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Abstract. An important step in achieving robustness to run-time faults is the abil-
ity to detect and repair problems when they arise in a running system. Effective
fault detection and repair could be greatly enhanced by run-time fault diagno-
sis and localization, since it would allow the repair mechanisms to focus adap-
tation effort on the parts most in need of attention. In this paper we describe
an approach to run-time fault diagnosis that combines architectural models with
spectrum-based reasoning for multiple fault localization. Spectrum-based reason-
ing is a lightweight technique that takes a form of trace abstraction and produces
a list (ordered by probability) of likely fault candidates. We show how this tech-
nique can be combined with architectural models to support run-time diagnosis
that can (a) scale to modern distributed software systems; (b) accommodate the
use of black-box components and proprietary infrastructure for which one has
neither a specification nor source code; and (c) handle inherent uncertainty about
the probable cause of a problem even in the face of transient faults and faults that
arise only when certain combinations of system components interact.
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1 Introduction

With increasing reliance on software-based systems to support virtually all aspects of our
daily lives, an important new requirement for these systems is the ability to detect and
resolve problems at run time. This requirement has spawned an active area of research
in autonomic computing [19, 6, 12].

Autonomic computing is based on the idea of turning ordinary software systems into
closed-loop control systems. That is, systems are monitored to provide observations of
their run-time behavior. Those observations are then analyzed at run-time in reference
to models of desired or expected behavior. If significant deviations are observed, repair
actions are executed to correct the problems.

When designing an autonomic system, a key issue is the kinds of models that are
used in the control layer at run time to capture observed system behavior and detect
problems. Research carried out over the past decade has demonstrated that software
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architectures can be particularly effective in this capacity [14, 16, 27].Architectures pro-
vide a high-level view of the system, reducing the complexity of understanding what the
system is doing, and supporting scalability to complex distributed systems. Suitably an-
notated architectures also permit the autonomic decision-making apparatus to detect the
presence of systemic problems and trends, such as degraded performance. Finally, ar-
chitectures allow one to capture common patterns of repair that are tuned to the specific
style of system and its implementation.

While such “architecture-based self-adaptation” shows great potential, one outstand-
ing problem is diagnosis: determining the likely causes of a detected problem. By nar-
rowing the scope of concern for repair to candidates that are the probable cause of an
observed problem, the ability to effectively adapt to a problem can be greatly increased.

Run-time diagnosis for architecture-based self-repair, however, is particularly chal-
lenging. First, the presence of concurrency makes it difficult to identify which of many
possible computations might have caused a problem. Second, reliance on middleware for
distributed communication, and more generally the use of components and infrastruc-
ture produced by many organizations, means that in many cases neither specifications
nor code is available for all parts of the system. Third, in many systems, problems may
be intermittent, caused by transient faults or variability in loads. Moreover, while some
faults may be directly traceable to a single component (such as a crashed server), in gen-
eral the source of a problem may be a result of certain combinations of elements (e.g., a
specific server interacting with a specific database).

In this paper we describe a systematic approach that adapts a reasoning technique
called spectrum-based multiple fault localization (SMFL) to architecture-based self-
repair. SMFL is a lightweight technique that takes as its input a form of trace abstraction
and produces a list of likely fault candidates, ordered by probability of being the true
fault explanation [1, 4]. Impressive diagnostic results for design-time testing and de-
bugging of both hardware and software systems have been achieved using SMFL [1].
However, there has been little work in applying these results in the context of run-time
detection and repair, especially in the context of architecture-based adaptation. As we
describe in the remainder of this paper, key features of our approach include: (a) the
ability to define at a high level what kinds of behavior to use as the basis for fault
localization; (b) the ability to associate such behaviors with families of systems (or ar-
chitectural styles), allowing reuse of the specifications for all instances of the family;
and (c) the ability to take into consideration quality attributes, such as performance and
availability, in determining both the presence and cause of a problem.

2 Related Work

One of three approaches to fault diagnosis has been typically adopted by autonomic
systems. One is to use simple heuristics. For example, software rejuvenation [21, 30] is
a technique where components are selectively restarted, using the heuristic of choosing
the longest running (i.e., oldest) components to reboot next. This technique can generally
improve the robustness of a system, since in many cases faults occur because parts of a
system may degrade over time (due, for example, to memory leaks). However, clearly
not all faults in a system are a result of aging. Thus heuristics have the advantage of
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being easy to calculate and often widely applicable, but they lack precision, resulting in
inefficiencies and poor coverage.

