
Kubow: An Architecture-Based Self-Adaptation Service for
Cloud Native Applications

Carlos M. Aderaldo
Nabor C. Mendonça
carlosmendes@unifor.br

nabor@unifor.br
University of Fortaleza
Fortaleza, CE, Brazil

Bradley Schmerl
David Garlan

schmerl@cs.cmu.edu
garlan@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT
This paper presents Kubow, an extensible architecture-based self-
adaptation service for cloud native applications. Kubow itself was
implemented by customizing and extending the Rainbow self-adap-
tation framework with support for Docker containers and Kuber-
netes. The paper highlights Kubow’s architecture and main design
decisions, and illustrates its use and configuration through a simple
example. An accompanying demo video is available at the project’s
web site: https://ppgia-unifor.github.io/kubow/.

CCS CONCEPTS
• Software and its engineering→ Software infrastructure.

KEYWORDS
self-adaptation, rainbow, kubernetes
ACM Reference Format:
CarlosM. Aderaldo, Nabor C.Mendonça, Bradley Schmerl, andDavid Garlan.
2019. Kubow: An Architecture-Based Self-Adaptation Service for Cloud
Native Applications. In 13th European Conference on Software Architecture
(ECSA ’19), September 9–13, 2019, Paris, France. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The increasing use of lightweight containers, e.g. Docker,1 and con-
tainer orchestration tools, e.g., Kubernetes,2 represents a significant
paradigm shift for the adoption of cloud computing technologies,
which moves the focus from managing virtual machines to man-
aging containers and services [10]. Kubernetes, in particular, is
rapidly becoming the de facto standard for managing cloud native
applications, and is already being offered as a service by all major
cloud providers in the market [1].

A crucial aspect of managing a cloud native application is self-
adaptation. A system is self-adaptive if it can reflect on its behavior
1https://www.docker.com/
2https://kubernetes.io/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ECSA’19, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

at runtime and change itself in response to environmental condi-
tions, errors, and opportunities for improvements [13]. Typically,
self-adaptation capabilities are provided to some target system by
adding a self-adaptation layer that reasons about observations of
the system’s runtime behavior, decides whether the system is op-
erating outside its required bounds and what changes should be
made to restore the system, and effects those changes on the system.
This form of self-adaptation essentially involves adding a closed
control loop layer onto the system. A typical self-adaptation control
loop consists of four main activities: Monitor, Analyze, Plan, and
Execute, all sharing a common Knowledge base, usually referred to
as the MAPE-K reference model [8].

Although there is a vast literature on methods, techniques and
tools for self-adaptation, only a handful of self-adaptive solutions,
such as automated server management and cloud elasticity, have
thus far found their way to industrial applications [13]. One possi-
ble explanation is that most of the existing self-adaptation solutions
have been proposed targeting traditional (i.e., on-premise) produc-
tion environments. As a consequence, traditional architecture-based
self-adaptation frameworks, such as Rainbow [5], which have been
developed with reusability and extensibility as key design princi-
ples, in practice have proved to be notoriously difficult to customize
for modern production environments that rely heavily on container-
based deployment and management technologies [9].

In an attempt to fill this gap, this paper presents Kubow, an
extensible architecture-based self-adaptation service for cloud na-
tive applications. Kubow itself was implemented by customizing
and extending Rainbow with support for Docker containers and
Kubernetes. Thus far Kubow has successfully been used to man-
age existing and new Kubernetes applications in both local and
cloud-based environments.

The remainder of the paper describes Kubow’s self-adaptive
architecture and main design decisions (Section 2); illustrates its
use and configuration through an example (Section 3); compares
it with related solutions (Section 4); and states our conclusions
(Section 5).

2 KUBOW OVERVIEW
Kubow provides a suite of technologies that allow augmenting an
existing Kubernetes application with MAPE capabilities. To this
end, Kubow customizes and extends Rainbow’s original MAPE-
like components [5]. Those components include (see Figure 1): a
Model Manager, which stores the target application’s architecture
model andmediates the interactions between the other components;

https://ppgia-unifor.github.io/kubow/
https://doi.org/10.1145/1122445.1122456
https://www.docker.com/
https://kubernetes.io/
https://doi.org/10.1145/1122445.1122456

ECSA’19, September 9–13, 2019, Paris, France Aderaldo, et al.

