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Abstract 

 
Software architecture allows us to make many decisions about a software system and analyze it even before it has 

been implemented, so as to make planned development possible. Similarly, architecture-based software evolution 

planning makes planned evolution possible by allowing us to make many decisions about the evolution of a 

software system and to analyze its evolution at the level of architecture design before software evolution is 

realized. In this paper, we develop a framework for architecture-based software evolution planning. It is done by 

defining various foundational terms and concepts, providing a taxonomy of software evolution plans, and then 

showing how to calculate values for various types of plans. By identifying and defining constituent foundational 

concepts, this conceptual framework makes precise the notion of ‘architecture-based software planning’. By 

developing a value-calculation framework for software evolution plans, it also provides a basis for concrete 

methods for designing and evaluating evolution plans.  

 

Keywords: software evolution; software architecture; architecture-based software evolution; architecture-based 

evolution planning 
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1. Introduction 

 

As new software technology emerges, today’s companies rely increasingly on upgrading and extending their 

legacy systems, rather than on constructing new systems from scratch. Indeed, until 1990 software maintenance 

costs accounted for around 60-70 percent of the lifecycle cost of software; these days it can take up to 75 percent 

or higher [19]. Although existing approaches to software maintenance have provided some guidance for software 

evolution planning [9], these have a number of limitations. First, they work mostly at the level of code, limiting 

the ability to reason about complex software systems’ evolution with respect to overall system qualities and the 

alignment of stages of evolution with business goals. As a consequence they make it hard to estimate the benefits 

of a plan of evolution or to find optimal plans. Second, they work at the level of features or requirements, if not at 

the level of code. However, features and requirements do not reflect design decisions and hence the impact of 

design on evolvability of software systems cannot be evaluated. Therefore valuation of evolution plans tends to be 

inaccurate, with the result that comparison of alternative plans may not lead to optimal plans.  

In this paper we address some of these limitations by focusing on of the use of software architecture [13, 7] as 

a basis for planning an evolution path and making economically-based decisions about alternative paths. While 

the concept of architecture-based evolution is not new [22, 29, 28, 3], to date, there has been very little work on 

understanding it in a systematic fashion. In particular, there is no well-understood set of foundational concepts, or 

clear distinctions between different types of architecture-based evolution. In this paper, we attempt to correct the 

situation through a taxonomic and formal approach. In addition we show how to integrate a notion of plan 

valuation, which allows us to determine the economic value of a given evolution plan, and hence to choose among 

a set of possible plans. 

The remainder of the paper is organized as follows: Section 2 presents an evolution model for software 

systems and discusses the concepts and notation for evolution planning. Section 3 presents an approach to 
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evolution plan valuation. For that, we describe two principles on which our approach is based: cost-benefit 

partitioning and valuation of evolvability design. Then we present our approach to valuating a single step of 

evolution. Section 4 discusses how to valuate different types of plans based on single step valuation introduced in 

Section 3. Section 5 provides case studies of the application of our framework. The focus of the case studies is on 

showing that other evolution planning approaches can be interpreted within our framework. Section 6 discusses 

related work. Finally, Section 7 summarizes the contributions of the paper and suggests future work directions. 

 

2. System evolution model 

We start by presenting a formal model of architecture-based software evolution. The model provides the 

setting from which we can understand various issues of architecture-based software evolution, by defining 

foundational concepts such as evolution vs. operation, evolution planning vs. evolution execution, and 

evolvability vs. other software qualities, and by providing a taxonomy of evolution plans. The model has been 

inspired by the ideas of previous researches that software evolution can be viewed as a staged model [9] and that 

architectural change drives evolution [10, 26, 1, 5, 28], together with the insight that the value of evolvability, as 

the design flexibility for evolution, should be formally calculated for planning [27, 8, 4, 12, 23, 24].   

In what follows we will refer to an architecture design by AD, and a system that implements the architecture 

design AD by SAD.  The relation between AD and SAD can be described as 

 SAD “=” AD + {Implementation strategies for AD} 

That is, SAD is determined by AD together with the implementation strategies for AD. Implementation strategies 

for AD are decisions for system implementation made by the implementers while constructing a system that 

conforms to the architecture design AD. When SAD and AD need not be distinguished, we will use AD instead of 

SAD.  
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Figure 1. Architecture-based system evolution model 

 

Evolution consists of a number of discrete evolution steps. Figure 1 depicts an evolution consisting of n 

evolution steps leading to a sequence of n+1 system instances, called stages. SAD0 is the system instance that was 

initially developed, and the succeeding system instances are obtained from it by evolution. Once an i-th evolution 

step, denoted ADi-1 ADi, is taken, the system is in the i-th stage. The i-th evolution step is completed by 

developing system SADi based on ADi.  

An evolving system has a sequence of operation durations T0, T1, … , Tn, … representing the periods of 

operation between evolution steps. Typically an evolution step is a relatively short period of time during which a 

system evolution task is performed, whereas an operation duration is a longer period of time during which the 

system performs its services. A stage of an evolution consists of an evolution step followed by an operation 

duration in which the system resulting from the evolution step performs its services. Stage i evolution bridges the 

two adjacent stages, and their operation durations Ti-1 and Ti. While SADi performs its business missions by 

operating during Stage i, operation revenue for Stage i is generated. In this paper, we refer to the operation during 

Ti as Operation Stage i and the i-th evolution step as Evolution Step i. The amount of architectural change that 

architecture design ADi+1 introduces to ADi may range from significant to minor. We will assume that 
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architecture design contains important implementation decisions and implementation cost, time and quality are 

predictable.a  

When an evolution step is taken, it is accompanied by a change to the architecture. We denote this change as 

(ADi-1>ADi) and abbreviate it as (ADi). The initial system, AD0 does not have a system preceding it; it can be 

represented without ambiguity as (AD0). The following equation holds:  

 ADi = AD0 + i
j = 1 (ADi) = i

j = 0 (ADi)            ------ (F1) 

 

(ADi-1ADi) can be partitioned into the two categories of change as expressed by:  

 (ADi-1ADi) = Evolvability(ADi-1ADi) +  Evolvability(ADi-1ADi)      ----- (F2) 

In (F2), Evolvability(ADi-1ADi) stands for change related to evolvability, such as reengineering of the architecture 

for easy addition of new technology components. In contrast,  Evolvability(ADi-1ADi) stands for change related to 

all other aspects excluding evolvability, such as replacing an existing component with one having better usability 

properties. The evolvability of a system represents the capability of a system’s architecture design to support the 

evolution of the system. We separate these two kinds of evolution explicitly because the system’s capabilities 

belonging to the first kind manifest themselves in the present, whereas those belonging to the latter manifest 

themselves only in the future, and therefore calculation of the benefit and the value of the latter should be done 

separately from the first one.  

By a framework for architecture-based software evolution planning, we mean in this paper the evolution 

model presented in this section, together with the evolution plan valuation methods and the associated planning to 

be presented in Sections 3 and 4. The evolution model provides the foundational basis for the framework because 

it enables us to present a taxonomy of evolution plans in a concrete context (cf., Section 2.2), and its division of 

quality attributes into evolvability and other kinds of qualities enables us to focus on the important role of 

evolvability as represented by the equations F1 and F2 above. 

 

                                                           
a We realize this is not entirely realistic, but adding uncertainties is a straightforward extension. 
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2.1 Evolution planning 

We use the term plan to mean “an evolution plan at the level of architecture design,” and the term planning to 

mean “the activity of determining a plan with the greatest value.” Once a plan is determined, it becomes the input 

to a plan execution process. In order to discuss evolution planning, we need to distinguish “evolution as planned,” 

which is an evolution plan (cf., Figure 1), and “evolution as executed,” which is the result of executing an 

evolution plan. Execution of an evolution plan consists of executing an evolution plan step-by-step.  

