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Abstract. When designing and evolving software architectures, archi-
tects need to consider large design spaces of architectural decisions. These
decisions tend to impact the quality attributes of the system, such as
performance, security, or reliability. Relevant quality attributes might
influence each other and usually need to be traded off by architects.
When exploring a design space, it is often challenging for architects to
understand what tradeoffs exist and how they are connected to architec-
tural decisions. This is particularly problematic in architectural spaces
generated by automated optimization tools, as the underlying tradeoffs
behind the decisions that they make are unclear. This paper presents an
approach to explore quality-attribute tradeoffs via clustering and visual-
ization techniques. The approach allows architects to get an overview
of the main tradeoffs and their links to architectural configurations.
We evaluated the approach in a think-aloud study with 9 participants
from academia and industry. Our findings show that the proposed tech-
niques can be useful in understanding feasible tradeoffs and architectural
changes affecting those tradeoffs in large design spaces.
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1 Introduction

Designing and evolving a software architecture is usually a challenging activity,
as architects need to consider large design spaces that arise from alternative
architectural decisions [4,7]. These decisions tend to have an impact on quality
attributes of the system (e.g., performance, security, or reliability requirements),
which might interact with each other. For example, achieving excellent perfor-
mance and reliability at a low cost and with high security is often unfeasible. In
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practice, stakeholders make tradeoffs between the quality attributes of interest,
which in turn affect the decisions that the architect can choose for the system.

This architectural decision problem can be seen as one of multi-objective
optimization [1,15], in which making a set of decisions (and avoiding others)
produces an architectural configuration that fulfills a set of quality attribute
goals to varying degrees. However, in large design spaces, it is often difficult for
humans to assess how good a set of architectural decisions is for the relevant
quality attributes and what tradeoffs those decisions entail. To assist architects,
several tools for automated architecture generation and optimization have been
proposed [1,3,9,16,17], which can search through a wide range of configurations
and recommend the most promising ones (e.g., those closer to the Pareto front
for the relevant quality measures). An architectural configuration is shaped by
the decisions being selected (e.g., deploying a service on a device, or insert-
ing an intermediary between components). An architect normally takes a given
configuration as the starting point and then relies on an optimization tool for
generating and assessing alternative configurations. In some cases, different con-
figurations might be connected to similar tradeoffs. Conversely, in other cases,
small variations in a configuration might lead to different tradeoffs. However, in
existing tools, the reasons why a generated configuration fulfills a set of quality
attributes are normally opaque to architects. This limitation negatively affects
their interactions with the tool and the exploration of architectural alternatives.

The concerns above call for forms of explaining a design space [20] to humans,
which are currently not supported in optimization tools. This paper presents
an approach to explain tradeoff spaces using clustering and visualization tech-
niques. Clustering is used to find groups of configurations sharing similar quality-
attribute characteristics (i.e., making similar tradeoffs). Furthermore, configura-
tions are linked to each other based on a distance measure that considers the
decisions (or architectural changes) to transition from one configuration to a
neighborhood of alternatives. Along with this process, different charts are used
to visualize prototypical configurations within a particular group, or to identify
differences between groups. The proposed techniques enable us to summarize
a large amount of information about quality attributes and related decisions.
Thus, we help architects to quickly explore a design space and increase their
confidence in the solutions generated by a tool.

To evaluate our approach, we performed a think-aloud study with 9 partic-
ipants from industry and academia. The goal was to assess how the proposed
techniques support architects in understanding tradeoffs and associated decisions
within a space. Although at initial stages, we found that our techniques can be
beneficial in large design spaces, allowing users to identify key tradeoffs, reason
about architectural changes affecting them, and explore related alternatives.

2 Example: A Client-Server Design Space

For illustration purposes, let’s assume a simple client-server architecture as
schematized in Fig. 1 (left). The relevant quality attributes are performance, reli-
ability, and cost. Client requests go through a load balancer that assigns them
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to service instances (on the server side) for processing. Service instances can be
deployed on two physical devices. Each device is assumed to have a capacity to
host up to six service instances. The two devices differ in their hardware char-
acteristics: device1 is a low-end device while device2 is a high-end device, which
affects their processing and reliability capabilities. In this setting, the processing
time for incoming requests depends on the number of service instances, regard-
less of their deployment. For reliability, the probability of successfully executing
a request is maximized when both devices are used or decreases otherwise.