Figure 1: Kubow architecture.

a set of Probes and Gauges, which monitor the behavior of the
target application and update its architecture model’s attributes;
an Architecture Evaluator, which analyzes the target application’s
state expressed in its architecture model and decides whether any
adaptation is necessary; an Adaptation Manager, which selects the
best adaptation strategy from a set of user-provided strategies,
tactics, and utility functions; a Strategy Executor, whichmanages the
execution of the selected adaptation strategy; and a set of Effectors,
which implement the mechanisms necessary to change the target
application’s behavior in its execution environment.

At execution time, Rainbow components are deployed into two
separate units, called Master (composed of the Model Manager, the
Architecture Evaluator, the Adaptation Manager, and the Strategy
Executor) and Delegate (composed of Probes, Gauges and Effectors).
The Master components are application-independent and deployed
in a centralized fashion. The Delegate components are application-
specific and can have multiple instances, which are deployed in and
share the same execution environment of the target application. All
Rainbow components both within and across those two deployment
units communicate asynchronously via an event-driven message
oriented middleware.

In addition to the original Rainbow components, Kubow uses
several specific Kubernetes services to implement its Probes and
Effectors. Those services are invoked by means of two APIs: Ku-
bernetes API, which is the main way to access the different types
of resources managed by Kubernetes (e.g., Pods, Deployments, Ser-
vices); and Metrics API, which extends the Kubernetes API to pro-
vide a uniform way to access metrics collected by Kubernetes’ own
monitoring services (e.g., Kubelet, cAdvisor) as well as by other
external monitoring tools (e.g., Prometheus3).
3https://prometheus.io/

Figure 2: Voting app architecture.

The need to integrate with Kubernetes resulted in two major
design decisions that set Kubow apart from Rainbow’s original
architectural design. The first decision was to implement all Probes
and Effectors in an application-independent way. The second deci-
sion was to package both Master and Delegate components into a
single container image, which is then deployed and managed as a
regular Kubernetes service. Both decisions were made possible by
the fact that Kubernetes provides common monitoring and manage-
ment APIs. Thus, by simply changing the Kubernetes invocation
parameters, the same set of Probes and Effectors can be reused
for monitoring and managing, respectively, different application
components. This also means that there is no longer the need to
deploy separate Delegates alongside the target application nodes,
as all application resources in Kubernetes can be managed remotely
by invoking the appropriate Kubernetes APIs.

3 EXAMPLE OF USE
To illustrate Kubow’s use, we selected a simple web-based voting
app from the set of sample applications distributed with Docker.4
This application was chosen because its architecture is simple
enough to be used for illustrative purposes, and complex enough
to be representative of typical Kubernetes applications deployed in
real production environments.

The voting app architecture comprises five components, each
one implemented using a different programming languages or stor-
age technology, as shown in Figure 2. These five components work
as follows: (1) a web-based voting app (voting-app), implemented
in Python, collects the user votes and publishes them to a mes-
sage queue (redis), implemented in Redis; (2) a background voting
processor (worker), implemented in .NET, counts the votes being
published to the message queue and (3) stores the (partial) voting
results in a Postgres relational database (db); and, finally, (4) a sec-
ond web-based app (result-app), implemented in Node.js, reads the
voting results from the relational database and shows them to the
voting application users in real time.

3.1 Architecture Model
The first step to integrate Kubow with an existing Kubernetes appli-
cation is to define the application’s architecture model in terms of
its sets of containerized services and connectors. As with Rainbow,
Kubow architecture models are defined in Acme, a well-known
architecture description language [6].

