
Online Appendix

For paper “IPL: An Integration Property Language for
Multi-Model Cyber-Physical Systems”

Ivan Ruchkin, Joshua Sunshine, Grant Iraci,
Bradley Schmerl, and David Garlan

Institute for Software Research, Carnegie Mellon University

A Appendix

A.1 Extended Acknowledgements

The authors would like to thank Stefano Tonetta, André Platzer, Sagar Chaki,
Dionisio de Niz, Bruce Krogh, Ashutosh Pandey, Nathan Fulton, Ada Zhang,
and anonymous reviewers for their helpful feedback and pointers to important
related work.

This material is based on research sponsored by AFRL and DARPA under
agreement number FA8750-16-2-0042. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the AFRL,
DARPA or the U.S. Government.

A.2 Syntax

Definition 8 (Rigid term) Rigid terms of the language are defined as follows:

rterm ::= var | const | elem | rterm.prop | bfunc(rterm, . . .rterm).

Definition 9 (Rigid atom) Rigid atoms are logical formulas over rigid terms:

ratom ::= ratom ∧ ratom | ¬ratom | rterm.

Highest-level syntax elements are model instances and formulas:

mdlinst ::= matom{|rterm1 . . .rtermn|},
formula ::=∀var : rterm · formula | mdlinst | ratom |

formula ∧ formula | ¬formula.

LTL Plugin Syntax A common model for LTL is a labeled transition system
Mts (LTS). State variables are interpreted modally, and more complex elements
of state (i.e., modally evaluated functions and relations) are exposed as mfunc.
To express temporal formulas, the LTL plugin introduces five syntactic elements
as behavioral atoms:

– State variable: stvar ::= v.
– State function: mfunc ::= g(t1 . . . tn), where t1 . . . tn ∈ matom.
– Background function: bfunc ::= g(t1 . . . tn), where t1 . . . tn ∈ matom.
– Until: tatomu ::= tatom U tatom.
– Next: tatomx ::= X tatom.
– Conjunction: tatoma := tatom ∧ tatom.
– Negation: tatomn := ¬tatom.
– A wrapper replaces the matom plugin point:

matom ::= tatom ::= ratom | term | tatomu | tatomx | tatoma | tatomn.

Other LTL modalities are expressed using the until operator and Boolean
constants: G p ≡ p U ⊥; F p ≡ > U p.

PCTL Plugin Syntax We plug extended PCTL (its variant used in PRISM)
into IPL as the second property language. Common models for PCTL are MDPs
and DTMCs. Flexible terms (state variables/functions) are used the same way
as for LTL. matom is defined differently, using several layered behavioral atoms.

– pathprop is a logical expression on a model path using temporal modalities,
similar to tatom in LTL but using bounded until.

– rwdpathprop is a logical expression combining co-safe LTL and certain
operators to predicate paths on which rewards are calculated.

– pprop is a boolean check of a probability of a path given by pathprop.
– pquery is a value query of a probability of a path given by pathprop.
– rwdprop is a boolean check of a reward of a path given by rwdpathprop.
– rwdquery is a value query of a reward of a path given by rwdpathprop.

pathprop ::= ratom | term | pathprop ∧ pathprop | ¬pathprop |
pathprop U≤k pathprop | X pathprop,

rwdpathprop ::= ratom | term | rwdpathprop ∧ rwdpathprop |
rwdpathprop ∨ rwdpathprop | X rwdpathprop |
rwdpathprop U≤k rwdpathprop | C≤k | I=t | S,

pprop ::= Po∼p[pathprop], pquery ::= Po=?[pathprop]

rwdprop ::= Rro∼v[rwdpathprop], rwdquery ::= Rro=?[rwdpathprop],

matom ::= pprop | pquery | rwdprop | rwdquery,

where p ∈ [0, 1],∼∈ {<,≤, >,≥} , o ∈ {max,min, ∅} , t ∈ N, k ∈ N∪{inf}, v ∈ R,
and r is a character string (reward structure name).

A.3 Syntactic Examples

To give the intuition about the IPL syntax, we provide examples of acceptable
and unacceptable formulas in Tab. 1 with the LTL plugin.

Examples 1–3 illustrate base cases of formulas to be supported: unquantified,
quantified, and modal. These formulas trivially preserve modularity, although do
not improve expressiveness over existing tools. Examples 4 and 5 show the main
use case of IPL — quantification over model instances with modalities.

Example 6 is unacceptable because it violates modularity. The existential
quantifier cannot be interpreted by the behavioral model that is necessary to
interpret the modality. On the other hand, the modality cannot be interpreted
by a view. To check such formulas, views and models would need to be merged,
which goes against our design for modularity and tractability. Example 7 also
violates modularity: no single model can interpret flexible variables from two
different models. To check such formulas, we would need to compose models
against the modularity and tractability principles.