The establishing of an evolution plan process consists of the following three tasks: 

1. Creation of a set of candidate plans.  

2. Calculation of the economic values of candidate plans.  

3. Selection of a plan with the maximum value. 

Accordingly, in our framework evolution planning proceeds with these three tasks, and the plan to be obtained as 

a result will be an evolution plan with the greatest economic value (among a set of alternatives) in terms of cost 

and benefit. 

 

2.2 A taxonomy of evolution plans 

An evolution plan can be classified as deterministic or adaptive depending on whether or not its execution 

allows a different evolution path to be chosen as it unfolds. An evolution plan has a finite horizon or an indefinite 

horizon depending on whether the evolution plan has a termination point or not.  

 

2.2.1 Deterministic plan vs. adaptive plan 

Evolution plans are made for systems and thus can be classified depending on how much is assumed to be 

known about the environments of the systems. The environment includes (a) external factors -- such as the market, 

trends in standardization and technology availability, etc. -- that are outside the control of the company, and (b) 

internal factors such as a company’s directions and decisions that are under the control of that company.  

Depending on the amount that is known about the environment, plans with varying degrees of determinism 

can be produced. In the case of a (completely) determinist plan, it is assumed that we know everything needed for 
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planning, such as the value of software, how the market will behave, etc. When there are one or more important 

factors that are not fully known at the time of planning, we can make an adaptive plan. Later in the second phase, 

when the plan is executed, the plan allows us to take a different path depending on the actual values of the factors  

In a deterministic plan, there are no decision points; it has a linear structure as shown in Figure 2(a). After each 

stage is executed (i.e., it has been implemented and is performing its operation), the unique succeeding stage is 

executed. 

 

Pr(x>y) = 1/4 

AD0 ADn-1 ADn 

AD<0> 

AD<0,1> 

AD<0,2> 

AD<0,1,1> 

AD<0,1,2> 

AD<0,2,1> 

AD<0,2,2> 

... Time 

Pr = 1/3 

Pr = 2/3 

Pr(x<= y) = 3/4 

x>y 

x <= y 

(b) Example of a finite adaptive plan 

(a) Structure of a deterministic plan 

 

Figure 2. Examples of evolution plans 

 

In an adaptive plan the next stage of evolution is based on the status of the system and the external and internal 

factors at the current stage. An adaptive plan can be represented as a tree, as shown in Figure 2(b). Each path from 

the root to a leaf corresponds to an evolution path that can be taken. A node of the tree is a decision point that has 

a (possibly empty) set of uncertainty factors (or decision parameters) associated with it. For example, in Figure 

2(b), from the AD<0,2> node, by taking an outgoing edge with the decision predicate “x <= y”, a step of evolution 

to AD<0,2,1> occurs. The result of executing one step of a finite adaptive plan is an adaptive plan that is one stage 

shorter.  
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With an adaptive plan, we are able to express external and internal uncertainty factors explicitly in the plan. In 

order to reflect uncertainty factors in deciding which branch to take of an adaptive plan, we need to first assign 

weights to uncertainty factors and then define a decision function that takes them as input so that one among all 

possible decision results can be selected based on the input values when the plan is executed.  

 Sometimes, although we do not know their future values, we may know enough about uncertainty factors to 

specify the probability that a certain evolution step can be taken. Probability information may come, for example, 

from historical data, if data from previous similar projects have been accumulated, or from experts. In such a case, 

we may associate a branch with the probability Pr(AD  AD) that evolution from AD to AD will take place.  

Figure 2(b) shows a plan annotated with probability information. The two branches from AD<0,1> have no 

associated probability information, as it is assumed to be unknown. If we have to make explicit a plan that 

contains such a case, we regard each branch of such a case equally likely and assign 1/n to it where n is the 

number of branches. This plan has three stages of evolution and two alternatives at each internal node. Since the 

node AD<0,1> has two uncertainty factors x and y, as the plan executes, one of the branches will be taken depending 

on the values of x and y. The summation of the probabilities of all the branches from one node should equal 1.  

2.2.2 Finite plan vs. indefinite plan 

A finite plan has a finite number of stages. For example, some companies plan for their business systems each 

quarter for the next N years. With poor planning, possibly accompanied by poor evolvability design, a system 

may stop evolving before reaching its n-th stage, or reach the n-the stage, but only at a high cost. An important 

characteristic of a finite plan is that the planner is not responsible for the system after the planned period of 

evolution. That is, the planner is responsible only for up to the system’s configuration or state after the final step 

of planned evolution of the system. b In an indefinite plan, there is no predetermined number of stages. The system 

evolves with no termination point envisaged.  

Many software systems around us that are continuously updated are based on indefinite evolution plans as 

they are expected to evolve with no termination point envisaged. As examples of definite plans, the examples in 

                                                           
b Otherwise, the planner should take the indefinite plan approach in order to take into account the impact of the system’s 

evolvability design that would manifest itself after the predetermined period. 
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[23] and [3] will be introduced in Section 5, of which the former is a definite adaptive plan and the latter is a 

definite deterministic plan.  

 

3. Evolution plan valuation  

We present two principles for valuation of evolution plans. First, relevant factors for economic valuation are 

grouped into cost and benefit factors. Second, evolvability is explicitly separated out from other aspects of 

evolution.  

 

3.1 The principle of cost-benefit partitioning  

Traditionally economic evaluation or analysis for decision making has been done by grouping relevant factors 

into cost factors and benefit factors. Poulin called it C-B analysis [25]. Other authors, including Boehm [8], have 

based their economic decision methods on cost-benefit analysis. Accordingly, we separate cost calculation and 

benefit calculation. Also, we let the factors for benefit calculation be the same as the factors for cost calculation. 

This is because the value that each factor contributes can be calculated if both cost and benefit data for that factor 

are accumulated.  

 

3.2 The principle of evolvability design valuation  

A system that has extendibility due to its architecture design surely has more value than a system that is less 

extensible. In the case of the former system, new capabilities can be added to the system at a low cost. But in the 

latter case, we may add new functionality to the existing system at a high cost, or we may first redesign the 

architecture of the system at some cost to make it extendible and then add new functionality. In either case, the 

architecture-level extendibility in a system has a certain value. For the latter system, depending on how much the 

value is, adding new functionality directly to the existing system may be more economical, or redesigning its 

architecture first may be more economical (cf., [21]). This shows that for systematic evolution planning, it is 

important to explicitly valuate (i.e., calculate the value of) evolvability of architecture design. Architectural 

evolvability is the extent of an architectural design that allows the system to grow or adapt in time and is 
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manifested with properties like scalability, (functional) extendibility, adaptability, modifiability, self-

configurability, etc.  

Evidence of the importance of such properties can be found in the observations such as the following: If a 

system is well designed for evolvability, the existing system can easily accommodate new requirements that were 

anticipated when it was designed, thereby reducing maintenance cost; If, on the contrary, its evolvability design is 

weak, then the evolution of a system may have to be terminated in the middle of a planned evolution, since down-

stream modifications will become too expensive to perform. In this way, evolvability design clearly has economic 

effects on software evolution.  

In this paper, we assume that such evolvability design can be valuated for the following reasons: First, there 

are well-known techniques for evaluating quality attributes of a system using scenarios to measure quality (see for 

example [7]). Since evolvability is a quality attribute, this approach can be used to valuate it also. Specifically, to 

valuate evolvability in the context of a specific situation, we first derive evolvability scenarios and then measure 

evolvability with respect to them [7]. Second, in software engineering there are many estimation techniques, 

including the Wideband Delphi method, to approximate values of quality attributes, when exact values cannot be 

determined. Typically, approximate values are sufficient to gain insight, and to provide meaningful analysis.  

 

3.3 Valuation of one stage of evolution 

Various factors are necessary for calculating evolution costs and benefits (including evolvability of the 

architecture). Identified factors help the planner collect the right kinds of data so that they can be used for 

planning, as suggested in this evolution planning framework. Once we know the values of those factors (e.g., 

through estimation), then we can decide costs and benefits of evolution plans, which will allow us to select an 

optimal plan.  