Figure 3 shows the Acme specification for the result-app and
db components. That specification refers to two component types,
4https://github.com/dockersamples/example-voting-app

https://prometheus.io/
https://github.com/dockersamples/example-voting-app

Kubow: An Architecture-Based Self-Adaptation Service for Cloud Native Applications ECSA’19, September 9–13, 2019, Paris, France

1 import families/Kubernetes.acme

2 System VotingAppSystem: KubernetesFam = new

KubernetesFam extended with {

3 Component resultD = new DeploymentT extended with {

4 Property name = "result";

5 Property namespace = "votingapp";

6 }

7 Component resultS = new ServiceT extended with {

8 Property name = "result";

9 }

10 Component dbD = new DeploymentT extended with {

11 Property name = "db";

12 Property namespace = "votingapp";

13 }

14 Component dbS = new ServiceT extended with {

15 Property name = "db";

16 }

17 Connector resultSC = new LabelSelectorConnectorT

extended with {

18 Property selectors = <[name: string = "app"; value

: string = "result";]>;

19 }

20 Connector dbSC = new LabelSelectorConnectorT

extended with {

21 Property selectors = <[name: string = "app"; value

: string = "db";]>;

22 }

23 Connector resultDbConn = new ServiceConnectorT

extended with {

24 Property namespace = "votingapp";

25 Property name = "result";

26 }

27 Attachment resultS.redirectPort to resultSC.callee;

28 Attachment resultD.redirectPort to resultSC.caller;

29 Attachment dbS.redirectPort to dbSC.callee;

30 Attachment dbD.redirectPort to dbSC.caller;

31 Attachment resultD.sqlPort to resultDbConn.selector;

32 Attachment dbS.sqlPort to resultDbConn.selectee;

33 }

Figure 3: Acme specification for result-app and db.

namely DeploymentT (lines 3 and 10) and ServiceT (lines 7 and 14),
and two connector types, namely LabelSelectorConnectorT (lines 17
and 20) and ServiceConnectorT (line 23), which are all part of the
Acme family previously defined in Kubow for a representative
subset of the Kubernetes application domain.5 Note that the family
specification must be explicitly imported in the beginning of the
architecture model specification (line 1).

Those two component types represent two typical Kubernetes
resource types, namely, Services and Deployments. The two connec-
tor types, in turn, represent two rather distinct ways of establishing
explicit associations between different Service and Deployment
resources in Kubernetes. The LabelSelectorConnectorT connector
type represents the definition of a label selector in Kubernetes,
which, in this particular scenario, is used to establish a load balanc-
ing association between the result-app and db Services and their
corresponding Deployments (lines 27-28 and 29-30, respectively).
The ServiceConnectorT connector type, on the other hand, repre-
sents a typical invocation association between a Deployment and a
5Kubernetes also supports other types of applications, such as cron jobs, which are
typically used to run time-based batch processing tasks. We intend to extend the Acme
family model of Kubow to support these other application types in our future work.

1 define boolean cHiRespTime = M.resultS.latency > M.

MAX_RESPTIME;

2 define boolean cLoRespTime = M.resultS.latency < M.

MIN_RESPTIME;

3 define boolean canAddPods = M.resultD.maxReplics > M.

resultD.desiredReplics;

4 define boolean canRemovePods = M.resultD.minReplics <

M.resultD.desiredReplics;

5 tactic addReplicas(int count) {

6 condition {

7 cHiRespTime && canAddPods;

8 }

9 action {

10 M.scaleUp(M.resultD , M.resultD.desiredReplics +

count);

11 }

12 effect {

13 M.resultD.maxReplics >= M.resultD.desiredReplics;

14 }

15 }

16 tactic removeReplicas(int count) {

17 condition {

18 cLoRespTime && canRemovePods;

19 }

20 action {

21 M.scaleDown(M.resultD , M.resultD.desiredReplics -

count);

22 }

23 effect {

24 M.resultD.minReplics <= M.resultD.desiredReplics;

25 }

26 }

Figure 4: Stitch specification for the result-app tactics.

