
Formal Methods in Computer-Aided Design 2023

Fortis: A Tool for Analysis and Repair of Robust
Software Systems

Changjian Zhang
Carnegie Mellon University

Pittsburgh, PA USA
changjiz@andrew.cmu.edu

Ian Dardik
Carnegie Mellon University

Pittsburgh, PA USA
idardik@andrew.cmu.edu

Rômulo Meira-Góes
The Pennsylvania State University

State College, PA USA
romulo@psu.edu

David Garlan
Carnegie Mellon University

Pittsburgh, PA USA
dg4d@andrew.cmu.edu

Eunsuk Kang
Carnegie Mellon University

Pittsburgh, PA USA
eunsukk@andrew.cmu.edu

Abstract—This paper presents Fortis, a tool for automated,
formal analysis and repair of robust discrete systems. Given a
system model, an environment model, and a safety property,
the tool can be used to automatically compute robustness as
the amount of deviations in the environment under which the
system can continue to guarantee the property. In addition,
Fortis enables automated repair of a given system to improve
its robustness against a set of intolerable deviations through
a process called robustification. With these techniques, Fortis
enables a new process for developing robust-by-design systems.
The paper presents the overall design of Fortis as well as the
key details behind the robustness analysis and robustification
techniques. The applicability and performance of Fortis are
illustrated through experimental results over a set of case study
systems, including a radiation therapy system, an electronic
voting machine, network protocols, and a transportation fare
system.

I. INTRODUCTION

Typical verification tasks involve the following question:
Given a model of a system (M) and an environment (E), does
the system satisfy a desired property (P) under the environ-
ment (i.e., M∥E |= P)? The model E here captures various
assumptions that the system makes about its environment to
establish P . For example, such assumptions may state that
a human operator in a safety-critical system (e.g., a medical
device) performs a set of actions in an expected order, or that
the underlying network in a distributed system is reliable and
delivers messages correctly from one node to another.

In practice, once the system is deployed, the actual envi-
ronment may deviate from this model, either due to modeling
errors, faults, or natural changes in the environment. For
example, the operator may inadvertently commit errors from
time to time (e.g., omitting or repeating an action); the network
might experience an unexpected disruption and fail to guar-
antee reliable delivery (e.g., losing or duplicating messages).
Ideally, a system that is robust would continue to ensure its
most critical properties even under possible deviations in the
environment.

In this paper, we present Fortis1, a tool for formal analysis
and repair of robust software systems. Our tool is based on a
formal definition of robustness for discrete systems introduced
in our prior work [1]: Given system M , environment E (both
specified as a labeled transition system (LTS)) and safety
property P , the robustness of the system, denoted ∆, is defined
as the set of all possible deviations in E under which M
continues to satisfy P . More specifically, ∆ consists of traces
that do not belong to the trace set of E, capturing additional
environmental behaviors beyond the normative environment.
For example, if M describes the design of a medical system
(e.g., radiation therapy system), E the expected behavior
of the human operator, and P a safety requirement (e.g.,
“Patients should be protected from radiation overdose”), ∆
would represent the set of possible operator errors under
which the system can still ensure safety. Conceptually, ∆
represents the safe operating envelope of the system: As long
as the environmental deviations remain within this envelope,
the system can guarantee P .

Building on this definition, Fortis provides various types of
analysis tasks to support rigorous design and analysis of robust
systems. First, given M , E, and P , Fortis can be used to au-
tomatically compute ∆ as a qualitative measure of the system
robustness. Our tool can also be used to compute deviations
that lie outside of ∆ (which we call intolerable deviations),
showing how P may be violated when the environment moves
outside of the operating envelope. In addition, given a pair of
alternative system designs, M1 and M2, Fortis can also be used
to formally compare the two with respect to their robustness
(i.e., compute a set of deviations that one design can tolerate
but the other cannot).

Once the above analysis reveals that the given system is
not robust against certain deviations, the developer may wish
to modify M to further improve its robustness. To support
this task, Fortis also provides a type of system repair called
robustification [2]: Given M , P , E, and a set of intolerable

1https://github.com/cmu-soda/Fortis

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://github.com/cmu-soda/Fortis
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

InPlace OutOf
Place

E

X

Editing

Confirm
Xray

Confirm
Ebeam

Fire
Xray

Fire
Ebeam

Beam
Delivered

BB

EnterEnter

EX

UpUp

UpUp

Enter

NotSet

Xray
Mode

Ebeam
Mode

SwitchTo
Ebeam

SwitchTo
Xray

X E

SetSet

(b) Beam Setter (MB)

(a) Treatment Interface (MI) (c) Spreader (MS)

Select
Mode

Confirm
Mode

FireBeam

Task
Complete

X E

Enter

B

(d) Operator Task (E)

XE

X E

X E

Editing

Confirm
Xray

Confirm
Ebeam

Fire
Xray

Fire
Ebeam

Beam
Ready

SetSet

EnterEnter

EX

UpUp

UpUp

B

(e) Redesigned Interface (M'I)

Beam
Delivered

Enter

B B

Fig. 1. Labeled transition systems for a radiation therapy system (M = MI∥MB∥MS).

deviations, δ̄ such that M∥E′ ̸|= P (where E′ = E ⊕ δ̄ is the
deviated environment), the goal is to synthesize a more robust
system, M ′, such that M ′∥E′ |= P .