The framework proposed in this paper is open to (that is, designed to work with) any specific measures and 

metrics to determine the values of the factors. That is, the model itself does not specify which methods should be 

used for estimating costs and benefits, but will work with any estimation methods with different estimation 

accuracies, as long as they provide required costs and benefits as input.  



 

 11 

 

Given an architecture design change for Stage i, ADi, related cost and benefit functions can be defined as 

illustrated in Table 1. The cost /benefit factors in Table 1 may be further broken down by practitioners, if desired, 

to give finer-grained cost/benefit factors. The significances (i.e., weights) of cost factors would differ from 

company to company and from project to project. 

Table 1. Definitions of cost functions and benefit functions 

Cost functions Returns the cost of 

CDevelop(ADi)  

CDesign(ADi) 

CImp(ADi) 

CMaintenance(ADi) 

CDesign(ADi Evolvavility) 

CDesign(ADi  Evolvability) 

CImp(ADi Evolvavility)    

CImp(ADi  Evolvability) 

CMaintenance(ADi Evolvavility)  

CMaintenance(ADi  Evolvability) 

developing ADi  

architecture design for ADi  

implementing ADi  

maintaining ADi  

architecture design for ADi Evolvavility  

architecture design for ADi  Evolvability 

implementing evolvability design of AD 

implementing other design aspects of AD except evolvability 

maintaining evolvability aspect of system 

maintaining other aspects of system except evolvability 

Benefit functions Returns the benefit of  

BDevelop(ADi)  

BDesign(ADi) 

BImp(ADi) 

BMaintenance(ADi) 

BDesign(ADi Evolvavility) 

BDesign(ADi  Evolvability) 

BImp(ADi Evolvavility) 

BImp(ADi  Evolvability) 

BMaintenance(ADi Evolvavility) 

BMaintenance(ADi  Evolvability) 

system development of ADi 

architecture design of ADi  

implementation of ADi 

maintenance of ADi 

evolvability design of ADi  

other design aspects of ADi  

implementation of evolvability design of ADi  

implementation of ADi excluding evolvability design 

maintenance of evolvability aspect of the system 

maintenance of other aspects of the system  

 

 

3.3.1 Cost calculation for one stage of evolution 

To develop a theory of cost calculation for evolution planning, we first take the view that a stage of evolution 

consists of development and subsequent maintenance. Development, in turn, consists of design and 

implementation. In this context, design, implementation and maintenance have costs incurred by labor, use of 

facilities, use of the development environment, etc. Then  

CDevelop(ADi) = CDesign(ADi) + CImp(ADi)             ------- (C1) 

and we assume that  
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CDesign(ADi) = CDesign(ADi Evolvability) + CDesign(ADi  Evolvability)        ------- (C2) 

Design cost factors excluding evolvability, represented by CDesign(ADi  Evolvability), consists of functionality, as well 

as all quality attributes such as performance, usability, and reliability, that do not directly contribute to the 

system’s evolution. Design cost factors for evolvability, represented by CDesign(ADi Evolvability), include quality 

attributes such as extendibility, modifiability and flexibility. Equation (C2) requires that the evolution planner 

exercise judgment to separate these two categories of design in order to calculate their respective contributions to 

cost and benefit. With this separation, an architect can, for example, examine whether a certain component is 

extensible or not, and can decide whether it would be less costly to redesign and redevelop it than to extend it. 

Specifically, the reason the architect would make such decision is: 

Evolution_Cost(AD  AD) > Development_Cost(AD) 

The set of functions in Table 1 were selected based on this principle. Therefore, for the cost functions in Table 

1, we assume the following:  

CImp(ADi)   = CImp(ADi Evolvability) + CImp(ADi  Evolvability)        ------ (C3) 

CMaintenance(ADi) = CMaintenance(ADi Evolvability) + CMaintenance(ADi  Evolvability)     ------ (C4) 

CStage(ADi)   = CDevelop(ADi) + CMaintenance(ADi)          ------ (C5) 

Then by C1-C5,  

CStage(ADi)        = CDesign(ADi Evolvability) + CImp(ADi Evolvability) + CMaintenance(ADi Evolvability) + 

    CDesign(ADi  Evolvability) +  CImp(ADi  Evolvability) + CMaintenance(ADi  Evolvability) ------ (C6) 

That is, by knowing the costs of the factors on the right hand side of (C6), the cost for one stage of evolution can 

be calculated. In equation (C6), if we are interested in, and know about, more specific aspects of each term, then 

we can use costs for specific aspects of each term instead. For example, three main maintenance aspects are: Fault 

Repairs, Environmental Adaptation and Functionality Addition. Then, in the equation (C6), we could instead of 

CMaintenance(ADi Evolvability) use the costs for them based on the following equation: 

CMaintenance(ADi Evolvability)  

= CFault Repairs(ADi Evolvability) + CEnvironmental Adaptation(ADi Evolvability) + 

CFunctionality Addition(ADi Evolvability)                                                                ------ (C7) 
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3.3.2 Benefit calculation for a single stage of evolution 

As noted by Sullivan “An asset’s value includes both the revenues it produces and the value of options it 

embodies or creates” [27]. In the financial world, an option is the right to purchase an asset in the future without 

being obligated to purchase it. Buying an option today, for example the right to purchase oil at a fixed price, 

incurs cost, but may give more benefit than the incurred cost in the future if the oil price goes up. Similarly, 

designing software for high evolvability may cost effort today, but can return benefit in the future by making 

downstream evolution less costly. We follow this line of thinking and identify the factors in design, including 

evolvability, that determine the benefits of system. Then by knowing the benefits contributed by the factors, the 

gross benefit of a stage of evolution can be calculated. 

The benefit of a system S can be regarded as the business benefit it generates throughout its life cycle. For 

each stage Stage i, the benefit of the stage is the revenue generated in the stage:  

 BStage(ADi) = OperationRevenue(ADi)             ----- (B0) 

It may not always be easy to calculate the benefit of a system in this way. To determine the predicted benefit of a 

system, we may have to rely on other sources such as empirical data or an expert’s prediction rather than on such 

formulas. For such cases, the formulas proposed in the paper and the functions in Table 1 suggest parameters or 

factors for which experts should provide data. Of course, depending on the parameters it may be harder or easier 

to obtain accurate data. But by first identifying the aspects of architecture that contribute to system evolution, 

valuation of architecture evolution planning is facilitated.  

For the benefit functions in Table 1, we assume the following: 

BDevelop(ADi)  = BDesign(ADi) + BImp(ADi)             ------ (B1) 

      BDesign(ADi)   = BDesign(ADi Evolvavility) + BDesign(ADi  Evolvability)       ------ (B2) 

BImp(ADi)   = BImp(ADi Evolvability) + BImp(ADi  Evolvability)        ------ (B3) 

BMaintenance(ADi)  = BMaintenance(ADi Evolvability) + BMaintenance(ADi  Evolvability)     ------ (B4) 

Evolvability in design can make evolution easier or harder; i.e., the cost of subsequent design and implementation 

can vary significantly. In some cases, poor evolvability design will make fresh development of a system more 
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economical. Therefore it is important to be able to tell how much benefit is gained from a given evolvability 

design and its implementation.  

   Note that evolvability design at Stage i does not contribute to the revenue that SADi creates, but may help it 

evolve to SADi+1. So the revenue at Stage i+1 should be credited to the evolvability design at Stage i. Also note that 

ADi Evolvability contributes to developing Si+1 AD, Si+2 AD, and so on, but part of ADi Evolvability may come from 

evolvability design from earlier stages. That is, based on (F1), we use the model in Figure 3(a) to analyze benefits. 