Example formula Description In IPL

(1) f(1 + 2) = 3 View function over a rigid term Y

(2) ∀x : X · P (x) Quantification over a view-defined set Y

(3) (G y = 10){||} Model instance over a modality w/ a state var Y

(4) ∀x : X · (G P (x, y)){||} Quantification over a model instance Y

(5) ∃x : X · (P (x)→
(F Q(x, y)){||})

Quantification over an atom w/ a model instance Y

(6) (G (∃x : X ·P (x, y))){||} Model instance over a quantified formula N

(7) (F (y = z)){||} Mixed models inside the same instance: M1 owns
y and M2 owns z

N

Table 1. Examples of acceptable/unacceptable IPL syntax.

A.4 Semantics

Native semantics We interpret IPL formulas in the following context of Γ (V,
Mi with I M

q , I V, and IB), q , ω ≡ 〈q1, q2, . . .〉 (provided by M.traces), and µ. We
do not allow free variables, so all variables in IPL syntax have to be eventually
bound to values. We define satisfaction of native operations in IPL formulas
(formula) that also cover all operations in ratom. Satisfaction of formula f is
denoted as C |= f , where C is the context in which f is evaluated.

[[const]]Γ = IB(const); [[var]]µ = µ(var);

[[vfunc(r1, . . . rn)]]Γ,µ = I V(vfunc)([[r1]]V,µ . . . [[rn]]V,µ),

where r1 . . . rn ∈ rterm;

[[elem]]Γ,q,µ = I V(elem) = {e} ⊆ E;

[[rterm.prop]]Γ,q,µ = I V(prop)([[rterm]]V,µ);

Γ, ω, µ |= ¬f iff Γ, ω, µ ��|= f , where f ∈ formula or f ∈ ratom;

[[stvar]]Γ,q = I M
q (stvar);

[[mfunc(t1, . . . tn)]]Γ,q,µ = I M
q (mfunc)([[t1]]Γ,q,µ, . . . [[tn]]Γ,q,µ),

where t1 . . . tn ∈ term;

Γ, ω, µ |= f1 ∧ f2 iff Γ, ω, µ |= f1 and Γ, ω, µ |= f2,

where f1 and f2 are either formula or ratom;

Γ, ω, µ |= ∀x : r · f iff Γ, ω, µ′ |= f, where r ∈ rterm,

f is either formula or ratom, µ′ = µ ∪ {x 7→ v} for all v in [[r]]Γ,µ;

Γ, µ |= (a)[|p1 . . . pn|] iff V,M([[p1]]V,µ . . . [[pn]]V,µ), µ |= a,where a ∈ matom.

LTL plugin semantics The model is a state transition system Mts (a state set,
an action set, a transition function, an initial state, and a state interpretation
I M
q to determine valid propositions in state q). It defines traces Mts.trcs. ωi,j

means a substring of ω from element i to element j inclusively.

Γ, ω, µ |= f iff Γ, q , µ |= f, where q ∈ ω1,1 and f ∈ term;

Γ, ω, µ |= X tatom iff Γ, ω2,∞ and µ |= tatom;

Γ, ω, µ |= tatom1 U tatom2 iff

∃i : N · (Γ, ω1,i, µ |= tatom1 ∧ Γ, ωi+1,∞, µ |= tatom2).

We describe the meaning of formula in terms of only Γ by iterating over
all traces in the model without any up-front variable mappings:

Γ |= formula iff ∀ω : Mts.trcs · Γ, ω, ∅ |= formula.

PCTL plugin semantics To evaluate a PCTL formula, we use an MDP Mmdp

as a behavioral model in Γ (or a DTMC Mdtmc if there is no non-determinism).
It is characterized by finite state set S, finite action set A, an initial state,
probability transition function P : S × S → [0, 1], a discount factor γ ∈ [0, 1],
reward structures ri : S × S → R≥0, and a state interpretation I M

q to determine
valid propositions in state q .

Satisfaction of temporal operators in pathprop and rwdpathprop is char-
acterized for model state q and path ω in the same way as in LTL, with the only
difference being the bounded until:

Γ, ω, µ |= f1 U≤k f2 iff

∃i : N · (i ≤ k ∧ Γ, ωi,∞, µ |= f2) ∧ (∀j : N · j < i→ Γ, ω1,j , µ |= f1).

Given policy π : S → A, P (one of policies Π) induces a probability measure
Prπq over paths Paths(q) starting in state q . In turn Prπq induces a probability
function over formulas that determines the probability of taking a path that
satisfies formula f from state q : Probπ(q , f) = Prπq {ω ∈ Paths(q) | ω |= f}.

We can now define formula satisfaction for pprop and valuation for pquery:

Γ, q , µ |= Po∼p[f] iff optπ∈Π Probπ(q , [[f]]Γ,µ) ∼ p,
[[Po=?[f]]]Γ,q,µ = optπ∈Π Probπ(q , [[f]]Γ,µ)),

where f ∈ pathprop,∼∈ {<,≤, >,≥} , optπ∈Π stands for supπ∈Π if o ≡ max,
and infπ∈Π if o ≡ min, and no operator if o ≡ ∅.