Fig. 1. Simple client-server style and associated tradeoffs.

To quantify the levels of performance, reliability and cost, let’s assume that
predefined analysis models are provided [15]. These models rely on both the
structure and additional properties of a configuration (e.g., device cost, service
failure probability, etc.) to compute a variety of measures. For instance, a cost
model that sums up the individual costs of all the active services and devices
might estimate a total cost of $70 for a configuration. Analogously, models for
the processing time and failure probability of a configuration are devised.

In an architectural configuration, the decisions refer to the specific number of
service instances and devices being active. As a result, this space has a total of 48
possible configurations with different tradeoffs. For example, the chart of Fig. 1
(right) shows that configurations with fast response times for processing the
requests might have either low or high reliability. However, not all combinations
of performance and reliability are feasible in this space. In general, it is not always
obvious for the architect to determine what tradeoffs a given configuration is
associated with and how the quality measures are correlated with each other.

3 Requirements for Tradeoff Explainability

For explaining tradeoff spaces, it is crucial to understand the information needs
that stakeholders have. In particular, we focus on the questions that architects
might pose when trying to reason about architectural configurations, design
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decisions, and quality-attribute tradeoffs. First, to select an appropriate config-
uration, it is important to get an overview of the kinds of tradeoffs that exist
in a design space. Afterwards, the corresponding configurations can be assessed
individually, along with alternatives having similar or different tradeoffs. In this
work, we consider the following questions:

– Q1: What are the categories of feasible tradeoffs in a given design space?
– Q2: What architectural configurations are representative of each category of

tradeoffs? What are the key decisions behind those configurations?
– Q3: For a given configuration, which alternatives lead to similar tradeoffs?
– Q4: For a given configuration, which alternatives lead to different tradeoffs?

We argue that, by answering these questions, tradeoffs can be understood and
the design space can be quickly explored to arrive at one or more configurations
that make appropriate tradeoffs. The requirements of a tradeoff explainability
approach are thus to: answer Q1–Q4, provide a sufficient level of usability, and
be understandable to stakeholders with basic architecture knowledge.

4 Approach

We propose a framework that involves three stages, as outlined in Fig. 2. The
output of the first two stages is a repository that enables the creation of a
dashboard with visualizations (called explanation charts) for the architect.

Fig. 2. Stages of the proposed framework.

First, there is an exploration stage, in which a (large) number of architectures
is generated (or sampled) by an automated optimization tool. This stage must
be executed beforehand. Each architectural instance comprises both the archi-
tectural configuration and its quality-attribute values. This information is rep-
resented by a search graph, which connects an initial architectural configuration
to the various configurations that can be derived from it by applying predefined
decisions. Next, during the pre-processing and clustering stage, the information
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from the architectural instances is split into two parts. The quality-attribute val-
ues are grouped to derive clusters. To do this, a combination of discretization (of
numerical values) and clustering techniques is used. The sequences of decisions
(paths in the graph) leading to each configuration are identified, and the impor-
tant decisions for the tradeoffs are then determined. Furthermore, decisions serve
to compute a distance metric between sequences. All the artifacts are stored in
a repository. Finally, the visualization stage provides a set of explanation charts
for the architect to get insights on the tradeoff space.

4.1 Design Representation Using a Search Graph

We consider a multi-objective architecture optimization [4], and assume an
architectural space for a family of systems that encompasses all possible architec-
tural configurations in terms of a (finite) set of design decisions. More formally,
let DS = {A0, A1, A2, ..., An} be a design space with n architectural configura-
tions in which each Ai corresponds to a (valid) configuration that results from
a sequence of predefined decisions Ai =< d1i, d2i, ..., dmi >. Each dij = 1 if the
decision was made (for configuration Ai) or 0 otherwise.