As far as we are aware, Fortis is the first tool that is
capable of providing the types of robustness analysis and repair
described above. Compared to the prototypes presented in our
prior publications, additional engineering effort has been taken
to integrate them into a uniform framework. Together with
these techniques, we believe Fortis enables a new methodology
for developing robust-by-design systems. Developers can start
with an initial design that guarantees its desired properties
under the normative environment. Then, they can use Fortis
to understand the robustness of the initial design and generate
the deviations that it cannot tolerate. Finally, developers can
decide which of these deviations the system should be able to
tolerate, and use Fortis to automatically generate a more robust
design. Developers may iterate this process for multiple times
until a satisfactory design is met.

To evaluate the tool, it has been applied to a wide range of
case study systems, including a radiation therapy system (sim-
ilar to the well-known Therac-25 system [3]), an electronic
voting system, network protocols, an infusion pump, and a
fare collection protocol used in a public transportation system.
Our experiments show that Fortis can automatically compute
robustness for complex system models under several seconds,
and also synthesize repairs for most of the case studies under
a set timeout.

The rest of the paper is structured as follows. We first
demonstrate use cases of Fortis using an example involving
a radiation therapy system (Section II). We then present an
overview of the tool architecture (Section III) and describe the
key details of the analysis and robustification techniques (Sec-
tion IV). Next, we illustrate the applicability and performance
of Fortis over the case studies (Section V). We conclude with
the related work (Section VI) and a discussion of limitations
and possible extensions (Section VII).

II. MOTIVATING EXAMPLE

Consider a radiation therapy machine similar to the well-
known Therac-25 machine [3]. Figure 1 shows the labeled
transition systems of the main system components, including
(a) Treatment Interface (MI), which allows the operator to
choose the radiation mode and fire the beam, (b) Beam
Setter (MB), which switches between the two radiation modes
(Electron and X-ray), and (c) Spreader (MS), which is inserted
during the X-ray mode to attenuate the effect of the high-
power X-ray beam and limit possible overdose (X-ray delivers
roughly 100 times higher level of current than the Electron
beam). The overall system is the composition of the three
components, i.e., M =MI ||MB ||MS .

An important safety requirement for the system is that the
spreader must be in place when the beam is delivered in the X-
ray mode. This requirement can be formally defined in linear
temporal logic [4] as: G(BeamDelivered ∧ XrayMode ⇒
InP lace). Furthermore, the task to be carried out by the
operator is specified as an environment model (E) in Figure
1(d): In the normal treatment process, the therapist selects the
correct mode for a given patient by pressing either X or E,
confirms the mode by pressing Enter, and finally initiates the
therapy by pressing B.

Applying a verification technique such as model check-
ing [5] would show that the above system satisfies the safety
property under the normative operator behavior, i.e., M ||E |=
P . Beyond this standard verification task, Fortis offers the
following additional tasks:

a) Computing robustness: In addition to stating that M
satisfies P under E, Fortis can be used to generate the
set of all deviations (i.e., environmental traces that do not
belong to the behavior of E) under which the system can
still guarantee P . This set captures the overall robustness of
the system, and can aid the developer in understanding the
system’s ability in handling deviations in the environment. In
the radiation therapy system example, one of the deviations
that Fortis generates is ⟨X,B⟩, which depicts the operator

omitting to confirm the radiation mode before firing; the
system guarantees P even under a new environment E′ where
this trace has been added as an additional behavior.

b) Generating intolerable deviations: Complementary to
the previous analysis, Fortis can also be used to generate
deviations for which the system is not able to guarantee
P . In the radiation therapy example, one such deviation is
⟨X,Up,E,Enter, B⟩, depicting a scenario where the operator
accidentally selects the X-ray mode and corrects the mistake
by pressing Up and then E. When the operator presses B to
fire the beam, the beam setter might still be in transition from
X-ray to the Electron mode (in state SwitchToEbeam in MB ,
Figure 1(b)) while the spreader is out of place, causing P to
be violated. The output from this analysis can help identify
parts of the system design that can be made more robust.

c) Comparing designs: Given two different versions of a
system (e.g., Therac-25 and its predecessor, Therac-20, which
was known to be safer thanks to an additional hardware
interlock that was subsequently removed [3]), Fortis can also
be used to formally compare the two with respect to their
robustness. For example, Fortis would show that Therac-20 is
strictly robust than Therac-25 by generating a deviation (e.g.,
⟨X,Up,E,Enter,B⟩) for which the former can guarantee P
while the latter cannot.

d) Robustifying the system: Fortis can be used to au-
tomatically improve an existing design through a process
called robustification: If M is not robust against some given
set of deviations (δ̄), generate a more robust design, M ′,
that can satisfy P under δ̄ (i.e., M ′ is strictly more robust
than M). For example, given deviation ⟨X,Up,E,Enter,B⟩,
Fortis automatically synthesizes M ′ = M ′

I∥MB∥MS ; this
new design, M ′, guarantees the safety property by preventing
the operator from firing the beam until the mode switch has
completed (i.e., state BeamReady), as shown in Figure 1(e).