Rewards formulas are evaluated analogously:

Γ, q , µ |= Ro∼p[f] iff optπ∈Π Expπ(q , X[[f]]Γ,µ) ∼ p,
[[Ro=?p[f]]]Γ,q,µ = optπ∈Π Expπ(q , X[[f]]Γ,µ) ∼ p,

where Xf : Pathsπ(q)→ R≥0 is a random reward variable for paths that satisfy
f (defined canonically for co-safe LTL and special formulas [1]), and Expπ is its
expectation with respect to Prπq ; other variables mean the same as above.

A.5 Encoding of the Motivating Integration Case

For the motivating example of the mobile robot, our approach is to connect the
two models (Mpo and Mpl) through a power view (Vpo) and a PCTL property,
as shown in Fig. 1.

We exemplify the IPL syntax and semantics by deconstructing the motivating
integration property in terms of the IPL syntax below. The formal meaning of
this decomposition corresponds to the intuition stated in the integration case.

formula = ∀t1, t2, t3 : Tasks · formula1, (1)

formula1 = rterm→ mdlinst = 1,

rterm = t1.type = t3.type = STR ∧ t2.type = ROT ∧
t1.end = t2.start = t3.start ∧ t1.start 6= t3.end ∧ Σ3

i=1ti.energy ≤ MaxBat ,

mdlinst = pprop{|initloc = t1.start, goal = t3.end,

initbat = Σ3
i=1ti.energy + err cons|},

pprop = Pmax=?[pathprop],

pathprop = Pmax=?[(loc = t1.start U (loc = t2.start U loc = t3.end)) ∧
(F loc = t2.start)].

Fig. 1. Model integration for the motivating case. The dots show the scope of the
integration property.

Now, let us illustrate the application of the IPL verification algorithm to the
above encoding. The formula is already in its PNF. The next step is to remove
quantifiers and replace t1, t2, and t3 with their free counterparts tf1 , t

f
2 , t

f
3 :

t1.type = t3.type = STR ∧ t2.type = ROT ∧ (2)

t1.end = t2.start = t3.start ∧ t1.start 6= t3.end ∧ Σ3
i=1ti.energy ≤ MaxBat →

Pmax=?[(loc = t1.start U (loc = t2.start U loc = t3.end)) ∧ (F loc = t2.start)]

{|initloc = t1.start, goal = t3.end, initbat = Σ3
i=1ti.energy + err cons|} = 1.

Then mdlinst is abstracted away twice, once with a real-valued function
f(tf1 , t

f
2 , t

f
3) and once with a real constant CA:

t1.type = t3.type = STR ∧ t2.type = ROT ∧ (3)

t1.end = t2.start = t3.start ∧ t1.start 6= t3.end ∧ Σ3
i=1ti.energy ≤ MaxBat →

FA(t1, t2, t3) = 1;

t1.type = t3.type = STR ∧ t2.type = ROT ∧ (4)

t1.end = t2.start = t3.start ∧ t1.start 6= t3.end ∧ Σ3
i=1ti.energy ≤ MaxBat →

CA = 1.

Following the abstraction, the saturation process would determine all tuples
of free variable values that satisfy the following search formula:

t1.type = t3.type = STR ∧ t2.type = ROT ∧ (5)

t1.end = t2.start = t3.start ∧ t1.start 6= t3.end ∧ Σ3
i=1ti.energy ≤ MaxBat →

FA(t1, t2, t3) = 1

6⇔
t1.type = t3.type = STR ∧ t2.type = ROT ∧
t1.end = t2.start = t3.start ∧ t1.start 6= t3.end ∧ Σ3

i=1ti.energy ≤ MaxBat →
CA = 1.

For each tuple (t1, t2, t3) satisfying Eq. 5, Mpl (initialized according to mdlinst,
with the values derived from the tuple) is queried for the interpretation of path-
prop (as defined in Eq. 1):

Pmax=?[(loc = t1.start U (loc = t2.start U loc = t3.end)) ∧ (F loc = t2.start)].

Finally, the obtained interpretations will be conjoined with the negation of
Eq. 3 for the ultimate satisfiability check:

¬ (∀t1, t2, t3 : Tasks · t1.type = t3.type = STR ∧ t2.type = ROT ∧ (6)

t1.end = t2.start = t3.start ∧ t1.start 6= t3.end ∧ Σ3
i=1ti.energy ≤ MaxBat →

FA(t1, t2, t3) = 1).

Receiving UNSAT from Eq. 6 would mean that the original formula is valid,
while receiving SAT would mean that it is invalid.

A.6 Formula Transformations

Below is a formalization of the RemQuant transformation. It is executed until
it is not applicable to the input formula.

RemQuant ≡ Qx · f → f{x/x̂}.

Transformation ToPNF is formalized as the following rewrite system:

ToPNF ≡ (Qx · f1) ∧ f2 → Qx · (f1 ∧ f2),

¬(Qx · f)→ Qx · ¬f,

assuming f2 does not contain free occurrences of x (otherwise they will be
uniquely renamed).