In this work, we restrict the possible decisions to architectural tactics [5]. An
architectural tactic is a design transformation that affects parts of an architec-
tural configuration to improve a particular quality attribute. In our example, a
tactic is to deploy a service instance on a given device in order to increase the
system performance. Note that the same tactic might have an effect on other
quality attributes (e.g., cost). From this perspective, the configurations in DS
are linked to one another through the application of tactics. DS can be visual-
ized as a directed graph in which each node represents a configuration, while an
edge between two nodes Ai and Aj captures a tactic leading from the former to
the latter. A distinctive node A0 refers to the initial configuration.

In general, an automated tool will be responsible for exploring the design
space and generating a (large) graph of configurations. The techniques for pop-
ulating DS might include specific architectural tools [1], evolutionary algo-
rithms [3,6], or model checkers such as Prism [7,14], among others. Since enu-
merating all the configurations available in the design space is usually computa-
tionally unfeasible, only a subset of those configurations will be generated. Our
framework does not depend on the tool or the specific search technique, as long
as it can expose the decisions being applied for each configuration.

We require a configuration Ai to be assessed with respect to multiple quality
attributes (objectives) by means of quantitative measures [15]. Let QAS =<
O1, O2, ..., Ok > be a quality-attribute space with k objectives in which each Ok

represents a quality metric (e.g., latency, failure probability, or cost) associated
with some architectural configuration. That is, an evaluation function f : DS →
QAS maps a configuration to a multi-valued vector in "k.
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4.2 Clustering of the Quality-Attribute Space

To understand the possible tradeoffs, architects need a succinct representation
of the quality-attribute space. A suitable technique for this purpose is cluster-
ing [22], which is a Machine Learning technique for grouping a set of instances in
such a way that instances in the same group (or cluster) are more similar to each
other than to those in other groups. To do so, a similarity criterion needs to be
established. In our case, an instance refers to the quality-attribute vector for a
configuration Ai. For the similarity criterion, we rely on the Euclidean distance
between vectors (although other metrics could be used).

We are interested in cohesive clusters that capture the main tradeoffs avail-
able in the space. To this end, classical algorithms such as k-means or agglom-
erative clustering [22] can be applied. In both algorithms, the number of desired
clusters is specified beforehand, and the quality of the resulting clusters is
assessed with metrics such as the silhouette coefficient [22]. This coefficient
assesses the (average) cohesion and separation of a set of clusters, by measuring
how similar instances are for their own cluster compared to the other clusters.

Once clusters are identified, we assign a label to each cluster that reflects
the quality attributes being traded off in a way that humans can more easily
understand. Specifically, we select the cluster centroid, which is computed as
the mean of the vectors belonging to the cluster. Examples of three clusters
were shown in Fig. 1 (right) with their centroids marked. Since a centroid is a
numeric vector, we transform it into a label by means of a discretization proce-
dure which partitions the range of values of each quality attribute into an ordinal
(or Likert-like) scale. In Fig. 1, the partitioning is indicated by the dotted lines
that map to levels of satisfaction (e.g., fast, average, or slow for performance).
The cluster label results from the concatenation of the quality-attribute levels
of the cluster centroid. In our example using a 3-point scale, the orange cluster
gets labeled as fast/minimally-reliable, the blue cluster gets fast/highly-reliable,
and the green cluster gets slow/minimally-reliable. Note that after the cluster-
ing and discretization, the quality-attribute space is reduced to three groups of
tradeoffs. The number of architectural configurations belonging to each cluster
might vary, depending on the design space being considered.