III. OVERVIEW OF FORTIS

Figure 2 shows the overall architecture of Fortis. Given
LTS-based specifications of machine M , its normative envi-
ronment E, and safety property P as input, and the Model
Parser compiles them into our internal data structure for LTS.
Depending on the type of task that the user wishes to perform,
the input models are then passed onto Robustness Analysis or
Robustification.

a) Robustness Analysis: To compute robustness, we first
generate the weakest assumption of M with respect to environ-
ment E and property P . In assume-guarantee style of reason-
ing [6], the weakest assumption captures the largest possible
environmental behavior under which the machine satisfies a
given property. Then, robustness, denoted ∆, is computed as
the set of traces that are in the weakest assumption but not in
the expected environment E. In general, ∆ may be infinite,
and not in a form that is easily comprehensible by the user.
Thus, we partition ∆ into a finite set of equivalence classes,
each of which contains traces that describe the same type of
deviation (e.g., the type of user error where one omits an
action), and sample representative traces from those classes.

Finally, if a deviation model is provided, we use it to generate
explanations that describe how the environment may deviate
from its expected behavior in a particular way. The final output
is a set of pairs of a representative trace and its corresponding
explanation. Section IV-A describes some of these steps in
more detail.

b) Robustification: To robustify a machine, the user
specifies a set of intolerable deviations (δ̄), which are then used
to transform the normative environment (E) into a deviated
environment (E′). Note that the robustness analysis module
can be used to generate all the intolerable deviations ∆̄,
which can help designers identify the undesirable deviations
of interest. Optionally, the user can also specify the preferred
behaviors (i.e., execution traces) expected to be retained in
the new design and the costs to control and observe events,
to generate repairs that are optimal with respect to these two
metrics.

Internally, Fortis leverages supervisory control theory [7]
to synthesize new designs; in particular, it currently uses the
state-of-the-art controller synthesizer called Supremica [8]. To
find optimal repairs, the Design Optimizer repeatedly invokes
the synthesizer for different combinations of the preferred
behaviors and the event costs, exploring the multi-objective
space to generate Pareto-optimal solutions [9] as the final
output of the tool (more details in Section IV-B).

c) Bridging Robustness and Robustification: In addition
to the implementation of the two techniques proposed in our
prior work, Fortis also provides an integration of them that
bridges the gap to close the loop for robust-by-design de-
velopment process, represented as the dashed line connecting
the two modules in Figure 2. Specifically, it enables the user
to first compute the robust deviations (∆) and intolerable
deviations (∆̄); and after the user has decided on the deviations
that they want the system to be robust against, it can then
generate the corresponding deviated environment model (E′).
Finally, this deviated model can be used as the input to
robustify the system design.

IV. ANALYSIS AND ROBUSTIFICATION METHODS

In this section, we provide key implementation details
behind the robustness analysis, robustification techniques, and
their integration in Fortis.

A. Robustness Analysis

a) Robustness Computation: In our definition [1], the
robustness of machine M with respect to environment E and
property P (denoted ∆(M,E,P)) is defined as the maximal
set of traces that do not cause a property violation and do
not belong to the trace set of the normative environment.
This set is computed by calculating the difference between
(1) the weakest assumption of M w.r.t. E and P , and (2) the
environment E, i.e., ∆(M,E,P) = beh(WM,E,P) \ beh(E),
where beh(·) is the set of all traces of a given LTS and
WM,E,P is the weakest assumption. Specifically, Fortis uses
the approach developed by Giannakopoulou et al. [10] to
compute the weakest assumption as an LTS.

Fig. 2. The architecture of Fortis.

b) Robustness Comparison: Similar to robustness com-
putation, given two designs M1 and M2, Fortis leverages their
weakest assumptions to compare their robustness. In particular,
given machine M1, M2, and the same environment E and
property P , the robustness comparison is achieved by:

∆(M1)−∆(M2) = beh(WM1,E,P) \ beh(WM2,E,P)

where WM1,E,P and WM2,E,P are the weakest assumptions
for M1 and M2 with respect to E and P , respectively.

c) Robustness Representation: In general, the set of
traces that represent ∆ may be infinite, and an LTS-based
representation may not be readily comprehensible by the user,
even for relatively simple models like the radiation therapy
machine. To address this, Fortis generates a succinct and finite
representation of ∆. It groups the traces in ∆ into a finite set
of equivalence classes Πs,a, where s is a state that directly
leads to a violation of E by taking the transition a (note that ∆
contain traces that belong to WM,E,P but not in E). Therefore,
Πs,a describes a class of robust traces that share the same
normative behaviors in E that all end in state s and deviate
from E by the same event a.