Transformation ConstAbst can be described in the following manner:

ConstAbst ≡ f{|p1 . . . pn|} → C,

where C is an uninterpreted constant of the same type as f .

Transformation FuncAbst can be described in the following manner.

FuncAbst ≡ f{|p1 . . . pn|} → F (x1 . . . xn),

where f is a formula and F is an uninterpreted function of the same type as f .
Its parameters x1 . . . xn are all free variables that occur in formula f and terms
p1 . . . pn.

A.7 Soundness Proof

In this part of the appendix, we provide formal proofs for the theorems that help
demonstrate soundness of the IPL verification algorithm.

Theorem 1. Absence of flexible interpretations that agree with I Fsv and satisfy
¬fFA is necessary and sufficient for validity of fFA on I F :

@I · I Fsv ⊆ I ∧ I |= ¬fFA iff I F |= fFA.

Proof. Soundness: equivalent transformation of the left side yields ∀I ·I Fsv ⊆ I →
I |= fFA. Instantiating I with I F , we get I Fsv ⊆ I F → I F |= fFA. Since the
premise of this implication holds by construction, modus ponens yields I F |=
fFA.

Completeness: we need to show that if ∃I ·I Fsv ⊆ I∧I |= ¬fFA, then I F��|=f
FA.

Assume, for contradiction, that I F |= fFA.
Instantiating ∃, we have interpretation I ′ that satisfies ¬fFA and agrees with

I Fsv (and, therefore, with I F on sv).
We will construct a variable assignment µ, starting from ∅, by unwrapping

quantifiers in fFA. By fFAi we mean a formula resulting from removing the first
i quantifiers from fFA. That is,

fFAi ≡ Qi+1xi+1 : Di+1 · . . . Qnxn : Dn · fFA.

Consider the two cases of the outermost quantifier Q1 in fFA. fFA1 is the result
of removing Q1 from fFA, with x1 being a free variable in fFA1 .

If Q1 ≡ ∀, then pick v1 from I ′ |= ¬fFA by pushing negation over the
universal quantifier and instantiating the resulting existential quantifier with v1.
Then, I ′, v1 |= ¬fFA1 . We also get I F , v1 |= fFA1 by instantiating the universal
quantifier in fFA with v1.

If Q1 ≡ ∃, then pick v1 from I F |= fFA by instantiating the existential
quantifier, leading to I F , v1 |= fFA1 . Like the above, by pushing the negation for
I ′ we get I ′ |= ∀x1 : D1 · ¬fFA1 . Instantiating the universal quantifier with v1,
we get I ′ |= ¬fFA1 .

Either way, we add x1 7→ v1 to µ and repeat the above process for the
remaining n − 1 quantifiers, arriving at fFAn ≡ f̂FA, an assignment µ for all
variables x1 . . . xn, and two assertions:

I ′, µ |= ¬f̂FA, (7)

I F , µ |= f̂FA. (8)

Now we will show that µ ∈ sv. Consider f̂CA that corresponds to f̂FA, f̂CA =
ConstAbst(f). Let ICA be some interpretation of the constant abstractions in

f̂CA.
We consider two cases of f̂CA by the principle of excluded middle. If ICA, µ |=

f̂CA, then by combining it with Eq. 7 we get I ′, ICA, µ |= f̂FA 6⇔ f̂CA. If

ICA, µ |= 6f̂CA, then by combining it with Eq. 8 we get I F , ICA, µ |= f̂FA 6⇔ f̂CA.
Thus, µ ∈ sv.

Since µ ∈ sv, I ′ and I F agree on valuations of Fi for µ because these are
determined by I Fsv. Since interpretation of f̂FA only depends on F (x1, . . . xn) and
free variables x1 . . . xn (determined by µ), both interpretations (Eqs. 7 and 8)

should agree on the validity of f̂FA. Since the semantics of IPL is unambiguous,
this leads us to a contradiction.

We conclude that I F |= fFA.

Corollary 1. Validity of formula f is equivalent to unsatisfiability I Fsv |= ¬fFA.

M |= f iff @I · I Fsv ⊆ I ∧ I |= ¬fFA.

Proof. By construction of fFA in the algorithm, M |= f has is semantically
equivalent to I F |= fFA. By Thm. 1, the latter is equivalent to @I · I Fsv ⊆ I ∧ I |=
¬fFA.

Corollary 2. The IPL verification algorithm is sound for solving the IPL for-
mula validity problem. The algorithm terminates if (i) satisfiability checking is
decidable, (ii) behavioral checking with M is decidable, and (iii) search formula

f̂FA 6⇔ f̂CA has a finite number of satisfying values for free variables (e.g., when
quantification domains Di are finite).

Proof. The algorithm equivalently transforms f to its PNF and performs a func-
tional abstraction, which is an equivalent transformation under full interpreta-
tion I F . Soundness follows from the Cor. 1 that shows that the last step of the
algorithm is equivalent to the semantic validity of IPL formulas.