4.3 Distance Between Architectural Configurations

An architectural configuration in the search graph is the result of applying spe-
cific tactics to the initial architecture. The optimization tool progressively applies
different tactics to derive alternative configurations. Thus, a configuration Ai can
be represented by a sequence of tactics Si =< t1i, t2i, ..., tmi >, which comes from
the shortest path between the initial node and a particular node (with a valid
configuration) in the search graph. Coming back to our client-server example,
we can consider a tactic increaseCapacity(?device) that deploys (and activates)
a new service on a given device1. Instantiations of this tactic for specific devices
1 A tactic decreaseCapacity(?device) that reverses the effects of adding a service to
a device can be also considered in the graph.
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(device1, device2) will then label the edges of the graph. Note that we consider
the sequences as shorter paths in the graph because all the tactics in the example
involve “atomic” configuration changes. If more complex tactics were available,
other criteria for determining the paths to each alternative should be considered.

By representing configurations as sequences of decisions, we can assess the
distance between two configurations in terms of their delta of changes [3]. Given
a pair of configurations Ai and Ai, which are derived from sequences Si and
Sj respectively, we model their distance as a function of the differences in the
tactics made for Si and Sj . Our approach currently uses a version of the hamming
distance2 [10], although other metrics could be employed. A distance matrix for
all tactic sequences is computed in the pre-processing stage (Fig. 2).

When the architect wants to explore alternatives for a configuration Ax, all
configurations are sorted based on their distance toAx, and the top-k results with
the shortest distance are returned. Upon the architect’s request, filters can be
applied to select: only configurations within a particular cluster, configurations
belonging to all clusters, or configurations that exclude a predefined cluster. For
instance, Fig. 3 shows the distances between three configurations resulting from
two clusters from our example. Configurations A and C are assumed to share
the same cluster, while configuration B belongs to a different cluster. The labels
associated with each configuration refer to its quality-attribute characteristics
(which might slightly differ from those of the cluster centroid). For example, as
shown in Fig. 3, one could sacrifice response time (e.g., due to cost concerns) by
moving from A towards C, which both decreases the number of active services
and uses a cheaper device for them. Alternatively, one could make changes to

Fig. 3. Alternative configurations and tradeoffs based on decision changes.

2 In case of sequences of different lengths, we pad the shorter sequence with a spe-
cial noOp() tactic that makes no changes to the architectural configurations.
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A so as to reach B, which offers both higher reliability and smaller response
time, because services are deployed in two devices. Alternative C causes a slight
variation in the tradeoff of A for performance and reliability, while alternative B
leads to a better tradeoff for both qualities. In general, intermediate configura-
tions might need to be traversed (in the graph) to move between two particular
alternatives. Note also that the distances refer to changes in the design space,
rather than to cluster differences in the quality-attribute space.

4.4 Explanation Charts

In the visualization stage, the architect goes through a series of charts that
shed light on different aspects of the design space. This exploratory process is
structured as a suggested workflow of activities. Each activity involves a spe-
cific chart targeted to answer questions Q1-Q4. The four available charts are
illustrated in Fig. 4. The suggested order for an architect to use them is clock-
wise, as indicated by the numbers in the figure. The charts were designed and
adjusted iteratively by the authors, according to the notion of pretotypes [19],
which allows one to test ideas at a low cost before building a (prototype) tool.

We briefly describe below the main characteristics of each chart type:

1. Quality-attribute prototypes. This radar chart displays the values of the
cluster centroids with respect to the quality attribute goals. As the initial
view, it presents the main tradeoffs of the quality-attribute space to the

Fig. 4. Types of explanation charts.
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architect, using the centroids as representative instances (or prototypes) of
the feasible tradeoffs. This chart is intended to address Q1. The chart legend
additionally shows the labels and the percentage of architectural configura-
tions (from the whole space) per cluster.

2. Architectural configuration view. To focus on a given prototype or cluster
(from chart #1), the architect can inspect one or more architectural config-
urations related to that cluster. This is motivated by the need to drill down
into the structure of configuration and its underlying decisions. The chart
targets Q2 and enables an understanding of the design space. Here, we use
PlantUML for our client-server example, although the notation is dependent
on the architectural models being captured by the space.

3. Quality-attribute space. This chart gives a detailed view of all the archi-
tectural configurations, their contributions to the different quality-attribute
measures, and how configurations are grouped into clusters. It complements
chart #1 by showing all possible tradeoffs, in order to address Q1 and Q2.
This chart is interactive, allowing architects to select specific points and dis-
play basic information about the configurations or cluster labels.