Finally, from each equivalence class, we sample a single
representative trace that represents this class. In particular,
the representative trace for Πs,a is generated by finding the
shortest trace in WM,E,P from the initial state to state s and
then appending event a to it. For example, in the radiation
therapy machine, ⟨X,B⟩ represents the equivalence class of
behaviors that deviate in action B from state sX , where sX is
the state reached by the normative behavior ⟨X⟩ and B is the
first deviated action leading to a trace not defined in E. The
final output from this step is a finite set of representative traces
that describe different types of environmental deviations.

d) Deviation Explanation: Representative traces describe
how the environment deviates from the expected behavior
as observed by machine M . However, they do not describe

the internal faults within the environment that cause these
deviations in the first place. For example, it is unclear what
kind of faults cause the deviation of ⟨X,B⟩. If a deviation
model that contains these internal events is provided by the
user, Fortis uses it to generate an explanation of how a
particular deviation arises due to an internal behavior of
the environment. In particular, given deviation model D and
representative trace σ, an explanation is generated by finding
trace σexp in D that is equivalent to σ when projected over the
observable events in M but contains additional faulty events.

A deviation model is created by augmenting the normative
environmental model E with additional transitions on faulty
events. For example, a deviation model for the radiation
therapy machine may specify that from state ConfirmMode
in E (Figure 1(d)), the operator might commit a type of
error called omission error [11], i.e., omitting Enter and
pressing B; this would be specified as an additional transition
from ConfirmMode to FireBeam on an internal faulty event
Omission. Then, Fortis would generate an explanation for the
representative trace ⟨X,B⟩ as ⟨X,Omission,B⟩. In [1], it is
further described how a deviation model can be automatically
generated by applying domain-specific patterns of deviations
(e.g., patterns of common human errors [11]) to the normative
environment E.

B. Robustification

Fortis finds not just any solution to the robustification
problem, but optimal repairs of M . In particular, it attempts
to optimize two different quality metrics: (1) the amount of
behaviors retained from M to new design M ′ and (2) the cost
of modifications needed to achieve M ′. Specifically, for (1),
we introduce the notion of preferred behaviors D, which are
specified as traces and represent operational scenarios that the
user wishes the new design to retain. For (2), we introduce
the notion of controllable Ac and observable Ao events that
indicate whether M ′ can control and observe additional events,

respectively, for the purpose of robustification. In addition, the
user can optionally assign a cost to these events, to distinguish
events that are more costly to control or observe.

These two metrics lead to conflicting objectives: With
additional controllable and observable events, the new design
can preserve more behaviors but the modification cost also
increases. Thus, finding optimal repairs is a multi-objective
optimization problem, where the goal is to generate a set
of Paret-optimal solutions [9]. Fortis implements a novel
algorithm to generate such solutions, using controller synthesis
as a primitive operation. At high-level, the Design Optimizer
first attempts to synthesize a controller that preserves the
maximum number of preferred behaviors (Dmax ⊆ D) with
all controllable and observable events (Ac and Ao). Then,
the optimizer incrementally removes elements from Dmax to
find solutions with a lower modification cost. In particular,
given a particular subset of preferred behaviors D′ ⊆ Dmax,
it searches for a controller that uses a minimal subset of the
controllable and observable events.

For the radiation therapy system, one possible repair that
Fortis generates results in the machine simply disabling action
Up in state ConfirmXray, to prevent the operator error from
occurring in the first place. While this solution technically
achieves the safety property, it is arguably undesirable, since
it prevents the operator from switching the radiation mode. To
rule out such solutions, the Fortis user may specify preferred
behaviors as traces ⟨X,Up⟩, ⟨E,Up⟩, stipulating that the
operator should be able to select Up after X or E to change
the mode. In addition, the user may assign a cost to event Set
to reflect the cost of making it controllable or observable by
the interface (MI) or the spreader component (MS).

Given the additional inputs on preferred behaviors and costs,
as an alternative solution, Fortis generates a repair like the
one in Figure 1(e); this solution retains the ability for mode
switching, while being more costly since it involves the system
observing an additional event, Set, to synchronize on the
completion of mode switching. The user of Fortis can examine
these alternative solutions and select the final one depending
on the trade-offs between the two metrics that they are willing
to make.

C. Integration

Compared to the prototype implementations in our prior
work, Fortis integrates the two techniques into a uniform
framework, i.e., they accept the same formats of input model
files and can produce results in a uniform manner. Also,
we leverage Automatalib [12], a well-maintained open source
library for transition systems, to provide a common interface
for our internal representations for LTS, which implements
the CompactFSM data structure for efficient model manipula-
tions. Moreover, we replace some algorithm implementations
with more efficient data structures like BitSet (for NFA to
DFA conversion) to further improve the performance of the
computation process.

Fortis also bridges the gap between the robustness compu-
tation and robustification. In particular, after generating the

representative traces for robustness and intolerable deviations,
and their explanations given a deviation model D, the user can
select the deviations δ′ that the new design should be robust
against. For example, ⟨X,Commission, Up,E,Enter,B⟩ is
the explanation of an intolerable deviation for the radiation
therapy machine, which could be included in δ′ as the user
wishes the new design to be robust against it.

To robustify the system against δ′, Fortis can automatically
generate a new deviation model D′ such that it only includes
the deviations in δ′ (as the original D may include more than
one kinds of human errors, e.g., commission error, omission
error, or repetition error). Then, the user can use D′ as
the input to the robustification process to synthesize the new
design M ′.