Service. In this scenario, a single ServiceConnectorT connector is
used to establish an invocation association between the result-app
Deployment and the database Service (lines 31-32). The other three
components were specified in a similar manner.

From the definition of the target application’s architecture model
follows the definition of the other Kubow elements necessary for
monitoring (Probes and Gauges), analyzing (tactics, strategies and
utility functions) and changing (Effectors) the application’s behav-
ior at execution time. Due to space limitations, here we only show
snippets of the tactics and strategies defined for the result-app
component. More details on the design, implementation, use and
evaluation of Kubow will be provided in a future publication.

3.2 Tactics and Strategies
Again, as in Rainbow, in Kubow tactics and strategies are defined
using Stitch, a domain specific language for self-adaptation frame-
works [2]. Figure 4 shows the Stitch specification for the two tactics
defined for result-app, namely addReplicas() (lines 5-15) and re-
moveReplicas() (lines 16-26), which attempt to add and remove
Pods to/from a Kubernetes Deployment, respectively. The “M” in
the code shown in Figure 4 as well as in Figure 5 refers to the appli-
cation’s architecture model.

Note that each of those tactics invokes a separate adaption oper-
ation, namely scaleUP() (line 10) and scaleDown() (line 21), directly
on the model element representing the service to be adapted. At

ECSA’19, September 9–13, 2019, Paris, France Aderaldo, et al.

1 strategy ReduceRespTime [cHiRespTime] {

2 t0: (cHiRespTime && canAddPods) -> addReplicas (1) @

[30000 /*ms*/] {

3 t0a: (success) -> done;

4 }

5 t2: (default) -> TNULL;

6 }

7 strategy ReduceCost [cLoRespTime] {

8 t0: (cLoRespTime && canRemovePods) -> removeReplicas

(1) @[30000 /*ms*/] {

9 t0a: (success) -> done;

10 }

11 t1: (default) -> TNULL;

12 }

Figure 5: Stitch specification for the result-app strategies.

execution time, those operations are handled by the Strategy Ex-
ecutor, which invokes the specific Kubow Effectors responsible for
creation and removal of Pods, respectively.

Figure 5, in turn, shows the Stitch specification for the two strate-
gies defined for result-app, namely ReduceRespTime (lines 1-6) and
ReduceCost (lines 7-12), which attempt to reduce the service’s re-
sponse time and cost, respectively. Since these two strategies refer
to the same Stitch variables defined in the tactics specification (Fig-
ure 4), the declaration of those variables has been omitted from
Figure 5.

Note how the ReduceRespTime strategy invokes the addRepli-
cas() tactic only when the service response time is above the max-
imum threshold, and it is still possible to add new Pods (line 2).
Similarly, the ReduceCost strategy invokes the removeReplicas()
tactic only when the service response time is below the minimum
threshold, and it is still possible to remove existing Pods (line 8).
Note also that both strategies define a 3 second invocation latency
for each tactic, which corresponds to the time interval the Strat-
egy Executor will have to wait before checking whether the tactic
execution was successful.

The demo video accompanying this paper shows howKubow can
be used to monitor and preserve the response time of an existing
Kubernetes application under varying load conditions.

4 RELATEDWORK
There is an emerging body of work proposing self-adaptation so-
lutions for containerized applications. In [4], the authors describe
a decentralized approach for horizontal auto scaling of microser-
vice applications [7], which is implemented as a new abstraction
layer on top of Docker. In [3], the authors present an approach
for implementing and evaluating different autoscaling solutions
for replicated database clusters deployed in Kubernetes. That ap-
proach is implemented by extending Kubernetes’s native replication
controllers. In [12], the authors propose an approach for dynamic re-
allocation of containerized microservices, which is implemented by
extending Kubernetes’s native container scheduler. Finally, in [11],
the authors describe a novel container management mechanism
for Kubernetes, whose goal is to dynamically consolidate appli-
cation containers in a minimal number of nodes, so as to avoid
unnecessary scaling of the underlying virtual infrastructure.

