow but optimal, suited for ξ with a predictable and stable o.
CBR is fast but sub-optimal, suited for ξ with an unpredictable
and rapidly changing o. To carry out hybrid planning, the self-
adaptive system will find the best combinations of these two
planners by selecting appropriate ξ in Ξ and assigning them
to the most fitting planner in advance (to account for their
planning delays).

III. DECOMPOSITION OF THE HYBRID PLANNING PROBLEM

We start with a central concept of the paper — a hybrid
plan.

Definition 18. [Hybrid plan] A hybrid plan is a function ω ∶
S → A based on partitioning of the full state space S into n
partitions Si, each governed by a planner ρi.

∃n ∶ N ⋅ ∀i ∶ 1..n ⋅ There exists a number
∃πi ∶ Π,Si ⊆ S ⋅ Si ≠ ∅ ∧ of plans and state partitions
( ⋃
j∶1..n

Sj = S) ∧ ( ⋂
j∶1..n

Sj = ∅) that partition the state space

such that three conditions hold:

Condition 1: actions in partitions are governed by their plans.
∀s ∶ Si ⋅ ω(s) = πi(s).

Condition 2: plans come from solving planning problems.
∃ξi ∶ Ξ, ρi ∶ Ψ ⋅ πi = ρi(ξi).

Condition 3: partitions are totally ordered in time.
∀k, l ∶ 1..n, s1 ∶ Sk, s2 ∶ Sl ⋅
k < l Ô⇒ τ(s1) < τ(s2),

For example, a hybrid plan that switches between MDP and
CBR planners in response to an emergency would have two
partitions: Smdp containing the times before the emergency
and Scbr containing the times after. A plan from ρmdp would
provide actions for states in Smdp, and a plan from ρcbr would
provide actions in Scbr.

The rest of this section describes the theoretical steps to
obtain ω through Si, πi for i ∶ 1..n in Definition 18.



Fig. 1. Decomposition of the hybrid planning problem.

Definition 19 (Hybrid Planning Problem). The Hybrid Plan-
ning Problem (HPP) is, given an initial planning problem ξi,
a set of planners Ψξ, and a compatibility relation Υ, find a
hybrid plan that maximizes the utility of execution Ue.

This paper’s central contribution is a decomposition of HPP
into four sub-problems (starting from the end, see Figure 1):

1) Path Selection (PTHSEL): what is the sequence of
planner invocations on planning problems that yields
the maximum utility?

2) Reachability Graph Construction (GPHCON): what plan-
ning problems are reachable by solving other problems?

3) Planner Assessment (PLRAST): what are the quality and
timeliness of each planner on a given planning problem?

4) Problem Selection (PRBSEL): what planning problems
to solve?

A. Path Selection
The Path Selection (PTHSEL) subproblem is, informally, to

find what sequence of plans from different planners yields the
highest utility. This sequence of plans constitutes a hybrid plan
ω according to Definition 18. The total number of plans in the
sequence would represent the value of n (possibly infinite). A
plan πi (ith in the sequence) can, given an environment from
the planning problem, be realized to an execution, which in
turn can be mapped to a sequence of states. Therefore, each
plan πi can be mapped to the sequence of states.

The question posed in PTHSEL is where one execution ends
in the sequence of states, and another one begins. To answer
this question, one has to provide a sequence of partitions Si
that determine each plan’s/execution’s boundary, according to
Condition 1 of Definition 18. To satisfy Condition 2, we map
these partitions to planning problems and planners. To construct
this mapping, we formalize an input structure to PTHSEL that
encodes potential choices of problems and planners.

Definition 20 (Reachability graph). A reachability graph Γ
is a directed graph defined as a tuple (V ,E ,V i). V is a set
of nodes, where each node v is a tuple (ξ, ρ, d) combining
a problem, a planner, and a deadline d, which is the worst-
case time instant when ρ needs to be invoked on ξ (detailed
in Section III-C). The set of edges (E ⊆ V × V ) describes
reachability between nodes in terms of executions: an edge ε =
(v1, v2) means that executing v1.ρ(v1.ξ) with v1.ξ.o reaches
si of v2.ξ. Initial nodes (V i ⊆ V ) indicate the potential starts
of executions in Γ.

Paths (i.e., sequences of edges) in Γ mimic executions of
the system, guided by a sequence of plans. A path indicates
a sequence of switches between planning problems, which
can be mapped to plans πi and partitions Si in Definition 18.
PTHSEL selects a path based on the utility of its execution. We
introduce several auxiliary concepts to express that selection.