A second approach is to develop special-purpose diagnostic mechanisms for a par-
ticular class of system and particular classes of faults. For example, recovery-oriented
computing [5] uses a form of local rebooting that takes advantage of the particular char-
acteristics of JEE-based systems, where built-in persistence mechanisms allow compu-
tations to be terminated and restarted without loss of data. Diagnosis in these systems
uses statistical machine learning techniques to identify a specific component to restart
– again taking advantage of the specific features of JEE systems. Similarly, the Google
File System [15] and Hadoop [8] use fast, local recovery and replication to achieve high
availability for scalable distributed file systems for data-intensive applications. These
systems use custom-built monitoring and diagnosis to determine failures of individual
servers. While such hand-crafted techniques are typically very effective for the specific
kind of system they address, (1) they do not generalize to other systems, where the same
architectural assumptions do not hold, and (2) they assume single-fault scenarios.

A third approach allocates the task of diagnosis to individual repair handlers. For ex-
ample, the Rainbow system incorporates a set of repair strategies that are triggered when
certain architectural invariants are violated in a running system [7, 14]. Each strategy is
responsible for determining whether to correct the problem at hand, and if so, how. In
order to do this a strategy has to carry out its own fault diagnosis and localization. For
example, a strategy triggered by high latencies might attempt to reboot faulty servers.
But before it can do that it needs to figure out which servers (if any) might be failing.
Associating diagnostics with the repair mechanism has the advantage that diagnosis can
be specialized to the needs of the particular kind of repair. But it has the disadvantage
that each repair handler must do its own diagnosis, possibly adding to run-time overhead
(if multiple strategies are used), greatly increasing the effort required to produce repair
handlers, and relying on the strategy writer to get the diagnosis right. Similarly, in the
three-layer architecture model proposed in [23] higher level planning mechanisms are
responsible for diagnosis once a problem has been detected.

None of these techniques provides a general, systematic basis for run-time fault di-
agnosis. In contrast, there has been considerable research on automatic fault diagnosis
used at development time. Traditionally, automatic approaches to software fault local-
ization are based on using a set of observations collected during the testing phase of
system development to yield a list of likely fault locations, which are subsequently used
by the developer to focus the debugging process [28]. Existing approaches can be gener-
ally classified as either statistics-based or model-based. The former uses an abstraction
of program traces, collected for each execution of the system, to produce a list of fault
candidates [24, 18, 25]. The latter combines a model of the expected behavior with a set
of observations to compute a diagnostic report [11, 26].

Model-based approaches are more accurate than statistical ones, but are much more
computationally demanding (in both time and space), and they require detailed mod-
els of the correct behavior of the system under test. Recently a novel reasoning tech-
nique over abstractions of program traces, combining the best characteristics of both
worlds, has been proposed [4]. It has low time/space complexity (like statistics-based
techniques), yet with high diagnostic accuracy (like reasoning techniques). As we will
see, such properties make the technique especially amenable to (continuous) run-time
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analysis. In this paper, we refer to this kind of reasoning technique as spectrum-based
multiple fault localization (SMFL). Previous research efforts into SMFL have focused
primarily on helping developers fix bugs at development time, where one can easily iden-
tify the start and end of a given test case, as well as which elements were involved in the
execution of the test case. To our knowledge, none of these have been combined with
architecture models to support run-time diagnosis, where, as opposed to development
time, detecting a given execution is difficult (e.g., due to concurrency).

3 Approach

Applying SMFL at run time to diagnose problems relative to architectural models raises
a number of challenges. First, we need to be able to identify the beginning and end of
computations in the system that we are interested in. This is challenging because inter-
actions may be interleaved and concurrent. Second, we need to be able to relate these
run-time interactions, which are in terms of system level events, with their correspond-
ing elements in an architecture model. In this section, we give a brief overview of our
approach; in later sections we elaborate on the details.

To illustrate the ideas, consider a family of systems, whose architecture is illustrated
in Figure 1, in which a variable number of clients can interact with a pool of servers
that have access to a common data store. Client HTTP requests are mediated by one or
more dispatchers, selected randomly by a client, which forward requests to a specific
server in the pool. Although relatively simple in structure, such systems are representa-
tive of a large class of applications, and illustrate some of the challenges for run-time
diagnosis. First, such a system could have hundreds of clients and servers (for example,
running on a cloud computing platform), handling thousands of simultaneous requests.
This makes it challenging to determine which elements are involved with a particular re-
quest. Second, when problems occur, it is important to pinpoint the causes quickly, since
a problem with a dispatcher (for example), could drastically impact the overall ability
of the system to deliver its services in a timely manner. Third, there are many sources
of uncertainty inherent in this system. For example, high latency in handling customer
requests could be caused by faults, or combinations of faults, in any number of com-
ponents. Fourth, although certain kinds of problems may be easily detected and fixed
(such as a server crash), softer intermittent failures causing high latencies are equally as
important to detect and repair.

Client 1

Client 2

Client 3

Dispatcher 1

Dispatcher 2

Server 1

Server 2

Server 3

Database

Fig. 1. Simplified Web Server Example.