That is,  

BStage(ADi) =   BStage(ADi  Evolvability) +  

   i-1j = 0 j  BStage(ADj  Evolvability)  + i-1j = 0 j  BStage(ADj Evolvability)     ------ (B5) 

In (B5), , j, j    (0 <= j <= i-1) are values between 0 and 1 and i-1j = 0 j = 1 and  i-1j = 0 j = 1.  is the weight for 

the benefit from aspects other than evolvability in Stage i; j is the weight per stage for the benefit from the 

aspects other than evolvability up to Stage i-1; and j  is the weight per stage for the benefit from the evolvability 

aspect up to Stage i-1.  From (B5), if i = 0, BStage(AD0) can be defined as follows:  

BStage(AD0) =  BStage(AD0  Evolvability)   

That is, evolvability does not contribute to the first stage revenue, which consists of benefits coming from other 

aspects of development, and with  = 1 all of the development effort contributes to revenue generation. 
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(a) Distribution of operation revenue 

 

 

SAD1 

AD0  Evolvability 

AD0 Evolvability 

 

SAD0 

AD1  Evolvability 

 

 (b) Prediction of operation revenue in one stage evolution 

Figure 3. Distribution and prediction of operation revenue 

 

In this way the benefit of one stage of evolution is calculated as the weighted sum of the benefits from the 

contributing factors as determined by business context and priorities. Prediction of operation revenue can be done 

in the reverse way of revenue distribution, as depicted in Figure 3(b) for the case of one stage of evolution. To 

estimate the benefits per stage based on a design, we can estimate the revenue that the system creates. This can be 

done based on empirical data.  

In this process (as before), it is important to distinguish the part of the revenue that evolvability design 

contributes and the part that design aspects other than evolvability contribute. Only when such distinctions are 

clearly made, can we compare fairly the value of a system evolved from the previous stage and the value of a 

system developed from scratch. In this paper, we assume for the sake of simplicity that the functionalities and 
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qualities that were introduced in the previous stages of evolution do not disappear in the future stages unless they 

are explicitly removed. Such an assumption would be largely valid if architecture is carefully designed 

considering evolvability.  

3.3.3 Value calculation for one stage of evolution 

The value for a stage can be calculated based on the calculated costs and benefits. However, different people 

may have different notions of value, and even for the same costs and benefits, the perception of value may differ. 

For example, one stakeholder may want to maximize benefit minus cost no matter what that cost may be, while 

another may think that the benefit cost ratio is important. We say that this valuation function computes the gross 

value of a node, denoted GVStage(AD) where AD is a node. The function that computes gross value of a node is 

independent of the time spent to achieve value. But time spent is, in fact, a critical factor that affects value. We 

denote a time-dependent node valuation function by VStage. So for an evolution stage AD with the duration Ti, its 

value is calculated as: 

VStage(AD, Ti) = GVStage(AD)/Ti               ------ (V1) 

 

4. Architecture-based evolution planning 

As described earlier, an evolution plan can be classified into one of the following four types depending on 

whether it is deterministic or adaptive and finite or indefinite:   

(1) Finite deterministic evolution plan  

(2) Finite adaptive evolution plan 

(3) Indefinite deterministic evolution plan  

(4) Indefinite adaptive evolution plan 

Assuming that a set of candidate plans have been created, we now show how to valuate them.  Specifically, 

we show how each of the four types of evolution plan can be valuated based on valuation of a single stage of 

evolution. An optimal plan is a plan that would return the most value with respect to a given optimality metric 

such as a return on investment metric. Selecting an optimal plan is then a matter of valuating all candidate plans 
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and selecting the one with the maximum value. That is, given a set of candidate plans , the optimal plan(s) * is 

the one  that for every    

VEvolution(*)  VEvolution() 

Now we show how to valuate each of the four types of plan. 

 

4.1 Valuation of a finite deterministic evolution plan 

A deterministic plan can be represented as a sequence of stages <(AD0,T0), ... , (ADn,Tn)> where Ti is a 

duration for ADi, 0 <= i <= n.  The cost of one stage of evolution, CStage(ADi), is calculated using (C6). If a 

system is not going to evolve further, no effort need be devoted to architecture design for later stages. Then, 

assuming rationality, the architect is not going to care about evolvability for the n-th stage. So 

CDesign(ADn Evolvability) = CImp(ADn Evolvability) = CMaintenance(ADn Evolvability) = 0       ------ (C7) 

and  

CStage(ADn) =  CDesign(ADn  Evolvability) + CImp(ADn  Evolvability) + CMaintenance(ADn  Evolvability)    ------ (C8) 

The benefit of one stage of evolution, BStage(ADi), is calculated using (B5) after estimating , j, j,  BStage(ADi  

Evolvability), BStage(ADj  Evolvability), BStage(ADj Evolvability), 0 <= j <= i 1, based on empirical data. Since there is no cost 

devoted to evolvability in the n-th stage design, there is no benefit from evolvability in the n-th stage. That is,  

BDesign(ADn Evolvability) = BImp(ADn Evolvability) = BMaintenance(ADn Evolvability) = 0               ------ (B6) 

Therefore,  

BStage(ADn) =  BDesign(ADn  Evolvability) + BImp(ADn  Evolvability) + BMaintenance(ADn  Evolvability)    ------ (B7) 

For the first stage, all the evolvability design contributes to the evolution to the following stages, but not to the 

operation in the first stage. Then all of operation revenue of the first stage can be thought to have come from the 

development investment in the aspects other than evolvability in the first stage. Hence, 

BStage(AD0) =  BDesign(AD0  Evolvability) + BImp(AD0  Evolvability) + BMaintenance(AD0  Evolvability)  ------ (B8) 

Taking into account these differences of calculations at the first and last stages (i.e., (C8), (B7) and (B8)) from the 

calculations at other stages, VStage(ADi, Ti) can be calculated using (V1). Then finally, 
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VEvolution (<(AD0,T0), ... , (ADn,Tn)>) ) = n
i = 0 VStage(Adi , Ti)         ------ (V2) 

 

4.2 Valuation of an indefinite deterministic evolution plan 

An indefinite deterministic plan has two differences from a finite deterministic plan: (1) in each stage of 

evolution, evolvability design should be considered, since no last stage is envisaged; and (2) instead of a pre-

determined number of stages, the first k stages should be valuated for some finite k. Examining a finite number of 

stages is necessary because it is not feasible to calculate costs and benefits of infinitely many stages. Then, for a 

given k, the difference from the case of the finite deterministic plan is that CDesign(ADk Evolvability), CImp(ADk Evolvability) 

and CMaintenance(ADk Evolvability) are not necessarily 0. In the case of benefit, (B8) remains valid but BDesign(ADk 

Evolvability), BImp(ADk Evolvability) and BMaintenance(ADk Evolvability) are not necessarily 0, as the system is expected to 

evolve to the subsequent stages, but need to be predicted as with the benefits in the previous stages. Then with 

these differences VEvolution(<(AD0, T0), ... , (ADk, Tk)>) is calculated as with a finite deterministic plan. 

4.3 Valuation of a finite adaptive evolution plan 

In valuating an adaptive plan, as there are unknown factors, we assume that the best next stage can be selected 

in the future when we will know the values of those factors. Therefore, at present the unknown factors will not 

play a role in calculating the value of the plan. However, knowledge of the probability that a branch will be taken 

(in the future) will play a role. If such information is not known at the time of plan valuation, then we assume that 

each alternative path has an equal likelihood of selection. A finite adaptive evolution plan can be represented as  

E = <(AD,T), {(Pr1, E1), ... , (Prq, Eq)}> 

where E1, … , Eq are the immediate subtrees of E whose roots are the children of E. If q = 0, then E is an 

evolution tree consisting of a single stage. For such a node, (C6) and (B8) hold. Then the value of evolution can 

be calculated with the following recursive equation: 

VEvolution(<(AD,T), {(Pr1, E1), ... , (Prq, Eq)}>) = VStage(AD,T) + q
i = 1 (Pri  VEvolution(Ei))  ------ (V3) 

So, for example, in the Figure 2(b), assuming for simplicity of illustration that the value and duration of each 

stage is v and T, respectively, the value of the plan is calculated as follows: 
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VEvolution (E)  