4. Alternative architectural configurations. After the insights exposed by
the previous charts, the architect might want to understand how to move from
a given configuration to another with different quality-attribute characteris-
tics. This chart creates an interactive graph that takes a target configuration
and connects it to a set of nearby configurations that result from making
“small” changes to the decisions for the target configuration. The alternative
configurations might belong either to the same cluster as the target or to dif-
ferent clusters. This graph chart seeks to address Q3 and Q4. The target can
be any configuration from charts #1 or #3. The construction of the graph is
based on the architectural distance described in Sect. 4.3.

5 Study Design

To evaluate the effectiveness of our explanation framework, we applied it to
an extended version of the client-server problem presented in Sect. 2 in two
ways: (i) exploring and assessing configuration variants and tradeoffs using a
pre-generated space, and (ii) conducting a think-aloud study to evaluate our
findings and the role of the explanation charts3.

5.1 Client-Server Design Space

We set a client-server style with up to three available servers (devices), each
with a capacity to deploy a maximum of six services. To model tradeoffs between
performance (latency), reliability (probability of failure), and cost (total deploy-
ment expenditure), we assigned different characteristics to each device, in terms
of high-end hardware (i.e., very good processing capabilities, low failure rate,

3 Notebook: https://shorturl.at/jyCX3 - Tasks: https://shorturl.at/lHU08.
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and high cost), mid-range hardware, and low-end hardware (i.e., minimum pro-
cessing capabilities, higher failure rate, and low cost). The decisions in this space
include: (i) adding one (active) service to any device, or (ii) removing an already-
deployed service from a device. The choice of the device depends on its hardware
characteristics.

We departed from an initial configuration with no services allocated
to devices, and ran an optimization procedure based on the Prism model
checker [14]. This way, we generated a large number of architectural configu-
rations for our system to evaluate the feasibility of the proposed framework.
In principle, other search strategies (e.g.,, evolutionary algorithms) could have
been used, as the approach is mostly independent of how the optimization part
is implemented.

5.2 User Study

The think-aloud method is a technique to investigate problem-solving processes
and participants’ cognitive models [12], in which participants vocalize their
thought process while working on a task. We chose a think-aloud study because
it can provide insights into how the clustering and visualization techniques pro-
posed in our framework can facilitate the participants’ architectural reasoning.

The study consisted of a series of design sessions with 9 participants from
both academia and industry. The selected participants had various roles in their
organizations (e.g., university faculty, researcher, PhD student, industry practi-
tioner, and senior engineer) and varying degrees of architectural knowledge and
experience (from 2 to more than 20 years in the architecture field). All sessions
were recorded and had a duration of 45min approximately.

A session involved four phases: introduction, learning, testing, and post-
mortem. The session started with an introduction to the architectural problem,
and was facilitated by one of the authors. As mentioned above, this problem
was based on the design space already investigated (Sect. 5.1). After the intro-
duction, there was a learning phase in which the participant assumed the role
of an architect and was asked to explore the space of quality-attribute trade-
offs and candidate configurations by means of the explanation charts. For this
phase, we provided a Jupyter notebook in Google Colab that included prede-
fined Python functions for a user to load the space as a dataset and generate
the charts. Furthermore, some Python functions admit parameters to adjust the
chart behavior (e.g., the name of the architectural configuration to be inspected,
or the number of alternatives to show in the graph). We decided not to include
the quality-attribute space chart (pairwise scatter plots) in this study, since it
provides detailed information about the clusters but can be complex to grasp for
unfamiliar users. To avoid long sessions, we considered it could be substituted by
the radar and graph charts in the interviews, without losing much information.

The effectiveness of the charts was assessed during the testing phase, in which
a set of glitch detection tasks and prediction tasks was presented to the partic-
ipant [11]. In the glitch detection tasks, the subjects identify things that are
wrong in a system or explanation; while in the prediction tasks, the subjects
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have to predict the results of certain design decisions and explain their predic-
tions. Both kinds of tasks referred to design situations based on the presented
charts. These tasks enabled us to analyze the participant’s reasoning process and
whether it was aided by the mechanisms of the explanation charts.