Definition 21 (Edge execution). Edge execution is a function
η ∶ E → E that maps an edge ε to its execution e. Edge ε =
(v1, v2) maps to its execution from the initial state of planning
problem in the first node to the initial state of the planning prob-
lem in the second node: η(ε) =R(v1.ρ(v1.ξ), v1.ξ.o, v1.ξ.s

i)
which is truncated at v2.ξ.s

i.

Since R is truncated at v2.ξ.s
i, an edge execution could also

be represented as a partial execution ep = ⟨v1.ξ.s
i, . . . , v2.ξ.s

i⟩.
Definition 22 (Path execution). Path execution is a function η ∶
En → E maps a path to its execution. A path κ = ⟨ε1, . . . , εn⟩
maps to an execution composed of concatenation of edges’
executions: η(κ) = η(ε1) ⌢ . . . ⌢ η(εn).

The utility of a path in Γ builds upon the utilities of its
edges, which in turn build on the utilities of its executions.

Definition 23 (Utility of edges and paths). The utility of an
edge ε is a function Uε ∶ E → R that maps ε to the utility of
the edge’s execution. Formally, Uε(ε) def= Ue(η(ε)). Similarly,
the utility of a path κ = ⟨ε1, . . . , εn⟩ is a function Uκ ∶ En → R
that is defined as Uκ(κ) def= Ue(η(κ)).

Since execution for an edge ε = (v1, v2) could be represented
as a partial execution, Ue(η(ε)) def= Uep(v1.ξ, v1.ρ, v2.ξ.s

i).
We are now ready to formalize PTHSEL.

Definition 24 (PTHSEL). The Path Selection (PTHSEL) sub-
problem is, given a reachability graph Γ, to find a maximal-
utility path starting from an initial node:

PTHSEL(Γ) def= arg max
κ∈En

Uκ(κ).

Among the four sub-problems of HPP, PTHSEL is the last
one to be solved before a hybrid plan is ready. Once an optimal
path is found, it translates into plans and partitions (equal to the
number of nodes in the path) to define a hybrid plan. Due to the
strict time ordering of partitions (Condition 3 in Definition 18),
past plans cannot be directly reused.

To exemplify PTHSEL, consider a rapid spike in the request
arrival rate for the cloud-based system (Section I-A). PTHSEL
compares two paths: use ρmdp indefinitely, or initially use ρmdp
and later switch to ρcbr. If ρcbr yields larger utility on average
after the spike, PTHSEL would switch to it, thus improving
the system’s utility compared to the first path.

B. Graph Construction

The purpose of the Graph Construction (GPHCON) subprob-
lem is to build reachability graph Γ to be used by PTHSEL.
As Figure 1 shows, to build this graph GPHCON relies on
two inputs: planning problems Ξ that need to be solved (from
PRBSEL) and compatible planners Ψξ. For each pair of ξ ∈ Ξ
and ρ ∈ Ψξ, PLRAST provides utility of partial execution Uep
and invocation deadline d.



Nodes of Γ are constructed as follows: For a given ξ, we
create a node for each planner ρ compatible with ξ. In each
node, we add deadline d of the planner. We repeat this process
for each planning problem received from PRBSEL. Thus, we
obtain a set of nodes such that each node is a triple (ξ, ρ, d).

An edge could be constructed between a pair of nodes v1

and v2, if and only if two conditions are met:
1) Preemption: after executing the plan from v1, the system

should reach the initial state of the planning problem
in v2. Only then the plan for v2 can take over from
the previous plan. Formally, v2.ξ.s

i = last(v1.ρ(v1.ξ))
where last is a function that returns the end state of a
plan execution.

2) Timing: the plan in v2 should be ready once the
execution comes to it. Hence, v2.ρ has to be triggered
before the system faces v2.ξ. This needs to be at
least the worst case planning time for v2.ρ to solve
v2.ξ. Mathematically, the only reason an early enough
time will not be found is when t < 0. Therefore, the
condition for ρ having enough time before its execution is:
d(ρ) > ∑

εi∈⟨ε0,...εn⟩
duration(R(edgei)), where function

duration returns the duration of execution for an edge.
Now, we are ready to define GPHCON formally.

Definition 25 (GPHCON). The Graph Construction (GPHCON)
problem is, given planning problems Ξ, planners Ψξ , respective
utility Uep , and deadline d functions, find a reachability graph
Γ with edges satisfying the preemption and timing conditions.