= VStage(AD<0> ,T) + (1/3  VEvolution(E1) + 2/3  VEvolution(E2))  

= v/T + [ 1/3  {VStage(AD<0,1> ,T) + (1/2 VEvolution(E1,1) + 1/2 VEvolution(E1,1))} 

+    2/3  {VStage(AD<0,2> ,T) +  (3/4 VEvolution(E2,1) + 1/4 VEvolution(E2,2))}] 

= v/T + [1/3  { v/T  + (1/2  VStage(AD<0,1,1> ,T) + 1/2  VStage(AD<0,1,2> ,T) )}  

+  2/3  { v/T +  (3/4  VStage(AD<0,2,1> ,T) + 1/4  VStage(AD<0,2,2> ,T) )}] 

= v/T + [1/3  { v/T  + (1/2  v/T + 1/2  v/T )} + 2/3  { v/T +  (3/4  v/T + 1/4  v/T )}] 

= 3v/T 

In the case that we have complete knowledge of probabilities that each branching condition will be true, we 

can calculate the (expected) value of each path, thereby reducing an adaptive plan to a determinist plan. In such a 

case, it may appear rational to choose a reduced deterministic plan with the largest expected value over choosing 

an adaptive plan. But even in such a case, we may be able to make optimal decisions in the future by postponing 

them. In the opposite case, it is not possible to reduce an adaptive plan to a deterministic one. However, even with 

partial valuation based on the calculation above, we may be able to make useful decisions when we are not in a 

position to postpone decisions regarding plans. 

 

4.4 Valuation of an indefinite adaptive evolution plan 

Differences from finite adaptive evolution plan are similar to the differences between an indefinite 

deterministic plan and a finite deterministic plan, except that those two differences (i.e., that there is no last stage 

and that k stages should be valuated for any finite k) occur at each path of an indefinite adaptive evolution tree. 

The first k stages of evolution should be considered for any k and such a plan can be represented as before as a 

tree <(AD,T),  {(Pr1, E1), ... , (Prq, Eq)}> with depth k. As no last stage is envisaged, for each leaf node ADk of the 

evolution tree, CDesign(ADk Evolvability), CImp(ADk Evolvability) and CMaintenance(ADk Evolvability) are not necessarily 0 and 

BDesign(ADk Evolvability), BImp(ADk Evolvability) and BMaintenance(ADk Evolvability) are not necessarily 0, as the system will 

evolve to the subsequent stages. Then valuation of E is described by (V3).  
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5. Application of the framework 

In this section, we apply our framework to the two case studies in [3, 23] and interpret them from the viewpoint of 

our framework in order to assess its validity and generality. In Section 5.1, we apply the framework to the case 

study in [3] as a deterministic planning example; in Section 5.2 we apply it to the case study in [23] as an adaptive 

planning example. The data that we use in carrying out the case studies are as listed in [3, 23]. However, where 

their terms and the scopes of the terms are different from ours, we have translated them to our terms. 

 

5.1 Application to a deterministic planc 

Bahsoon et al. described in [3] a model for evaluating growth optionsd of architecture to scalability with 

respect to certain changes in the future. The company in this case study is about to select a middleware so that the 

company’s throughput can better cope with the future changes. That is, the company wants to find an answer 

regarding which middleware it should invest in.    

There are two middleware solutions to choose from: M0 (J2EE using WLS) and M1 (CORBA using JacORB). 

Middleware induces architecture. So middleware M0 induces architecture S0; middleware M1 induces architecture 

S1. Mi is a better choice if it adds more value to Si than Mi-1 adds to Si-1. We attribute the added value to the 

enhanced flexibility of Si over S1-i in scaling up the architecture. But the added value is uncertain, as the future 

change in load is uncertain. Thus the question of interest is “How valuable in the long-run is the flexibility of 

either alternative, relative to likely change in load.”  

 

5.1.1 Data from the case study in [3] 

Let {r1, r2, … , rn} be the set of anticipated requirements that can be requested in the future. The terms and 

definitions necessary for the plan valuation are reproduced in Table 2 from [3]. As can be seen from Table 2, 

Bahsoon et al. valuate the potential value of architecture from a specific viewpoint by introducing the notion of 

                                                           
c This case study is a revision of the one that appeared in [17]. 
d "An option is the right ... to take an action in the future. Real options are those that affect nonfinancial assets." [3].    
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‘valuation point of view’.e  In Table 2, Pthro represents a valuation viewpoint of throughput and Ceip is the 

estimated cost needed to accommodate a new requirement ri from the valuation point of view p. Here CeiPthro 

includes the cost for design and implementation. We assume that it also includes the cost for maintaining the 

system without increasing the throughput.  

Table 2. Definitions from [3] 

PV Present Value 

p Valuation point of view  

V Value of the architecture 

Vp Value of the architecture from p 

Pthro Parameters for computing throughput 

Ceip Estimated cost (or investment) to accommodate the change (from valuation viewpoint p) 

CeiPthro Estimated cost to accommodate the change Pthro 

xi % the architecture value is enhanced as the result of accommodating the change ri 

xiVp Value of the “architectural potential” relative to the change ri with respect to p (xiVp) 

xiVPthro Value of the “architectural potential” relative to the change ri with respect to Pthro 

 

ADM is the architecture induced by the middleware M. Architectures induced by WLS and JacORB have the 

maximum Total Operations completed Per Second (TOPS ) as in Table 3.  

Table 3. Maximum TOPS for the architectures induced by WLS and JacORB (Source: Table 5 of [3])  

 Max TOPS 

ADWLS 732.00 

ADJacORB 546.80 

 

Table 4 shows the estimated costs for ADWLS and ADJacORB.f The costs include the cost for purchasing hardware 

and software, and maintenance cost. Table 4 is the result of subtracting cost from benefit for supporting 100 

TOPS. If calculation of economical selection ignores the growth option, and uses only the current value of PV, 

then we only need to subtract the cost from the benefit of TOPS, in which case ADJacORB would be more attractive 

for the range of throughput considered in Table 4.  

                                                           
e We view that the value of evolvability can be estimated. In contrast, [3] uses the notion of perspective and estimates value from the 

perspective of scalability. In developing the theory of this paper, we could have used only limited notions of evolvability as targets of value 

calculation. However, in this case the theory not only becomes complicated, but also has the disadvantage of viewing value from the pre-

determined set of perspectives only, and excludes values from the perspectives that were not included in advance. So in this study we 

considered general evolvability.   
f Bahsoon et al. [3] includes JBOSS in its case study, but it is not included in this example. 
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Table 4. PV per second ($) for low throughput (100 TOPS) (Source: Table 5 of [3])  

 CeiPthro  

(Estimated 

Cost) 

xiVPthro 

(Estimated 

Value) 

PV 

(= xiVPthro – CeiPthro) 

Value not reflected 

(TOPS) 

ADWLS 853.11 12.63 840.48 (= 12.63  853.11) 

ADJacORB 603.11 12.63 590.48 (= 12.63  603.11) 

 

According to Table 4, ADJacORB is superior in the present value, having less negative present value. However, the 

calculation does not reflect the value that additional 632 TOPS can contribute (i.e., the value of the growth option). 

Table 5 shows the value of flexibility that ADWLS yields, which can be more than what ADJacORB does, depending 

on Pthro.  

Table 5. Options per second ($) for low throughput (100 TOPS) (Source: Table 6 of [3])  

 xiVPthro (Estimated Benefit) Actual Value (TOPS) 

ADWLS 92.42 100+632 

ADJacORB 69.04 100+446.80 
 

 

5.1.2 Interpretation the case study in [3] in our framework 

To interpret the case study using our framework, we apply the revenue prediction model in Figure 3(b) 

introduced Section 3.3.2 to ADWLS and ADJacORB to get cost and benefit as in Figure 4.   
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Figure 4. Mapping of costs and benefits of the case study 
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According to the benefit prediction model of Figure 3(b), evolvability designed in Stage 0 affects all 

subsequent evolution stages after Stage 1, and design aspects other than evolvability affect all subsequent 

evolution stages, including Stage 0. This is illustrated in Figure 4 (a) and (b) with the dotted arrows pointing into 

the architecutres of Stage 0. Thus in Figure 4(a) and (b), all of the current benefit 12.63 is due to design other than 

evolvability, while the values of evolvability design that ADWLS0 and ADJacORB0 have (i.e., 79.79 and 56.41, 

respectively) are found in the operation revenue in Stage 1 and later. This is illustrated in Figure 4(a) and (b) with 

the solid arrows pointing to the architecutre of Stage 1. In this example, there is only one stage of evolution. 