Termination of the verification algorithm follows from termination of the
search of sv and construction of I Fsv. The search terminates due to decidability
of satisfiability checking (premise (i) above) and finiteness of the free variable
values to satisfy the formula under check (premise (iii) above). For each µ in sv,
construction of I Fsv terminates because behavioral checking with M is decidable
(premise (ii) above).

A.8 IPL Implementation

The IPL implementation is based on the Xtext language framework (https:
//www.eclipse.org/Xtext) in the Eclipse IDE, with its sources available on-
line (https://github.com/bisc/IPL). Xtext automatically generates an IPL
parser, an object model of the constructs, and other supporting software in-
frastructure from the IPL grammar file. This infrastructure supports view-SMT

https://www.eclipse.org/Xtext
https://www.eclipse.org/Xtext
https://github.com/bisc/IPL

translators and verifiers for IPL statements. Development of IPL specifications
is done in a modified version of Eclipse bundled with the IPL implementation.

To make the grammar described in Sec. A.2 unambiguous for parsing, we
“flattened out” rules regarding logical and background operators. As a result,
the implemented syntax is more permissive that the abstract one. However, to
preserve the restrictions of the abstract grammar, we implemented typechecking
to detect violations. For instance, even though the implemented grammar allows
stacking multiple behavioral models, typechecking flags such cases as errors.

As a basis for architectural views, we use the Architecture Analysis and
Description Language (AADL, version 2.1) [2]. AADL is an increasingly popular
modeling tool for embedded system, featuring an SAE standard designation
and multiple extensions. It also fits our assumptions on architectural elements
(described in the prerequisites in the main paper): they are statically defined
and can have custom properties with fixed values. IPL’s implementation relies on
OSATE2 (version 2.3.0) [3] — an open-source IDE for AADL. Based on Xtext as
well, OSATE2 provides a capability of parsing and instantiating AADL models,
which serve as views.

We implemented an AADL-to-SMT translator to convert from architectural
to formal views, as per their respective definitions in the main paper. To interface
with SMT solvers, we used the SMT-LIB v2.6 [4] syntax to abstract away from
specific implementations. We used Z3 (version 4.5.0) [5] and CVC4 (version
4.1.5) [6] as backend solvers.

A.9 Mobile Robot Case Study: Integration Properties

We capture the robot’s meaningful behaviors with the following definition:

Definition 10 (Mission) A mission is a finite sequence of commands with con-
tiguous and non-self-intersecting locations. A power-successful mission is one
that can be completed with a given initial power budget (from 0 to MaxBat).

Missions differ by the types of available atomic tasks of the robot:

– Forward tasks
– Empty tasks (for missions of variable length with a fixed number of vars)
– Rotation tasks
– Charging tasks
– Other actuation tasks (e.g., turning off a sensor)

To be correctly integrated, Mpo and Mpl should satisfy three properties:

– Mpl and Mpo agree on the map of the location.
– If Mpo considers a mission power-successful, then Mpl should do so.
– If Mpl considers a mission power-successful, then Mpo should do so.

In the rest of this section, we express these properties using one or several
IPL formulas. If all the formulas hold, then the models are considered consistent.

Map Consistency. First, let us handle the property of consistency with respect
to maps, which means that different models agree on locations present in the
map. We start with integration properties of Vpo and Vmap.

Property 2 Any location is reachable.

“For any location, there are an incoming and outgoing tasks.”

∀l : Locs · (∃tin, tout : Tasks · l.id = tin.endloc = tout.startloc).

Property 3 Every straight motion task corresponds to an edge in the map.

“For any straight motion task, there is a pair of locations”

∀t : Tasks · t.type = STR→ ∃l1, l2 : Locs ·
“where the task begins and ends connected by an edge.”

l1.id = t.startloc ∧ l2.id = t.endloc ∧ l1 ∈ l2.edges ∧ l2 ∈ l1.edges.

In a similar way, one can assure that Vmap is fully consistent with Vpo.
Given that the above properties are satisfied, we can turn to consistency between
Vpo/Vmap and Mpl.

Property 4 Every location in the map exists in the MDP.

“Any location from Vmap exists in Mpl”

∀l : Locs · Pmax=?[loc = l.id]{|initloc = l.id, goal = l.id, initbat = 1|} = 1.

If this trivial property does not pass, it indicates that the set of locations is not
consistent. Further, assuming continuous location IDs, one can ensure that Mpl

does not have more locations than Vmap by attempting to get to a location with
the ID smaller than the minimum (similarly for larger than the maximum):

Property 5 No reachable locations with IDs smaller than the minimal ID.

“For any two distinct locations, one starting and one with the smallest ID,”

∀linit, lmin : Locs · linit 6= lmin ∧ (∀lo : Locs · lmin.id ≤ lo.id)→
“any path in Mpl attempting to get the ID of the smallest minus 1,”

Pmax=?[F loc = lmin.id− 1]

“initialized correctly, would fail.”

{|initloc = linit.id, goal = lmin.id− 1, initbat = MaxBat |} = 0.