V. EXPERIMENTS

In this section, we illustrate the applicability and perfor-
mance of Fortis through experiments over a set of case studies.

A. Implementation and Usage

Fortis leverages Automatalib [12] and LTSA [13] for model
specification and manipulation, and Supremica [8] for super-
visory control synthesis. It supports commonly used specifica-
tion languages such as AUT and FSM (through Automatalib)
and FSP (language used by LTSA) to specify and output
system models.

Currently, Fortis implements a command-line interface.
Users provide system and property specifications through
command-line arguments or a JSON configuration file, and the
tool produces computation results into command-line outputs.
For example, Figure 3 shows the input and output for robust-
ness computation and robustification of the radiation therapy
example.

B. Case Studies

a) Voting Machine: We consider a simplified design of
an electronic voting system (called ES&S iVotronic, described
in more detail in [14]) that was used in several state-wide
elections in the US. This system is particularly interesting to
study from the perspective of robustness, as it was susceptible
to an election fraud involving malicious election officials [15].
In this machine, for the last step of a voting process, the
voters were asked to confirm their vote by pressing the confirm
button. However, some voters would inadvertently forget to
do so before exiting the voting booth (committing what is
generally called post-completion error [16]). This would then
allow a malicious official to enter the booth, press back, and
then modify the vote to their liking. In our model, the property
to guarantee is that the machine should record each voter’s
selection exactly as made by that voter, and the intolerable
deviation of interest is voters omitting the confirmation step.
We successfully used Fortis to generate alternative designs that
would prevent malicious officials from modifying the vote
(e.g., keeping track of who enters the booth and disabling
confirm if an official is in the booth).

Run robustness computation
java -jar fortis.jar robustness -s sys.lts -e env0.lts -p p.lts -d env.lts
[INFO] BaseCalculator - Generating robust behavior representation traces by equivalence classes...
[INFO] BaseCalculator - Generating the weakest assumption...
[INFO] SubsetConstructionGenerator - Compose System and Property...
[INFO] SubsetConstructionGenerator - System: #states = 22, #transitions: 44
[INFO] SubsetConstructionGenerator - S||P: #states = 20, #transitions: 40
[INFO] SubsetConstructionGenerator - Pruning and determinising the model...
[INFO] Robustness - Total time: 00:00:00:021
[INFO] Robustness - Equivalence class ’EquivClass(s=1, a=up)’:
[INFO] Robustness - RepTrace(word=x,up, deadlock=false) => x,up
[INFO] Robustness - Equivalence class ’EquivClass(s=8, a=up)’:
[INFO] Robustness - RepTrace(word=e,up, deadlock=false) => e,up
...

Run robustification
java -jar fortis.jar robustify config-fast.json
...
[INFO] SolutionIterator - Start iteration 1...
[INFO] SolutionIterator - Try to weaken the preferred behavior by one of the 0 behavior sets:
[INFO] SolutionIterator - This iteration completes, time: 00:00:00:093
[INFO] SolutionIterator - Number of controller synthesis process invoked: 5
[INFO] SolutionIterator - New solution found:
[INFO] SolutionIterator - Size of the controller: 63 states and 130 transitions
[INFO] SolutionIterator - Number of controllable events: 4
[INFO] SolutionIterator - Controllable: [enter, fire_ebeam, fire_xray, setMode]
[INFO] SolutionIterator - Number of observable events: 8
[INFO] SolutionIterator - Observable: [b, e, enter, fire_ebeam, fire_xray, setMode, up, x]
[INFO] SolutionIterator - Number of preferred behavior: 4
[INFO] SolutionIterator - Preferred Behavior:
[INFO] SolutionIterator - x,up,e,enter,b
[INFO] SolutionIterator - e,up,x,enter,b
[INFO] SolutionIterator - x,enter,up,up,e,enter,b
[INFO] SolutionIterator - e,enter,up,up,x,enter,b
[INFO] SolutionIterator - Utility Preferred Behavior: 48
[INFO] SolutionIterator - Utility Cost: -1
...

Fig. 3. Fortis’ input and ouput for robustness computation and robustification of the radiation therapy system. For robustness computation, the log indicates
two of the representative traces found by Fortis, i.e., ⟨x, up⟩ and ⟨e, up⟩. For robustification, the log indicates one redesign found by Fortis where all preferred
behaviors are satisfied under the events given in the solution to be controlled and observed. The concrete redesign model is written to a model specification
file in the AUT format.

b) Network Protocols: Consider the problem of trans-
mitting a sequence of messages between a pair of nodes
(sender and receiver) in a specific order. We consider two
protocols for network communication: (1) A naive protocol
where the sender assumes a perfectly reliable communication
channel, and (2) the Alternate Bit Protocol (ABP) [17], which
is designed to guarantee integrity of messages over unreliable
channels (e.g., message loss or duplication). The normative
environment (E) here is the reliable channel, which relays (1)
a message from the sender to the receiver and (2) then an
acknowledgement from the receiver back to the sender. Our
notion of deviations can be used to capture different ways in
which an unreliable channel might behave, such as reordering
(e.g., from expected trace t = ⟨msg1, msg2⟩ to deviation
t′ = ⟨msg2, msg1⟩), losing (t′ = ⟨msg2⟩), or duplicating
messages (t′ = ⟨msg1, msg1, msg2⟩). In particular, we used
Fortis to formally compare the robustness of the two protocols,
to compute faults in the channel that ABP can handle but the
naive one cannot.

c) Oyster: We consider the Oyster card fare collection
protocol used in public transportation in London, UK (de-
scribed in [18]). In this system, the user taps their card on the
entry gate at the beginning of their journey and on the exit gate
at the end. The protocol also allows the user to pay their fare
through other means such as credit cards and mobile payments.