To build a reachability graph, PRBSEL provides Ξ and Ψξ

whereas PLRAST provides Uep and d. In practice, GPHCON
is unlikely to be fully constructed for even moderately sized
problems. Therefore, the goal of implementations is to build
the most effective subgraph of Γ. The cloud-based self-adaptive
system can, for example, place nodes at times of large expected
changes in the incoming traffic. Edges can be made probabilistic
(based on historic information and heuristics) to avoid requiring
exhaustive traversal of the state space.

C. Planner Assessment

The Planner Assessment (PLRAST) subproblem is, given
planning problem ξ and a set of compatible planners Ψξ, rate
the performance of these planners on that problem. These
ratings are an essential part of GPHCON (Section III-B), and
obtaining them is a difficult and separate subproblem of HPP.

For hybrid planning, we are interested in two aspects of
planners’ performance: quality and timeliness. We model
quality with propagating utility functions (i.e., linked to
executions) defined in Section II. For timeliness, we adopt
the worst-case model of time: we assume the knowledge of the
maximum time needed by a planner for a planning problem.
Thus, PLRAST requires finding the worst-case planning time
for each planner.

The plan’s quality and timeliness are determined by the
planner and the planning problem. Therefore, the inputs to
PLRAST are the planning problem ξ and a set of compatible
planners Ψξ.

For an input planning problem, PLRAST has two outputs: (1)
utility function Uep for partial executions of plans from each
compatible planner, (2) deadline d ∶ Ψξ ×Ξ→ R>0, a function
that returns the worst-case planning delay for the planning
problem with respect to each compatible planner.

Definition 26 (PLRAST). The Planner Assessment (PLRAST)
problem is, given planning problem ξ and compatible planners
Ψξ , find the utility of partial execution Uep and deadline d (ρ)
for each planner ρ ∈ Ψξ on ξ.

To solve PLRAST in practice, one needs to create algorithms
to measure utilities and deadlines for planners. To the authors’
knowledge, the majority of existing planner implementations
do not provide up-front guarantees on either of these two
characteristics. Therefore, two general approaches are possi-
ble: (i) design new planners with guarantees of quality and
timeliness on given planning problems, and (ii) determine the
characteristics of existing planners. While (i) is self-evident, (ii)
can be accomplished in a number of ways—from theoretical
modeling to empirical profiling. This formalization of PLRAST
explains how to evaluate such solutions in a uniform way.

D. Problem Selection

The Problem Selection (PRBSEL) subproblem is to choose
which planning problems should be solved at a given time. At
every moment, an infinite number of planning problems can
be formulated: according to Definition 12, one can arbitrarily
select the initial state, the subset of actions, the subset of
the state space, the environment’s choices of events, and the
utility function. Hence, PRBSEL reduces all possible planning
problems to a smaller set of problems that is fed into GPHCON.

As time passes, some initial states become unreachable, and
those problems become obsolete. Thus, the set of relevant plan-
ning problems changes. Due to delays in planning, proactive
planning is needed for problems in the future, so that plans are
ready by the time the execution approaches those problems.

Definition 27 (Time-bound Ξ). Given a time t, a time-bound
planning problem set Ξt is a set of planning problems whose
initial states have time t: Ξt = {ξ ∶ Ξ ∣ τ(ξ.si) = t}.

Each time-bound set Ξt needs to be filtered through the
compatibility relation Υ: only problems that have at least one
compatible planner need to be allowed. The result is a filtered
time-bound set of planning problems: Ξt,Υ = {ξ ∶ Ξ ∣ Ψξ ≠ ∅}.

An optimal hybrid planner executes the plan from the highest-
utility planning problem at each moment. For a moment t, we
select the problems from Ξt,Υ that yield the maximum utility.
To define an optimal hybrid planner, this subset needs to be
found for each possible t. Otherwise, we would have to consider
nodes in Γ that are guaranteed to not yield an optimal ω.

The inputs to PRBSEL are the initial problem ξi, the set
of planners Ψ, and the compatibility relation Υ. The output
of PRBSEL is a set of planning problems Ξ∗

t,Υ ⊆ Ξt,Υ that
will be solved, and their plans will inform the behavior of the
self-adaptive system.

Definition 28 (PRBSEL). The Problem Selection (PRBSEL)
subproblem is, given the initial planning problem ξi, the



set of planners Ψ, and the compatibility relation Υ, select
the maximum-utility planning problems with at least one
compatible planner for each time instant.