This property uses a slightly weaker notion of existence (reachability), but
it is sufficient for our purposes: if a location is not reachable in the MDP, it
would not affect other verification. Finally, we can demonstrate that the edges
are consistent by showing two properties below.

Property 6 Any pair of locations with an edge can be traversed directly.

“For any task, the behaviors in Mpl going from its start to its end”

∀t : Tasks · t.type = STR→ Pmax=?[loc = t.startloc U loc = t.endloc]

“initialized correctly, should succeed if given enough battery.”

{|initloc = t.startloc, goal = t.endloc, initbat = t.energy + 1|} = 1.

Property 7 Any pair of locations without an edge cannot be traversed directly.

“For any pair of distinct locations without an edge between them,”

∀l1, l2 : Locs · l1 6= l2 ∧ l1 6∈ l2.edges→
“any behavior in Mpl aiming to go between them,”

Pmax=?[loc = l1.id U loc = l2.id]

“when initialized correctly, would fail even with a maximum charge.”

{|initloc = l1.id, goal = l2.id, initbat = MaxBat |} = 0.

If the above properties are valid, we can conclude that Mpo and Mpl are
consistent with respect to a certain map, thus satisfying Property # 1.

Power success: from Mpo to Mpl Here we highlight a property that checks
that if Mpo considers a mission power-successful, then Mpl will as well. Informally,
we check that “any power-successful mission in Mpo with up to four sequential
straight motion (STR) tasks (the last three possibly empty — EMP) will corre-
spond to such executions in Mpl that visit all sequence points in the correct order
will be power successful,” encoded in IPL below.

Property 8 If Mpo considers a mission power-successful, Mpl should do so.

“Any mission with up to four straight motion tasks”

∀t1, t2, t3, t4 : Tasks·
“connected to each other in a sequence”

t1.endloc = t2.startloc ∧ t2.endloc = t3.startloc ∧ t3.endloc = t4.startloc ∧
“that is non-empty, can have empty tasks only in the end,”

t1.type 6= EMP ∧ (t2.type = EMP→ t3.type = EMP) ∧
(t3.type = EMP→ t4.type = EMP) ∧
“contains no self-intersecting tasks”

(@i : Tasks · (i = t1 ∨ i = t2 ∨ i = t3 ∨ i = t4) ∧ i.type = STR ∧
((i 6= t1 ∧ t1.endloc = i.endloc ∧ t1.type = STR) ∨
(i 6= t2 ∧ t2.endloc = i.endloc ∧ t2.type = STR) ∨
(i 6= t3 ∧ t3.endloc = i.endloc ∧ t3.type = STR) ∨
(i 6= t4 ∧ t4.endloc = i.endloc ∧ t4.type = STR))) ∧

“and that is a power-successful mission in Mpo”

Σ4
i=1ti.energy ≤ MaxBat →

“will correspond to such executions in Mpl that visit all sequence points”

Pmax=?[(F loc = t2.startloc) ∧ (F loc = t3.startloc) ∧ (F loc = t4.startloc) ∧
“in the correct order”

((loc = t1.start) U (loc = t2.start U (loc = t3.start U loc = t4.end)))]

“and, when initialized correctly, will be power-successful.”

{|initloc = t1.start, goal = t4.end, initbat = Σ4
i=1ti.energy + err cons|} = 1.

One quantified variable per task models sequences only up to a certain length.
This limitation is acceptable because after a certain length (7-10 steps depending
on the map), any mission is self-intersecting. Thus, Prop. 8 encodes a practically
relevant property for a specific map. Its sv contains 142 vectors, meaning that
model checking is called 142 times. The full verification completes in 93 seconds.

Power success: from Mpl to Mpo Now we highlight a property variant for
power success in Mpl implying power success in Mpo. This time, we use an exis-
tentially quantified power budget that has a risk of succeeding in Mpl but failing
in Mpo. The sv for this property contains 100 vectors of free variable values. This
property relies on monotonicity of power dynamics: given a mission, its success
with a certain initial energy leads to its success with larger initial energies. The
converse is true about insufficient energies.

Property 9 If Mpl considers a mission power-successful, Mpo should do so.

“For any mission with exactly four straight motion tasks”

∀t1, t2, t3, t4 : Tasks · t1.type = t2.type = t3.type = t4.type = STR ∧
“connected to each other in a sequence”

t1.endloc = t2.startloc ∧ t2.endloc = t3.startloc ∧ t3.endloc = t4.startloc ∧
“without self-intersections”

distinct(t1.startloc, t2.startloc, t3.startloc, t4.startloc, t4.endloc) →
“there exists such an energy budget greater than the energy expected by Mpo”

(∃b : N · b ≥ Σ4
i=1ti.energy − err mdp ∧

“that if Mpl, going through all the sequence points”

Pmax=?[(F loc = t2.startloc) ∧ (F loc = t3.startloc) ∧ (F loc = t4.startloc) ∧
“in the correct order”

((loc = t1.start) U (loc = t2.start U (loc = t3.end U loc = t4.end)))]

“and initialized correctly, is power-successful on that budget,”

{|initloc = t1.start, goal = t4.end, initbat = b|} = 1→
“then Mpo should also be power-successful that budget.”