In the normative case, the user chooses the appropriate method
of payment, and taps in and out with the same method. The
property of interest here is avoiding card collision, where two
different methods of payment are used in the same journey.
For instance, the user may tap the Oyster card at the entry
gate but then (by mistake) use their mobile phone at the exit,
possibly being charged a higher fare than required.

d) Infusion Pump: We model an infusion pump machine
for dispensing medication to patients through tube lines [19].
The machine also includes a built-in battery that activates
when the power cable is unplugged, and an alarm that goes
off when the battery is low. Normally, the operator plugs
in the device, configures the medication dose and starts the
dispensation. Deviations here correspond to operator errors or
power loss. In particular, if the cable is accidentally unplugged
and battery runs out during dispensation continues, this might
cause serious medical accidents, such as overdose. Thus, the
property to be guaranteed here is that if the machine loses
power, it should immediately stop any on-going dispensation.
This case study is the most complex out of the ones that we
have done so far and is intended to demonstrate the scalability
of Fortis.

C. Experimental Results
For each of the above case studies, we used Fortis to

(1) compute the robustness of the system and (2) synthesize

TABLE I
EVALUATION RESULTS. ALL PROBLEMS WERE RUN ON A LINUX MACHINE WITH A 3.6GHZ CPU AND 24GB

MEMORY UNDER A 30 MINUTE TIMEOUT.

Robustness Computation∗ Robustification†

Naive With heuristics

|M ||P | Time (s) |D| |A| |M ||E′| #Syn. Time (s) #Syn. Time (s)

Therapy 20 0.025 4 5 21 32 0.812 6 0.469

Naive 41 0.029 2 8 14 1 0.226 1 0.242
ABP‡ 23 0.033 - - - - - - -

Voting-1∗∗ 53 0.033 1 13 12 2,576 24.100 9 0.507
Voting-2 277 0.066 1 23 31 - T/O 16 1.908
Voting-3 821 0.106 1 32 44 - T/O 21 20.172
Voting-4 1,829 0.188 1 41 57 - T/O - T/O

Pump-1 163 0.036 2 12 104 2,304 59.584 13 1.129
Pump-2 1,679 0.149 4 16 760 - T/O 17 10.817
Pump-3 19,435 1.227 6 20 6,248 - T/O 21 457.839

Oyster 1,729 0.280 2 4 900 16 1.799 1 0.686
∗ |M ||P | is the number of states of the composition of machine M and property P , and the worst-case

complexity of the computation is O(2|M||P |).
∗∗ In Voting-n, n represents the number of voters and officials in the system; similarly, n in Pump-n is the

number of the dispensation lines connected to the pump.
† |D| is the number of preferred behaviors, |A| the number of controllable and observable events with cost,
|M ||E′| the number of states of machine M composed with deviated environment E′. The size of the search
space is approximately O(2|D|+|A|+|M||E′|). #Syn. is the number of calls to the controller synthesizer.

‡ Robustification is not applicable to ABP as it already satisfies P under the given deviations.

robustified designs against a given set of intolerable deviations.
Table I summarizes the results from the experiments. For
robustness computation, although the worst-case complexity
is exponential to the size of the machine M and property P .
i.e., O(2|M ||P |), Fortis can efficiently compute robustness even
for a very large model like Pump-3 with 19,435 states in 1.227
seconds.

On the other hand, robustification is a much more complex
problem to solve with a much larger search space, where
the worst case complexity is exponential to the number of
states of machine M and deviated environment E′, plus the
number of preferred behaviors D and controllable/observable
events A, i.e., O(2|D|+|A|+|M ||E′|). For example, the worst-
case complexity for robustifying Pump-2 is about 6x10234.

In addition, we found that controller synthesis is often the
bottleneck. The time to solve one synthesis instance grows
quickly with the increasing size of the system. Moreover,
for the same problem, the synthesis becomes harder to solve
when fewer controllable and observable events are provided
(while minimizing the cost). Compared to naively searching
solutions with brute-force (shown under the Naive columns),
Fortis tackles the performance issue by introducing several
search heuristics for pruning the search space and reducing
the number of synthesis calls, which are described in more
detail in [2]. While we believe that Fortis performs reasonably
well on robustification of complex models, we plan to explore
alternative synthesis techniques (such GR(1) synthesis [20],
[21] or constraint-based methods [22]) to further improve its
performance.