The solutions described above have a limited adaptation scope
in the sense that they only support a fixed set of adaptation mech-
anisms (e.g., container reallocation and auto scaling). The same
criticism applies to most (if not all) self-adaption tools currently
used by industry. These include cloud native auto scaling services,
such as Amazon’s CloudWatch,6 and Kubernetes’s own Horizontal
Pod Autoscale (HPA) controller.7 Although some of those solutions
do support the creation and customization of application-specific
monitoring metrics, their native set of adaptation mechanisms can-
not be extended by application developers.

In contrast to all the above solutions, Kubow builds on Rainbow
to provide an extensible self-adaptation solution for Kubernetes
applications. Even though this paper only shows examples of tactics
and strategies dealing with auto scaling, Kubow is a generic solution
that allows the easy creation and reuse of a variety of adaption
mechanisms, tactics and strategies, in a declarative way, without
the need to change its source code.

5 CONCLUSION
This paper presented Kubow, an extensible self-adaptation service
for containerized Kubernetes applications. Kubow is freely avail-
able at https://github.com/ppgia-unifor/kubow/. We hope its public
release can contribute to foster a more systematic development and
reuse of self-adaptation solutions by the software architecture and
cloud computing communities.

ACKNOWLEDGMENTS
This work is partially supported by INES (www.ines.org.br), CNPq
grants 465614/2014-0, 313553/2017-3 and 424160/2018-8, FACEPE
grant APQ-0399-1.03/17, and PRONEX grant APQ/0388-1.03/14.

REFERENCES
[1] Eric Brewer. 2018. Kubernetes and the New Cloud. In SIGMOD 2018. Invited

Keynote.
[2] Shang-Wen Cheng and David Garlan. 2012. Stitch: A language for architecture-

based self-adaptation. Journal of Systems and Software 85, 12 (2012), 2860–2875.
[3] Wito Delnat et al. 2018. K8-Scalar: a workbench to compare autoscalers for

container-orchestrated database clusters. In IEEE/ACM SEAMS 2018. IEEE, 33–39.
[4] Luca Florio and Elisabetta Di Nitto. 2016. Gru: An Approach to Introduce Decen-

tralized Autonomic Behavior in Microservices architectures. In IEEE ICAC 2016.
357–362.

[5] D. Garlan et al. 2004. Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure. Computer 37, 10 (2004), 46–54.

[6] David Garlan, Robert T Monroe, and David Wile. 2000. Acme: Architectural
description of component-based systems. Foundations of component-based systems
68 (2000), 47–68.

[7] P. Jamshidi et al. 2018. Microservices: The Journey So Far and Challenges Ahead.
IEEE Software 35, 3 (2018), 24–35.

[8] Jeffrey O Kephart and David M Chess. 2003. The Vision of Autonomic Computing.
Computer 36, 1 (2003), 41–50.

[9] Nabor C Mendonça et al. 2018. Generality vs. Reusability in Architecture-Based
Self-Adaptation: The Case for Self-Adaptive Microservices. In AKSAS 2018.

[10] Claus Pahl et al. 2017. Cloud container technologies: a state-of-the-art review.
IEEE Transactions on Cloud Computing (2017).

[11] Maria A Rodriguez and Rajkumar Buyya. 2018. Containers Orchestration with
Cost-Efficient Autoscaling in Cloud Computing Environments. arXiv preprint
arXiv:1812.00300 (2018).

[12] Adalberto Ribeiro Sampaio Jr et al. 2018. Improving Microservice-based Appli-
cations with Runtime Placement Adaptation. Journal of Internet Services and
Applications (2018).

[13] D. Weyns. 2017. Software Engineering of Self-Adaptive Systems: An Organised Tour
and Future Challenges. Springer.

6https://aws.amazon.com/cloudwatch/
7https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

https://github.com/ppgia-unifor/kubow/
www.ines.org.br
https://aws.amazon.com/cloudwatch/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

	Abstract
	1 Introduction
	2 Kubow Overview
	3 Example of Use
	3.1 Architecture Model
	3.2 Tactics and Strategies

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