Σ4
i=1ti.energy − err cons < b).

A.10 Mobile Robot Case Study: Performance Information

We evaluated the performance of an Eclipse-based IPL implementation using
variants of the Mpo-to-Mpl property (e.g., Prop. 8). In particular, we executed
24 verification runs by varying the number of mission tasks and the map, and
toggling each of the mission features—variable length missions, charging, and
rotations.

We observed the following dependent variables: count of sv, total time, sat-
uration time, interpretation time, time in SMT, and time in model checking.
We did not find IPL’s memory demands limiting since at most one external tool
was executing at each point (which, however, indicates potential for parallelizing
the model checking process). The performance results for the 24 executions are
shown in Tab. 2.

The high-level outcomes are: (a) verification times vary from dozens of sec-
onds to over 6 hours. Counts of sv vary from dozens to over a thousand; (b) we
found that longer missions lead to increase in both saturation and interpreta-
tion times, whereas missions with more features primarily affect the saturation
process; (c) the model checking times grew linearly with increases in length
across feature groups, with little response to increases in features; (d) the satu-
ration times grow substantially with more features, especially when considering
rotations due to additional quantified variables and constraints; (e) IPL’s mean
overhead was 0.74% (stdev 0.78%); (f) IPL’s memory demands were not limiting,
since at most one external tool ran at a time.

Map
#

steps
Variable
length ?

Charging
?

Rotation
?

#
satvals

Saturation
time (s)

Interp.
time (s)

overhead
(%)

Total
time (s)

map0 4 n n n 50 4.1 16.1 1.3 20.4
map0 5 n n n 40 5.5 22.7 0.9 28.5
map0 6 n n n 34 9.7 55.2 0.5 65.2
map0 7 n n n 16 7.8 85.9 0.4 94.0
map0 4 y n n 142 55.4 37.1 0.6 93.1
map0 5 y n n 182 142.6 95.3 0.3 238.5
map0 6 y n n 216 234.1 197.5 0.3 432.8
map0 7 y n n 232 336.4 446.1 0.2 783.8
map0 4 n y n 86 22.7 43.7 0.5 66.8
map0 5 n y n 100 37.7 67.0 0.4 105.1
map0 6 n y n 108 47.8 116.7 0.3 165.0
map0 7 n y n 99 107.9 191.1 0.3 299.9
map0 4 y y n 195 71.4 85.0 0.3 156.9
map0 5 y y n 295 243.8 171.2 0.2 416.0
map0 6 y y n 403 468.9 373.3 0.2 843.5
map0 7 y y n 502 949.9 656.1 0.1 1608.0
map0 8 y y n 559 1467.7 1407.2 0.1 2876.6
map3b 4 n n y 56 213.1 19.7 1.0 235.1
map3b 5 n n y 60 315.6 33.1 0.9 352.0
map3b 6 n n y 44 450.8 63.6 0.8 518.5
map3b 4 y n y 162 2768.1 42.1 0.2 2815.0
map3b 5 y n y 222 5692.3 75.5 0.1 5773.5
map3b 6 y n y 266 8618.4 168.1 0.1 8793.4
map3b 7 y n y 266 10137.3 256.2 0.1 10403.8
map3b 4 y y y 440 5663.5 15410.6 0.0 21078.6

Table 2. Full performance results

They were run sequentially on the following platform: Intel Core i7-7600U,
Ubuntu 17.04, Eclipse Oxygen 1a, OSATE 2.3.0 (debug mode) [7], Z3 solver
4.5.0 [5], PRISM model checker 4.4.beta [1] with Rabinizer 3.1 [8]. The dataset
and analysis are available online1.

A.11 Second Integration Case: LTL Property for Real-Time System

We are interested in demonstrating customizability of IPL, not only for var-
ious logics but also different CPS domains. IPL generalizes our prior work,
and its LTL plugin subsumes the analysis contracts language [9] for assump-
tions/guarantees. To show that, we apply IPL to a pair of CPS models entirely
different from the mobile robot case study: a model of thread scheduling and a
model of processors, taken from prior work [9]. We instantiate IPL’s syntax for
both models, briefly explain their semantics, describe an important integration
property, and express it in IPL.

Consider an embedded real-time system with periodic threads (Threads) that
need to execute their tasks before the deadlines (dline). Each thread should
be allocated on a CPU (member of CPUs) via a binding relation CPUBind ,
containing pairs of threads and processors to which they are bound. The goal
of modeling is to create a schedulable system with minimal power consumption,
which correlates with CPU frequencies (freq).