At the end, we conducted a short questionnaire to measure the satisfaction
levels of the participants when using the charts. To do this, we used a list of
Likert-scale questions. Apart from satisfaction, we also focused on the partici-
pants’ expectations as well as on areas of improvement for the framework.

6 Findings

For our client-server example, Prism returned a graph with a design space of
342 configurations. Each configuration was evaluated with (simplified) analytical
models to estimate values of cost, latency, and probability of failure. A visual
inspection of the resulting tradeoff space showed that it had enough diversity
and coverage. Figure 5 depicts both the design and quality-attribute spaces. Each
path in the graph is a sequence of design decisions. The sequence length to move
between configurations ranges from 1 to 18 decisions.

Fig. 5. Design space (graph) and quality-attribute space (pairwise scatter plots) for
the client-server space. Colors refer to the clusters exposing four tradeoffs.

In the clustering process, we sought a balance between having a small number
of clusters and achieving a high silhouette coefficient. We applied hierarchical
clustering with four clusters, which yielded a silhouette coefficient of 0.52. The
obtained clusters have unique combined labels, which are derived from a dis-
cretization of the ranges for each quality attribute into five bins. In principle,
this discretization enables 125 possible tradeoffs, but only 19 of them were reach-
able in the space. Thus, our clustering reduced the tradeoff space in ≈ 80%.

For the user study, we categorized the findings according to the chart types,
focusing on the understandability of the charts (and the design space thereof) as
well as on participants’ satisfaction. An overview of the questions and answers
from the post-mortem questionnaire is given in Fig. 6. The participants indicated
that they were generally satisfied with the information conveyed by the charts.
During the learning phase, all participants were able to understand the purpose
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of the three charts, and to use them for architectural reasoning in the testing
phase. Most glitches were detected by the participants. The most difficult glitches
and prediction tasks were those related to the graph chart, particularly for less
experienced participants.

Fig. 6. Likert-scale answers of participants of the user study.

The radar chart was judged as the easiest to use by most participants. During
the testing phase, it was perceived as straightforward to apply. This might be
due to the fact that architects are often exposed to similar charts. In fact, other
visualization tools [9] have proposed radar charts for tradeoffs. A PhD student
stated: “The radar chart with the clusters shows you quite easily what types of
solutions are the most likely ones to satisfy your needs”. As for the labels, they
were intuitive for the participants, although some asked questions about the
value ranges for the labels, and moreover, about the quality-attribute thresholds
that should be considered in order to weight each cluster prototype. On the
downside, some participants argued that despite the chart provides an overview
of the tradeoffs, it did not seem actionable with respect to decision-making.

The architectural configuration chart was used by participants to drill down
into the architectural structure of a particular prototype. Participants usually did
not explore more than one configuration with the chart. During the testing phase,
the annotations on the devices were a key element for detecting glitches. This
might suggest that enriching architectural views with quality-attribute annota-
tions can help design reasoning. However, this aspect likely depends on the size
and architectural notation used for the views. Along this line, one researcher
noted: “If I had a system with dozens of components, where there is only a slight
difference between configuration A and configuration B when I’m looking at the
alternatives, it’ll take me much longer to understand what the differences are
between these alternatives, and I’d have to trust more the tool to do the job right
... I might need something that shows me the differences between the architec-
tures”.

When it comes to the graph chart, we observed mixed impressions. A number
of participants found the chart difficult to interpret and use later in the glitch
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detection and prediction tasks. This situation was evident for those participants
with less architecture experience. For instance, the implications of the decisions
made when transitioning from one configuration to another were not easy to
be reasoned about. Despite this complexity, other participants argued that it
was useful to explore alternatives by means of small configuration changes. One
practitioner said: “The graph was probably the most challenging to use but also
potentially getting to be the most powerful”. Another participant stated: “[The
graph chart] shows me a what-if analysis ... it lets me do an analysis of different
tactics and look at what is their impact in terms of the tradeoffs I would get”.
We collected suggestions to enhance this chart, such as: clarifying the tactic
names in the edges, linking the nodes to architectural views (configurations),
and (again) adding quality-attribute thresholds. During the learning phase, three
participants raised questions about the effort or complexity (e.g., development
cost, or deployment cost) of applying the decisions shown in the graph.