Therefore, in Stage 1 there is no new evolvability or non-evolvaiblity design and the arrows that go into the 

archtiectures of Stage 1 emanate from the box marked “N/A”, indicating that there is no design for non-

evolvability or evolvability whatsoever, and hence no contribution from non-evolvability design to the cost.  

 

Cost calculation 
 

First, on the cost side, based on Table 4, the costs for developing the current architectures are as follows:  

CStep(ADWLS, 0) = 853.11  

CStep(ADJacORB, 0) = 603.11  

 

Thus we obtain the costs as in Figure 4 (a) and (b). The framework in this study divides design cost, 

implementation cost and maintenance cost into those for evolution and those for aspects other than evolvability, 

but since the case study of [3] only provides data for the whole developoment, accordingly only the total cost is 

considered. 

 

Benefit calculation 

 

According to Table 4, at Stage 0 the value of each system is as follows: 

 BStep(ADWLS, 0 ~Evolvability) = BStep(ADJacORB, 0 ~Evolvability) = 12.63 

According to Table 5, at Stage 1, the value of each system is as follows: 

BStep(ADWLS, 1) = 92.42 

BStep(ADJacORB, 1) = 69.04 
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As with the cost calculation in Section 5.1.1, our framework partitions benefit into design benefit, implementation 

benefit and maintenance benefit and also into benefits from evolution and benefits from the aspects other than 

evolution. Also in this case study, for the new stage of evolution only throughput is considered, and 

implementation of evolvability and other aspects are not considered. Thus  

BStep(ADWLS, 1 ~Evolvability) = BStep(ADJacORB, 1 ~Evolvability) = 0 

BStep(ADWLS, 1 Evolvability) = BStep(ADJacORB, 1 Evolvability) = 0 

and the design considering throughput (i.e., selection of middleware) in Stage 0  should be viewed as evolvability 

design. Therefore by B5, and similarly by the revenue prediction model in Figure 5, as in Figure 6, the benefits 

that the evolvability design of Stage 0 contributes to Stage 1 are: 

BStep(ADWLS, 0 Evolvability) = 79.79 

BStep(ADJacORB, 0 Evolvability) = 56.41 

 

Value calculation 

 

Based on PV calculation in [3], we assume: 

V(x) = B(x) – C(x).  

Then  

VStep(ADWLS, 0) = BStep(ADWLS, 0) – CStep(ADWLS, 0) = 12.63  853.11 = 840.48 

VStep(ADJacORB, 0) = BStep(ADJacORB, 0) – CStep(ADJacORB, 0) = 12.63   603.11 = 590.48 

That is, if we consider Stage 0 only, the value of ADJacORB is 250. But if we consider evolution through Stage 1, 

the value calculation goes as follows. First, by C9,  

CEvolution(<ADWLS, 0, ADWLS, 1>)  

=  CStep(ADWLS, 0) + CStep(ADWLS, 1)  

= 853.11 + 0 = 853.11 

CEvolution(<ADJacORB, 0, ADJacORB, 1>)  

=  CStep(AD JacORB, 0) + CStep(AD JacORB, 1)  

= 603.11 + 0 = 603.11 
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And, by B9, 

BEvolution(<ADWLS, 0, ADWLS, 1>)  

= BStep(ADWLS, 0) + BStep(ADWLS, 1)  

= 12.63 + 92.42 = 105.05 

BEvolution(<AD JacORB, 0, AD JacORB, 1>)  

= BStep(ADJacORB, 0) + BStep(AD JacORB, 1)  

= 12.63 + 69.04 = 81.67 

Therefore 

VEvolution(ADWLS, 1) = 105.05  853.11 =  748.06 

VEvolution(ADJacORB, 1) = 81.67  603.11 =  521.44 

That is, after the 2nd stage the difference in value reduces from 250 to 226.62.  

 

5.2 Application to a dynamic plan 

Turning now to the second case study, the question answered by architecture evolution planning in [23] is 

“How and when should BizCo change the current architecture in response to new availability demand and 

information demand?” g BizCo makes its profit based on the number of hits its Web site gets. Users retrieve 

information using a Web browser from Information Resources (IRs). BizCo’s management believes that the more 

IRs its system carries, the more users it will attract. For system evolution, BizCo plans to add new IRs. According 

to [23], modifiability allows new IRs to be added, but adding new IRs may also incur an increase in the number of 

users, which may reduce system availability. So the two main quality attributes requirements for BizCo's system 

are modifiability and availability. A major uncertainty related to this system is the number of IRs, as it depends on 

external factors such as users’ demand on information, as well as BizCo's internal decision about how many of 

them to support [23].  

                                                           
g There is a second question raised in [23]. That is, “Which potential design path has a higher option value in evolving the architecture?” it 

is not clear what design values is exactly meant by “option value”. Our framework gives a clear list of design aspects that together 

comprise all design aspects and the design aspect that contributes to evolution. This includes the notion of “option value”, which our 

framework explicitly and more clearly considers as evolvability.  
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5.2.1 Data from the case study in [23] 

We do not reproduce in this section the calculation in [23]. Instead we present the data that were used in the 

case study and show in Section 5.2.2 how the calculation can be carried out using our framework on the kinds of 

data collected in that case study. 

     Depending on what architectural strategy is chosen from the client-server architecture, the proxy architecture 

and the broker architecture, different switching cost and maintenance cost will be incurred as in Table 6. The 

maintenance costs of modifiability and availability are incurred when (and only when) a new IR is to be added. 

Table 6. Costs of switching and maintenance (Source: Table 4 of [23]))h 

Client-Server architecture strategy 

One time switching cost       0 

Maintenance cost 

(Design and Implementation)  

modifiability 3,000/ IR 

availability 550/ IR 

Proxy architecture strategy 

One time switching cost 4,100 

Maintenance cost 

(Design and Implementation) 

modifiability 1,000/ IR 

availability 100/ IR 

Broker architecture strategy 

One time switching cost 4,500 

Maintenance cost 

(Design and Implementation) 

modifiability 320/ IR 

availability 500/ IR 

 

The benefits of modifiability and availability are shown in Tables 7 and 8. This case study considers a three-

stage evolution. The benefits in the cells of Tables 7 and 8 are independent of evolution strategies. They represent 

benefits (or operation revenues) for the duration of one month. Table 7 shows that the benefit of having a 

modifiable system increases as more IRs are acquired as the system evolves. So, for example, if the number of IRs 

will be 3 after three months, 850 is the benefit from the modifiability that allows such evolution. Table 8 says that 

if the number of IRs remains 0 at Month 1, then the benefit of having an available system will decrease to 100, 

whereas if another source is added, the benefit will increase to 500.  

                                                           
h In Table 4 of [23], both modifiability and availability are supposed to incur a maintenance cost of 3000/IR and 550/IR, respectively. 