We represent this system using two models. The scheduling model (Msch) is a
discrete software model that captures the threads’ and the scheduler behaviors.
Implemented in Spin in the related work, Msch encapsulates the logic of of the
thread scheduling policy and the rules behind preemption, encoded in a relation
CanPrmpt . The scheduling view (Vsch) exposes Threads, dline, their periods,
and worst-case execution times. The CPU model (Mcpu) is a hardware/physical
model describing the electrical dynamics in a processor. Mcpu encapsulates the
relationship between freq , maximum frequency (maxfreq), voltage, and current,
and the algorithms to reduce these variables. The CPU view (Vcpu) exposes
CPUs, freq , maxfreq , and CPUBind .

Msch and Mcpu serve two competing purposes: Msch schedules threads so that
they do not miss deadlines (which may result in failures of the whole system),
and Mcpu reduces frequency of CPU (to make the system more power-efficient).
These two models are also not independent: frequency reduction may lead to
deadline misses, since threads take longer to compute on CPUs with smaller
frequencies. We aim to integrate Msch and Mcpu by specifying and verifying a
property that expresses absence of conflict between the two models.

In this case, integration relies on an observation from related work [9]: when
CPU frequencies are reduced by a frequency scaling algorithm, deadlines are not
missed if the scheduler and threads behave as deadline-monotonic (not neces-
sarily that the prescribed policy is deadline-monotonic). We omit the assump-
tions on the frequency scaling algorithm, and focus on the described deadline-
monotonicity property.

1 https://github.com/bisc/IPLProjects/tree/master/IPLRobotProp/

performance-analysis

https://github.com/bisc/IPLProjects/tree/master/IPLRobotProp/performance-analysis
https://github.com/bisc/IPLProjects/tree/master/IPLRobotProp/performance-analysis

Deadline monotonicity depends on CPU frequencies, bindings, and timing
behaviors of the scheduler. We approach this task similarly to the mobile robot
example: use behavioral semantics of Msch and abstract away the details of Mcpu

by using Vcpu. Thus, the context of this IPL specification is Msch, Vsch, and Vcpu.
We iterate over all CPUs with reduced frequency and demand that all threads

allocated to such CPUs behave deadline-monotonically; that is, they only pre-
empt threads with larger deadlines. We use two layers of quantification wrapped
around two rigid terms and a model instance with a temporal atom inside.

Property 10 All CPUs with reduced frequency behave deadline-monotonically.

“All CPUs whose frequency was scaled down”

∀c : CPUs ·
rterm︷ ︸︸ ︷

c.freq < c.maxfreq →
“should only bind pairs of threads that”

∀t1, t2 : Threads ·

rterm︷ ︸︸ ︷
CPUBind(t1, c) ∧ CPUBind(t2, c)→

“behave deadline-monotonically with respect to each other.”
mdlinst︷ ︸︸ ︷

(G CanPrmpt(t1, t2)→ t1.dline < t2.dline︸ ︷︷ ︸
tatom

){|thrdset = {t1, t2} , cpu = c|} .

This property can be checked by the IPL verification algorithm. Using Vsch
and Vcpu, the saturation process will find all values of c, t1, and t2 satisfying the
two instances of rterm. For these values mdlinst will be behaviorally evaluated
on Msch. After obtaining the necessary interpretations of mdlinst, the final
satisaction check will be done to determine the property’s validity.

From the system perspective, Prop. 10 should be verified every time after
CPU frequencies are scaled down. If verification succeeds, we know that deadlines
will not be missed, and the power consumption has been minimized. Thus, Msch

and Mcpu will remain integrated and non-conflicting with each other.

References

1. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In Bernardo,
M., Hillston, J., eds.: Formal Methods for Performance Evaluation. Number 4486
in Lecture Notes in Computer Science. Springer Berlin Heidelberg (2007) 220–270

2. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language. 1 edn. Addison-Wesley, Upper
Saddle River, NJ (2012)

3. Feiler, P., Greenhouse, A.: OSATE Plugin Guide. Technical report, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, PA (2006)

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017)

5. De Moura, L., Bjrner, N.: Z3: An Efficient SMT Solver. In: Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. TACAS’08/ETAPS’08, Berlin,
Heidelberg, Springer-Verlag (2008) 337–340

6. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In Gopalakrishnan, G., Qadeer, S., eds.: Proceed-
ings of the 23rd International Conference on Computer Aided Verification (CAV
’11). Volume 6806 of Lecture Notes in Computer Science., Springer (July 2011)
171–177

7. Feiler, P., Wrage, L., Delange, J., Siebel, J.: OSATE2 (2015) github.com/osate.
8. Komarkova, Z., Kretinsky, J.: Rabinizer 3: Safraless Translation of LTL to Small

Deterministic Automata. In: Automated Technology for Verification and Analysis.
Lecture Notes in Computer Science, Springer, Cham (November 2014) 235–241

9. Ruchkin, I., de Niz, D., Chaki, S., Garlan, D.: Contract-based Integration of Cyber-
physical Analyses. In: Proc. of the Intl. Conf. on Embedded Software (EMSOFT),
New York, NY, USA, ACM (2014) 23:1–23:10

	Online Appendix
	Appendix