Overall, we can conclude that the charts were effective in helping to expose
the tradeoffs of the space, and to a lesser extent, in helping the participants
reason about decisions affecting those tradeoffs. Having a better focus on the
decisions that architects could make is one of the areas of improvement that
we identified from the user study. In retrospect, our findings indicate that the
information shown in the notebook provides insights about the tradeoffs and
configurations, but it might lack contextual information about the problem that
the architect is trying to solve. In this regard, one practitioner said during a
session: “I’m trying to arrive at a decision, not just see that there are tradeoffs”.
Furthermore, two practitioners mentioned that the charts should be integrated
with tools that architects and developers use in their daily work (e.g., infrastruc-
ture as code, dashboards, or IDEs) for assessing options and making decisions.

6.1 Threats to Validity

Internal Validity. The results of the clustering process depend on both the char-
acteristics of the quality-attribute space and the (hyper-)parameters used for the
algorithm (e.g., choosing the number of clusters). The cluster boundaries might
not be always clean. Furthermore, using the cluster centroid (and its associated
label) to characterize the tradeoffs of all the cluster members is an approxima-
tion. Not all the instances belonging to a cluster might have the same tradeoff
posed by the centroid, and thus slight tradeoff variations might appear in the
space. In the client-server example, applying other clustering algorithms (e.g.,
k-medoids) could produce different results. All these factors can affect the par-
ticipants’ interpretation of the radar chart and parts of the graph chart. The
graph chart relies on both the tactic sequences for each configuration and a
distance criterion for sequences. The sequences can be seen as proxies for rep-
resenting the configurations, but they omit some architectural characteristics.
Thus, the sequences were a good representation for our client-server example,
but they might fall short for dealing with other architectural styles. Regard-
ing the architectural distance, we implemented a hamming distance under the
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assumption that all the tactics have the same weight (or involve a similar amount
of changes). This might not hold if a different set of tactics is considered.

Construct Validity.When talking about concepts like “tradeoffs” or “software
architecture”, our participants might have different interpretations as to what
they mean. Especially due to their abstract nature, these constructs can be
difficult to understand. To mitigate the threat, we discussed the example scenario
and concepts at the beginning of the interviews. We asked our participants to
describe the scenario in their own words to understand their ways of thinking
about tradeoff-related issues. In case they were unsure, we gave explanations of
the key constructs and ensured that our views were aligned.

Conclusion Validity.While we did not aim to arrive at statistically significant
results, conclusion validity is still relevant for our study. The reliability might
have been compromised by having a sample of nine participants with limited
time to work with the notebook during the sessions. Collecting data from a larger
number of participants would have led to more information and richer feedback
about the framework. To mitigate this, we aim to be transparent about our
research method and study materials. We thoroughly discussed and refined the
materials to avoid issues such as potentially incoherent structure, overly complex
visualizations, or poor wording in tasks and questions.

External Validity. The automated generation of a large graph of alternatives,
which also includes the information required by our framework (e.g., decisions
applied at each step, quality-attribute values for each alternative), can be chal-
lenging and might not feasible (or accurate) for any system or optimization algo-
rithm. This aspect might prevent the exploitation of the techniques presented
in the paper. Furthermore, our study does not have a broad generalizability, as
it was exercised on a small architectural problem. The goal was to present a
think-aloud study focusing on the practical usage of the explainability charts by
humans. We selected the participants trying to achieve a coverage of different
profiles. Involving different participants helped us get a variety of perspectives on
the topic and strengthen external validity. Another threat is the presence of the
authors, who assumed a central role in developing the notebook and facilitating
the sessions. These factors might lead to the participants responding more pos-
itively. As mitigation, we stressed that they should openly share their thoughts
and that improvement suggestions were welcome. Our results indicate that the
participants followed these instructions and shared criticisms.