∀t ⋅Ξ∗
t,Υ = arg max

ξ∈Ξt,Υ
Uξ(ξ)

Two obstacles make practical implementation of PRBSEL
difficult. First, it is impossible to decide the best planning
problem for each time moment. Therefore, implementations of
PRBSEL would need a mechanism to choose time moments, for
example periodically. The second practical issue for PRBSEL
is the mutual dependency between PRBSEL and PLRAST: a
problem cannot be evaluated without planners, and planners
— without a problem. We accept this dependency in theory,
hoping it will be resolved in practice using approximations.
For example, one can use machine learning to predict which
planners yield the most utility on each problems.

IV. DISCUSSION

We now discuss two characteristics of our hybrid planning
formalization: its use for an experimental validation of hybrid
planners, and its generality.

A. Evaluation of Hybrid Planners

The proposed formalization uses two idealized notions:
utility of plans/planners/problems and reachability between
nodes containing problems and planners. We use the former to
measure “goodness” of decisions in subproblems. We use the
latter to combine plans into a hybrid plan with guaranteed
preemption and timing. While these idealizations are not
directly implementable, they do provide a uniform way to
evaluate future solutions to the subproblems of hybrid planning.

To estimate the difference between an optimal planner and
an implementation, our utility and reachability notions enable
an evaluation workflow: (1) implement a hybrid planner and
a simulation of a system; (2) obtain a hybrid plan ω and
execute it with different o, logging complete execution traces;
(3) calculate utility of traces according to Definition 6; (4)
reconstruct a reachability graph for each scenario; (5) perform
what-if simulations to find (a) more optimal or timely paths, (b)
other planning problems from Ξ∗

t,Υ, (c) missing or inaccurate
ε, and (d) other opportunities for improvement of ω; (6) The
identified improvements characterize the delta between the
empirical and theoretical utilities.

This is a repeatable evaluation procedure for hybrid planners,
grounded in theoretical concepts. It is applicable to a wide
variety of planner combinations, including prior work on com-
bining contingency plans [16]. Although such experiments can
be computationally expensive, they yield valuable insights into
the behavior and potential improvements of hybrid planners.

B. Generality

We acknowledge that while no other formalization of hybrid
planning exists, such formalizations might be possible. A
distinctive feature of our formalization is its parsimony: we
use only the essential concepts broadly applicable to planners,
and we introduce the least restrictive assumptions that enable
precise and substantial subproblems. Below we summarize our
assumptions to assess their scope of validity.

Fixed set of planners: we consider realistic situations where
planning tools are known before they are executed in a system.
This assumption is valid in practically all contexts where
planners are used today.

No instantaneous actions: in practice, no action takes exactly
zero time to execute. Therefore, this assumption supports the
generality of the formal model.

Markovian domain: many of the domains explored by the
self-adaptive community are assumed to be Markovian [5], [12],
[15] (even though not always explicitly stated). Therefore, even
with this assumption, the proposed formal model is applicable
to various domains, particularly those investigated by the self-
adaptive community.

Instantaneous solutions to subproblems: we consider the
delays of actions and planning itself, but not the delays
of solving PTHSEL, GPHCON, PLRAST, and PRBSEL. This
assumption holds if solving these problems takes negligible
time compared to the time scale of planning and execution —
or if the solutions are pre-computed offline.

Known worst-case planning time: currently most planners
cannot provide a hard guarantee on their planning time. We
hope, however, that extensive up-front profiling of planners
can lead to strong empirical guarantees on worst-case plan-
ning times. The goal of relaxing this assumption opens a
promising direction of future work—predictable planners in
self-adaptation.

Known utility of states/executions: this assumption holds in
most contexts of self-adaptation in software systems, except
when experimental data is incomplete or inaccessible. One
example is complex cyber-physical systems where the physical
state may be difficult to monitor and log entirely.

To summarize, this paper decomposes the sophisticated
problem of hybrid planning into four computational subprob-
lems. We expect that, due to the complexity of the problem,
hybrid planning implementations will vary in formalisms and
algorithms that address the subproblems. The formal definitions
offered in this paper can serve as a unifying evaluation
framework for practical solutions to hybrid planning.

We would like to encourage the self-adaptive systems re-
search community to actively participate in creating engineering
solutions to the subproblems of hybrid planning. The prior
work [13], [16] shows that hybrid planning is a promising
way to improve self-adaptation, thus increasing the potential
for industrial adoption. However, the complexity of hybrid
planning creates a possibility for many diverse approaches.
Therefore, extensive research is needed to provide efficient,
usable, and general approaches to combine multiple planners
for self-adaptation.
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