However, here we more explicitly call them design and implementation costs to emphasize that it is not just an activity of fixing immediate 

new needs, but is an activity of preparing for evolution. Moreover, we distinguish these as two clearly different kinds of quality attributes, 

modifiability being a development quality, and availability a system quality. 
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Table 7. Modifiability benefit (Source: Figure 4 of [23])  

Month 

Number  

of IRs 

 

0 

 

1 

 

2 

 

3 

0 50 50 50 50 

1  450 450 450 

2   700 700 

3    850 

 

Table 8. Availability benefit (Source: Figure 6 of [23]) 

Month 

Number  

of IRs 

 

0 

 

1 

 

2 

 

3 

0 300 100 100 100 

1  500 300 300 

2   600 400 

3    700 

 

 

5.2.2 Interpretation of the case study in [23] in our framework 

In our interpretation, it is assumed that an evolutionary step of switching to a different architecture takes a 

month.  Since the number of ISs is uncertain, and we assume that the probability of an IR being added at a certain 

month is not known, we need to plan for evolution with an adaptive plan.  

From the BizCo's point of view, evolution planning is in determining at which point of the three stages of 

evolution its system will change its architecture from a Client-Server architecture to a Proxy or Broker architecture, 

if indeed it is ever beneficial to do so. So we can model its initial adaptive plan as in Figure 5. However, as we 

know the cost of architecture switching and the cost of modifiability and availability engineering, we can make an 

adaptive plan with more concrete evolution strategies, and may even be able to prune some suboptimal evolution 

strategies, as we will see in this section.  
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Figure 5. Evolution strategies 

 

     Before we proceed, we make the following general observations on what our framework entails: First, 

according to our framework, the causal relationships between costs and benefit are important. Tables 6 ~ 8 are not 

clear about this. Recall that in our framework the modifiability benefit in stage n is the result of the modifiability 

design and implementation in stage n -1. Second, according to our framework, evolvability design vs. non-

evolvability design and their costs and benefits should be clearly distinguished. Therefore, we have to figure out 

how the raw data given in [23] corresponds to those two respective parts. As modifiability allows new IRs to be 

added [23], we interpret modifiability as a kind of evolvability.  In contrast, availability helps the system be more 

available to the user, but does not directly contribute to accommodating a new IR, and so it is not part of the 

evolvability property. Third, according to our framework, there is no point in investing for future evolution in the 

terminal step of evolution. Table 6 leaves open whether the last period evolvability cost will have non-zero value. 

In this case study, we assume that BizCo does not consider investment that goes beyond supporting 3 IRs. 

Therefore BizCo only needs to consider a finite adaptive plan.  

 

Cost calculation 

     Examination of Table 6 shows that ES6 and ES7 are the two best strategies, since a Client-Server architecture 

is too costly to maintain. Therefore the system needs to be switched to a new architecture Proxy or Broker as soon 
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as possible. So we compare in detail the two strategies in terms of cost of architecture switching and modifiability 

and availability engineering for accommodating new IRs. Table 9 shows comparison results. To simplify our 

calculation, investment for supporting IRs is determined by performing both modifiability and availability 

engineering simultaneously. 

     Table 9 assumes that after each month the cost of modifiability and availability engineering per IR increases 

by 10%. In Table 9, ES6 and ES7 are respectively divided to more concrete strategies as follows: a strategy that 

design modifiability for 3 IRs at once in Month 0 (ES6a and ES7a), a strategy that designs for 1 IR (ES6b and 

ES7b) in Month 1 only, a strategy that designs for 2 IRs (ES6c and ES7c) in Month 1 only, and finally a strategy 

that designs for 1 IR in Month 1 and see if more than one IR could be added, and, if not, design modifiability for 

another IR only (ES6d and ES7d).  

Table 9. Cost of evolution for ES6 and ES7 

  

Evolution 

Strategy 

Month 0 Month 1 
Total 

Cost Switching  

Cost 

Modifiability 

Cost 

Availability 

Cost 

Modifiability 

Cost 

Availability 

Cost 

ES6a 4100 3000 300   7400 

ES6b 4100 1000 100   5200 

ES6c 4100 2000 200   6300 

ES6d 4100 1000 100 1100 10 6410 

ES7a 4500 960 1500   6960 

ES7b 4500 320 500   5320 

ES7c 4500 640 1000   6140 

ES7d 4500 320 500 352 550 6222 

 
 

Benefit calculation 

     Since each month an IR can either be added or not, and three stages of evolution are considered, there are 8 

resulting evolution scenarios that depend on the external factors and BizCo's internal decisions. Table 10 lists 

those 8 scenarios and their benefits calculated from Tables 7 and 8. As the engineering for supporting IRs is 

assumed to be carried out simultaneously for modifiability and availability, their benefits also appear together. 

Each scenario is named with the number of IRs that the system supports each month. So, for example, '0-1-2-3' 

indicates the evolution scenario in which one IR is added each month.  
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Table 10. Cumulative benefit of evolution depending on the number of IRs being added 

0-0-0-0 0-0-0-1 0-0-1-1 0-1-1-1 0-0-1-2 0-1-1-2 0-1-2-2 0-1-2-3 

800 1400 2000 2800 2350 3150 3700 4150 

 

Value calculation 

Since [23] uses the formula V(x) = B(x) – C(x), we calculate value of from Tables 9 and 11 using the same 

formula. The results are shown in Table 12.  

 

Table 11. Values per evolution strategy and evolution scenario 

Evolution  

Evolution           Scenario 

Strategy 

0-0-0-0 0-0-0-1 0-0-1-1 0-1-1-1 0-0-1-2 0-1-1-2 0-1-2-2 0-1-2-3 

ES6a -6600 -6000 -5400 -4600 -5050 -4250 -3700 -3250 

ES6b -4400 -3800 -3200 -2400     

ES6c -5500 -4900 -4300 -3500 -3950 -3150 -2600  

ES6d -5610 -5010 -4410 -3610 -4060 -3260 -2710  

ES7a -6160 -5560 -4960 -4160 -4610 -3810 -3260 -2810 

ES7b -4520 -3920 -3320 -2520     

ES7c -5340 -4740 -4140 -3340 -3790 -2990 -2440  

ES7d -5422 -4822 -4222 -3422 -3872 -3072 -2522  

Note 1) The shaded cells are evolution scenarios impossible to realize with the given strategy 

Note 2) The numbers in the row for ES6b are italicized because it give more value than its counterpart strategy ES7b among ES7 strategies.  

 

Evolution strategies are planned by BizCo, but evolution scenarios are determined by interactions of BizCo's 

decisions and the external factors. Table 11 shows the adaptive plan that BizCo's should adopt. If it is certain that 

three IRs will be added, the optimal decision is to choose scenario ES7a, as it yields the maximum value of 2810. 

However, if at most one IR can be added altogether up until Month 3, ES6b would represent the best scenario. 

Not knowing how many can be added, it would be rational to choose ES7 in Month 0 and then to take the next 

step adaptively depending on the best knowledge available in the new month. So, for example, if it is known that 

two IRs can be added then ES7c is selected; otherwise ES7b is selected, so that depending on the knowledge in 

the subsequent month, either ES7b or ES7d can be selected.  
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6. Related work 

Currently there are a relatively small number of research efforts that take an architecture-based approach to 

evolution planning. Bennett et al. [9] show a simple staged model and a versioned staged model for a software 

evolution model. But the models do not include concepts necessary for architecture-based evolution planning. 

Therefore we introduced our own model in Section 2.1. Transformational approaches to architecture-based 

evolution [10, 26, 1, 5, 28] emphasize that evolution from a stage to the next stage should be defined by 

architectural transformation described by formal operators, but they have not addressed yet issues such as how 

much an evolution plan developed in such a manner is worth the investment or is more beneficial than other 

alternative plans. Approaches to planning that adopt option theory [27, 8, 4, 12, 23, 24] emphasize the importance 

of design flexibility for evolution and various factors that need to be considered for planning. As another direction 

of related work, Andrade et al. [2] explores how a particular architecture style consisting of computation, 

coordination and configuration subsystems facilitates architecture-based software evolution in run-time. Although 

this latter work shares common interest in architecture based software evolution with our work in this paper, our 

work focuses on planning rather than realization mechanisms and design time evolution rather than run-time 

evolution. 