7 Related Work

Several tools for automated architecture optimization that generate a set of alter-
natives have been proposed [1,3]. These tools work mostly as black boxes, and
their internal search space is not comprehensible by humans. As a result, archi-
tects might not trust the proposed architecture candidates. Recent approaches,
like SQuAT-Viz [9] and Voyager [16], have investigated visualization techniques
for helping architects to understand tradeoffs, and have also evaluated their
usability. Among other techniques, SQuAT-Viz [9] uses radar charts and scatter
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plots for the quality-attribute space, although they show all possible combina-
tions of tradeoffs. Voyager [16], in turn, combines tradeoff analysis with architec-
tural structure visualizations alongside, highlighting the need to connect these
two spaces, which is a shared concern with our framework. Voyager does not
consider strategies for reducing the size of the quality-attribute space (e.g., via
clustering) or navigating related configurations (e.g., like our graph chart).

Other authors have attempted to explain tradeoff spaces using dimensional-
ity reduction and clustering techniques. For instance, Camara et al. [8] propose
PCA (Principal Component Analysis) loading plots to relate quality-attribute
and architectural variables. In the robot planning domain [20], contrastive expla-
nations of tradeoffs have been developed. This kind of explanations compares a
selected policy to Pareto-optimal alternative plans and describes their quality-
attribute impact on the user. Also in the planning domain, Wohlrab et al. [21]
complement the PCA plots of Camara et al. [8] with clustering and decision
trees. The usage of the clusters differs from our framework, as they refer to poli-
cies sharing similar characteristics and provide a high-level tradeoff explanation.
The clustering process is applied on top of the loading plots, which often implies
some information loss when transforming the space to a 2D representation. Fur-
thermore, clusters are explained using bar charts showing feature means, which
might not be an intuitive visualization for humans. These works center on infor-
mation reduction techniques for the design space, but user studies about their
effectiveness have not been reported yet.

The GATSE tool [17] allows architects to visually inspect AADL (Architec-
ture Analysis and Description Language) models from a previously computed
dataset. It offers several visualizations to support quality-attribute analyses of
AADL models (e.g., via a Pareto diagram), enabling the architect to focus on
regions of the quality-attribute space to narrow down or deepen the search for
alternatives. This interaction mechanism is called “design by shopping”.

Kinneer and Herzig [13] investigate metrics of dissimilarity and clustering for
a set of spacecraft architectures within a space mission domain. Since a large
number of architecture candidates are automatically synthesized, but some can-
didates might be similar to each other, the architect has to waste time sift-
ing through the space. Thus, a clustering process based on PAM (Partitioning
Around Medoids) is proposed to group the architectures and select a represen-
tative instance from each group. The clustering is tied to the notion of distance
between architectures. Based on user studies that identify correlations between
clustering and human judgements, the authors highlight the role of human per-
ception when different stakeholders explore the space.

8 Conclusions

In this paper, we discussed some requirements for improving an architect’s under-
standing of design spaces regarding the interplay between tradeoffs and architec-
tural decisions. To this end, we presented an approach that relies on clustering
and visualization techniques. An initial version of our framework was evaluated
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on an architectural problem with a think-aloud study. This study confirmed
our hypothesis that design spaces can be summarized to a handful of quality-
tradeoffs and related architectural decisions, and also provided us with feedback
to improve the explanation charts and underlying techniques. This suggests more
focus on characterizing the architecture space, which has received less attention
in the literature in comparison to the quality-attribute space.

As future work, we plan to test our framework for larger design spaces,
whether generated by existing optimization tools [3,17] or by humans [18]. As
the spaces grow larger, mechanisms to extract the main paths of decisions and
tradeoffs will become increasingly important. We think that the notion of “policy
summaries” [2] can be adapted to work with the graphs of alternatives (within
the architectural space) to extract a sub-graph of decisions that contribute the
most to the quality attributes of interest for the architect or stakeholders.
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