VI. RELATED WORK

Techniques for reasoning about system robustness have been
investigated in prior works [23], [24], [25], [26], [27]. Most
of these works adopt a quantitative notion of robustness (e.g.,
given bounded perturbations in its input, a robust system
should ensure bounded changes in the output), while we use
a definition that is qualitative (i.e., additional behaviors that
a deviating environment may exhibit). We believe that the
two types of definitions are complementary: A quantitative
notion is well-suited for capturing numerical deviations in
physical or hybrid systems (e.g., a sensor noise), while our
approach is suitable for capturing deviations that occur in
discrete systems (e.g., human operator errors). In addition, our
notion of deviations generalizes the one in [28], [29], where
deviations are defined as additional transitions that may be
introduced into the environment.

Evrostos [30] is a tool for model checking systems against
rLTL [31], a variant of LTL that captures robustness. rLTL
enables specifications stipulating that “small” violations in
the environmental assumption should result in proportionally
“small” violations in the system guarantee. In particular, rLTL
leverages a multi-valued semantics to capture different levels
of property violation (e.g., given an expected property of
form Gψ, one possible weaker variant is F(Gψ)). Besides
the difference in the definitions of robustness used, Evrostos
and Fortis differ in their goals: The former is used to specify
and verify robustness as a specification, while Fortis is used
to extract robustness as a property of the system. However,
rLTL could potentially be used to characterize certain types
of environmental deviations that are temporal in nature.

Robustification in Fortis also shares similarities with model
repair techniques [32], [33], [34], [35], [14]. Among these,
the closest work to our approach is OASIS [14], which also
leverages controller synthesis to revise a machine to satisfy
a security property in a deviated environment. One major
difference is that Fortis uses semantic-based metrics (i.e.,
preserved behaviors and costs of events) to qualify solutions,
whereas these works do not take into account the cost of
changes (e.g., OASIS), or consider only syntactic changes to
the model (e.g., the number of modified transitions and states).

VII. CONCLUSIONS AND FUTURE EXTENSIONS

We have presented Fortis, an automated tool for formal anal-
ysis and repair of robust discrete systems. The tool supports
a rigorous methodology for designing robust systems, where
the developer starts with an initial design and a normative
environment, and then iteratively improve its robustness by
identifying undesirable environmental deviations and robusti-
fying the system against them. As far as we know, Fortis is
the first tool that provides these types of robustness analyses
and repair by offering a seamless workflow packaged into a
single tool.

There are a number of further tool extensions that we
plan to explore. Currently, Fortis supports safety properties
only. Adding liveness support will involve new theoretical
extensions; in particular, during robustification, new behaviors
may need to be added to the system (instead of restricting its
behavior, as currently done for safety), possibly leading to a
much larger search space. In addition, we also plan to add a
capability for synthesizing a robust system (M) from scratch
instead of modifying an existing one (M to M ′). Finally, as
discussed in Section V, we will explore alternative methods
for controller synthesis to further improve its scalability.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation award CCF-2144860, the NSA under Award
No. H9823018D0008, and the Office of Naval Research
under Award N00014172899. It was also supported by
the CAMELOT project (reference POCI-01-0247-FEDER-
045915) which is co-financed by the European Regional
Development Fund and the Portuguese Foundation for Science
and Technology under CMU Portugal. Any views, opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the organizations.

REFERENCES

[1] C. Zhang, D. Garlan, and E. Kang, “A behavioral notion of robustness
for software systems,” in ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2020, p. 1–12.

[2] C. Zhang, T. Saluja, R. Meira-Góes, M. Bolton, D. Garlan, and E. Kang,
“Robustification of behavioral designs against environmental devia-
tions,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), 2023, to appear.

[3] N. G. Leveson and C. S. Turner, “An investigation of the therac-25
accidents,” Computer, vol. 26, no. 7, pp. 18–41, 1993.

[4] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), 1977, pp. 46–57.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT
Press, 2001.

[6] D. Giannakopoulou, K. S. Namjoshi, and C. S. Păsăreanu, Composi-
tional Reasoning. Springer International Publishing, 2018, pp. 345–
383.

[7] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 3rd ed. Springer, 2021.

[8] R. Malik, K. Åkesson, H. Flordal, and M. Fabian, “Supremica–an effi-
cient tool for large-scale discrete event systems,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5794–5799, 2017, 20th IFAC World Congress.

[9] Y. Collette and P. Siarry, Multiobjective Optimization: Principles and
Case Studies, ser. Decision Engineering. Springer Berlin Heidelberg,
2013.

[10] D. Giannakopoulou, C. Pasareanu, and H. Barringer, “Assumption
generation for software component verification,” in Proceedings 17th
IEEE International Conference on Automated Software Engineering,,
2002, pp. 3–12.

[11] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Generating phe-
notypical erroneous human behavior to evaluate human–automation
interaction using model checking,” International Journal of Human-
Computer Studies, vol. 70, no. 11, pp. 888–906, 2012.

[12] M. Isberner, F. Howar, and B. Steffen, “The open-source learnlib,” in
Computer Aided Verification, D. Kroening and C. S. Păsăreanu, Eds.
Springer International Publishing, 2015, pp. 487–495.