Sullivan and Boehm [27, 8] emphasize that evolution flexibility embedded in software essentially corresponds 

to options in the economic sense and propose value-based software engineering: that software engineering should 

be associated with economic considerations, and, as one such aspect, options should be viewed as essential 

concept in valuation of software. Our study also echoes this view, but we have made the nature of flexibility 

concrete by viewing it as ‘evolvability embedded in software architecture,’ and made it a framework that can be 

applied to architecture-based evolution planning.  

Baldwin et al. [4] view the value of complex system as the sum of the value of the minimal system and the 

value of individual modules, and suggested a design valuation method in which the value of a module is 

determined by the function it performs. In the framework that we propose in this paper, if a finer-grained value 

distribution is needed, the operation revenue that determines the value of the system can be further divided as in 

the approach of [4]. Our framework provides a separation of system value into the value from evolvability and the 
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value from other aspects, and is constructed in such a way that further analysis and its extension are left to the 

user to fit the user’s usage and environment.  

Erder et al. suggest an evolution design method based on the notions of plateaus and waves [12]. A plateau is 

a comparatively long period of about 6 months in which architecture is stable and waves are short periods within a 

plateau in which functional evolutions occur. In a plateau, there may be several waves because of the embedded 

architectural flexibility. However, when evolution to the next plateau occurs, it is accompanied by architectural 

change. In this way, the method in [12] proposes a model of typical evolutions that incorporates the qualitative 

notions of plateaus and waves, but does not consider formal valuation from an economic point of view.  

Ozkaya et al. [23, 24] link various notions related to value of software to financial concepts and show the 

relevance of financial concepts for valuation of software design. In particular, they carry out a calculation of 

option value independently from quality attributes. In contrast, we view evolvability as a quality attribute and 

allow that any quality attributes of interest, including evolvability, can be the target of valuation. Okzaya et al. 

[23] do not distinguish software flexibility and options. In our paper, on the other hand, as in [27], the two 

concepts are clearly distinguished and flexibility is viewed as one of the factors that determine option value like 

best and worst case scenarios and uncertainty.  

Bahsoon et al. [3] carry out economic analysis of scalability, but do not propose a framework for calculating 

value analytically, and assume that such calculated values are available. Therefore their approach cannot be used 

as a general framework because it doesn’t consider evolution stages or durations of the stages explicitly.  

 Garlan et al. [14, 16] propose an approach to modeling alternative evolution paths and trading off various 

aspects of the different paths based on the idea of evolution styles. It assists architects in developing and 

reasoning about architectural evolution paths. In addition to handling correctness of evolution path description, 

the approach accommodates valuation of evolution paths to determine the path to adopt. In this way, their work 

provides foundational concepts necessary for modeling and analyzing architecture evolution paths and 

implements a tool that realizes them. However, it does not go into a deeper level of planning of architecture 

evolution and the role of evolvability design in that context. Garlan et al. [15] demonstrate a tool that realizes the 

approach presented in [14, 16]. The tool can be used to describe evolution paths at the architecture level, associate 
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properties with elements of the paths and perform tradeoff analysis over evolution paths. Recent work by Barnes 

et al. [6] is an attempt to apply automated planning approaches and tools to the architecture evolution path 

generation problem. Currently this line of work does not perform an evolution planning, as proposed in our paper, 

but we believe that it can be extended to do so by assigning property values to path elements and its 

componentized analysis mechanism.  

Chaki et al. [11] classify architecture evolution into three different types: maintenance focused evolution, 

which is an architecture evolution that falls under the classical notion of maintenance; open evolution, which has 

high uncertainty about the future business, technical, and market conditions; and closed evolution, in which the 

characteristics of the current and envisioned system’s architectures are known. The notions of open and closed 

evolution are similar to our notions of definite and indefinite plans, but differ from ours in that the former focuses 

on how much we know about the system and the future, whereas the latter focuses on whether or not the system is 

intended to retire at a certain point of time. Also our taxonomy provides another important dimension of 

deterministic plans and adaptive plans so that uncertainly in the real world can be explicitly coped with using 

adaptive plans. Chaki et al. [11] show how closed evolution can be modeled with formal architecture evolution 

operators. The approach of using formal architecture operators for evolution description can be used to augment 

and elaborate our framework, and we believe that at the same time it can be developed further along the line of 

our framework. 

 Kang et al. [17] propose a valuation framework for evolution plans that was not sufficiently addressed by the 

prior work, as described above. However, it treats only deterministic plans. This paper extends that work, and 

further provides taxonomy of evolution plans based on the distinction between ‘deterministic’ vs. ‘adaptive’ and 

‘finite’ vs. ‘indefinite,’ and also provides valuation mechanisms for each of the four types of evolution plans.  

Mens et al. [20] proposed a taxonomy of software evolution that has the dimensions of temporal properties, 

objects of change, system properties, and change support, which is a fine grained classification on mechanisms in 

evolution, whereas the taxonomy in this paper is on the way evolution unfolds. Therefore both taxonomies can be 

used together in a complimentary way. 

Mens et al. [20] proposed a taxonomy of software evolution that has the dimensions of temporal properties, 
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objects of change, system properties, and change support, which is a fine grained classification on mechanisms in 

evolution, whereas the taxonomy in this paper is on the way evolution unfolds. Therefore both taxonomies can be 

used together in a complimentary way. 

 

7. Conclusion 

In this paper, we developed a framework for architecture-based software evolution planning by: (a) defining 

foundational terms and concepts, such as evolution vs. operation, evolution planning vs. evolution execution, 

evolution cost vs. operation benefit, evolvability vs. other software qualities, deterministic plan vs. adaptive plan, 

finite plan vs. indefinite plan, etc.; (b) providing a taxonomy of software evolution plans; and then (c) showing 

how to use them to valuate various types of plans. Through the logical construction of a value calculation 

mechanism in terms of costs and benefits of stages of software development, the framework suggests how the 

data necessary for estimations of costs and benefits can be collected in practice. By applying these concepts to the 

case studies in [3] and [23], and showing that the calculations carried out in them can be carried out in our 

framework as well, but using the same basic concepts and a uniform vocabulary of the framework, we also 

illustrated how it can be practically put into use.  

In addition, the contributions of this paper include the following: By defining related concepts, this conceptual 

framework makes clear the notion of ‘architecture-based software planning’; by developing a valuation 

framework for software evolution plans, it provides a basis for concrete methods to be applied within the 

proposed framework for evaluating evolution plans; it proposes two important principles for value calculation, i.e., 

partitioning of benefits and costs and separation of evolvability design; it shows the factors relevant to software 

evolution and their roles so that a more accurate evolution planning can be made; it helps clarify issues by calling 

them out explicitly.  

As a foundation, we believe that the work described in this paper could be extended with the various notions 

introduced in [23], e.g., risk-free interest rate, uncertainty, best case and worst case scenarios. Since the focus of 

this paper is not on a specific valuation approach, but rather on providing a foundation necessary to use any 

number of valuation approaches, such notions were intentionally omitted. Once the basic framework is 
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constructed, however, it is a relatively straightforward to extend it with such notions. For this purpose, we 

separated costs and benefits, calculated value based on costs and benefits, and explicitly selected evolvability as 

the target of value calculation and data accumulation for value calculation.   

In this study, we assumed that the value contributed by evolvability design and the value contributed by other 

aspects of design can be separated. In reality, of course, there is interdependency, small or large, between them 

and in order to apply the framework in this paper to real world problems, it is desirable to explicitly include 

variables for interdependency. However, as pointed out by [23], so far there are no known techniques to treat 

multiple quality attributes simultaneously. As a follow-up to this research, we plan to extend the framework of 

this paper further so that the extended framework can deal with interdependency of quality attributes including 

evolvability. This paper focused on the evolvability at the architecture level. However, in order to make the 

framework proposed in this paper more practical, it would also be useful to explore the problem of how to 

calculate evolvability based on the internals of architecture, i.e., the constituent elements and the structure they 

form. Finally, we look forward to applying our approach to additional case studies to further evaluate its 

applicability to real-world concerns faced as systems evolve. 
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