[13] J. Magee and J. Kramer, Concurrency: State Models and Java Programs,
2nd Edition. London: Wiley, 2006.

[14] T. T. Tun, A. Bennaceur, and B. Nuseibeh, “OASIS: Weakening user
obligations for security-critical systems,” in 2020 IEEE 28th Interna-
tional Requirements Engineering Conference (RE), 2020, pp. 113–124.

[15] U.S. Attorney’s Office Eastern District of Kentucky, “Clay county
officials and residents convicted on racketeering and voter fraud
charges,” Mar 2010. [Online]. Available: https://archives.fbi.gov/
archives/louisville/press-releases/2010/lo032510.htm

[16] J. Reason, Human Error. New York: Cambridge University Press, 1990.
[17] G. Tel, Introduction to Distributed Algorithms, 2nd ed. Cambridge

University Press, 2000.
[18] D. Sempreboni and L. Viganò, “X-men: A mutation-based approach for

the formal analysis of security ceremonies,” in 2020 IEEE European
Symposium on Security and Privacy (EuroS&P), 2020, pp. 87–104.

[19] M. L. Bolton and E. J. Bass, “Evaluating human-automation interaction
using task analytic behavior models, strategic knowledge-based erro-
neous human behavior generation, and model checking,” in 2011 IEEE
International Conference on Systems, Man, and Cybernetics, 2011, pp.
1788–1794.

[20] S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Proceedings of Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2015, pp. 96–106.

[21] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthe-
sis of reactive(1) designs,” Journal of Computer and System Sciences,
vol. 78, no. 3, pp. 911–938, 2012, in Commemoration of Amir Pnueli.

[22] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in Formal Methods in Computer-Aided De-
sign (FMCAD), 2013, pp. 1–8.

[23] T. A. Henzinger, J. Otop, and R. Samanta, “Lipschitz robustness of finite-
state transducers,” in 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 2014,
December 15-17, 2014, New Delhi, India, 2014, pp. 431–443.

[24] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Job-
stmann, “Specification-centered robustness,” in Industrial Embedded
Systems (SIES), 2011 6th IEEE International Symposium on, SIES 2011.
Vasteras, Sweden, June 15-17, 2011, 2011, pp. 176–185.

[25] P. Tabuada, A. Balkan, S. Y. Caliskan, Y. Shoukry, and R. Majumdar,
“Input-output robustness for discrete systems,” in International Confer-
ence on Embedded Software (EMSOFT). ACM, 2012, pp. 217–226.

[26] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Job-
stmann, “Robustness in the presence of liveness,” in Computer Aided
Verification (CAV), vol. 6174. Springer, 2010, pp. 410–424.

[27] T. Kobayashi, R. Salay, I. Hasuo, K. Czarnecki, F. Ishikawa, and
S. Katsumata, “Robustifying controller specifications of cyber-physical
systems against perceptual uncertainty,” in International Symposium on
NASA Formal Methods (NFM), 2021, pp. 198–213.

https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm
https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm

[28] U. Topcu, N. Ozay, J. Liu, and R. M. Murray, “On synthesizing robust
discrete controllers under modeling uncertainty,” in Proceedings of the
15th ACM International Conference on Hybrid Systems: Computation
and Control, ser. HSCC ’12. Association for Computing Machinery,
2012, p. 85–94.

[29] R. Meira-Góes, E. Kang, S. Lafortune, and S. Tripakis, “On tol-
erance of discrete systems with respect to transition perturbations,”
arXiv:2110.04200 [eess.SY], 2021.

[30] T. Anevlavis, D. Neider, M. Philippe, and P. Tabuada, “Evrostos:
The RLTL verifier,” in Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, ser. HSCC
’19. Association for Computing Machinery, 2019, p. 218–223.

[31] P. Tabuada and D. Neider, “Robust Linear Temporal Logic,” in 25th
EACSL Annual Conference on Computer Science Logic (CSL), vol. 62,
2016, pp. 10:1–10:21.

[32] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone, “Enhancing model
checking in verification by ai techniques,” Artificial Intelligence, vol.
112, no. 1, pp. 57–104, 1999.

[33] M. V. de Menezes, S. do Lago Pereira, and L. N. de Barros, “System
design modification with actions,” in Advances in Artificial Intelligence
– SBIA 2010, A. C. da Rocha Costa, R. M. Vicari, and F. Tonidandel,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 31–40.

[34] G. Chatzieleftheriou, B. Bonakdarpour, S. A. Smolka, and P. Katsaros,
“Abstract model repair,” in NASA Formal Methods, A. E. Goodloe and
S. Person, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 341–355.

[35] Y. Ding and Y. Zhang, “A logic approach for LTL system modification,”
in Foundations of Intelligent Systems, M.-S. Hacid, N. V. Murray,
Z. W. Raś, and S. Tsumoto, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 435–444.

	Introduction
	Motivating Example
	Overview of Fortis
	Analysis and Robustification Methods
	Robustness Analysis
	Robustification
	Integration

	Experiments
	Implementation and Usage
	Case Studies
	Experimental Results

	Related Work
	Conclusions and Future Extensions
	References