Our approach to adapting SMFL to support architecture-based fault detection and
localization uses the following three steps:
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1. First, we define a collection of transaction types for the style of system under analy-
sis using parametric architecture behavior descriptions. Each transaction type spec-
ifies (a) a set of finite computational paths through the architecture, and (b) the
criteria for determining whether a given computation of that type has succeeded
or failed. For the class of system shown in Figure 1, one possible transaction type
would represent the normal client-server response sequence: a client initiates a re-
quest, which is handled by a dispatcher, dispatched to a particular server, and then
returned back to the client. A success criterion might be that the client should receive
a reply within a certain number of seconds.

2. Next we provide a way to monitor the running system from an architectural perspec-
tive, adapting prior work on architecture-based monitoring and fault detection [29].
This involves using probes and event monitoring mechanisms in the running sys-
tem to determine (a) when a complete transaction has occurred, (b) the architectural
elements involved, and (c) whether the transaction succeeded. For the example we
would record the specific client, dispatcher, and server involved in the transaction,
and whether the latency threshold was exceeded.

3. The results of spectrum monitoring are then accumulated in a fault localization
phase. Adapting SMFL algorithms for the run-time setting, probabilistic rankings
of likely fault causes (if any) are calculated. These can then be used to trigger repair
mechanisms. In the example, the fault localization algorithms might determine, for
example, that with probability 0.8 the cause of an intermittent latency problem is
the combination of dispatcher 2 interacting with server 5.

To elaborate on this approach, in the following sections we first summarize the key ideas
behind SMFL. (For a detailed description see [4].) Then we explain in more detail how
we carry out these three parts of our approach.

4 Spectrum-based Reasoning for Fault Localization

Fault localization based on reasoning over program spectra is characterized by the use of
(a) program spectra, abstracting from actual observation variables, structure, and com-
ponent behavior; (b) a low-cost, heuristic reasoning algorithm, STACCATO [4] to extract
the significant set of multiple-fault candidates; and (c) abstract, intermittent models, that
take into account that a faulty component may behave correctly with a specific probabil-
ity, to compute the candidate probability of being the true fault.

4.1 Program Spectra

Assume that a software system is comprised of a set of M components c j where j ∈
{1, . . . ,M}, and can have multiple faults, the number being denoted C (fault cardinality).
A diagnostic report D=< .. . ,dk, . . . > is an ordered set of diagnostic (possibly multiple-
fault) candidates, dk, ordered in terms of likelihood to be the true diagnosis.

A program spectrum is a collection of flags indicating which components have been
involved in a particular dynamic behavior of a system. Our behavioral model is repre-
sented simply by a set of components involved in a computation, and does not have to

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.



6 Paulo Casanova et al.

indicate at a detailed behavioral level exactly what that involvement was. Thus, record-
ing program spectra is light-weight, compared to other run-time methods for analyzing
dynamic behavior (e.g., dynamic slicing [22]). Although we work with these so-called
component-hit spectra, the approach outlined in this section easily generalizes to other
types of program spectra [17].

Program spectra are collected for N (pass/fail) executions of the system. Both spectra
and program pass/fail information are input to spectrum-based fault localization. The
program spectra are expressed in terms of a N ×M activity matrix A, for example in
Table 1. An element ai j has the value 1 if component j was observed to be involved in
the execution of run i, and 0 otherwise. The pass/fail information is stored in a vector e,
the error vector, where ei signifies whether run i has passed (ei = 0) or failed (ei = 1).
Note that the pair (A,e) is the only input to the spectrum-based diagnosis approach.

4.2 Candidate Generation

As in any model-based diagnosis (MBD) approach, the basis for fault diagnosis is a
model of the program. Unlike many MBD approaches, however, no detailed modeling is
used, but rather a generic component model. Each component (c j) is modeled in terms
of the logical proposition

h j⇒ (okinp j ⇒ okout j) (1)

where the booleans h j, okinp j , and okout j model component health, and the (value) cor-
rectness of the component’s input and output variables, respectively. The above weak
model3 specifies nominal (required) behavior: when the component is correct (h j = true)
and its inputs are correct (okinp j = true), then the outputs must be correct (okout j = true).
As Eq. (1) only specifies nominal behavior, even when the component is faulty and/or
the input values are incorrect it is still possible that the component delivers a correct
output. Hence, a program pass does not imply correctness of the components involved.

c1 c2 c3 e
1 1 0 1 obs1
0 1 1 1 obs2
1 0 0 1 obs3
1 0 1 0 obs4

Table 1. Program Spectra Example

By instantiating the above equation for each component involved in a particular run
(row in A) a set of logical propositions is formed. Since the input variables of each test
can be assumed to be correct, and since the output correctness of the final component in
the invocation chain is given by e (pass implies correct, fail implies incorrect), we can
logically infer component health information from each row in (A,e). To illustrate how
candidate generation works, for the program spectra in Table 1 we obtain the following
health propositions for h j:

3 Within the model-based diagnosis community, two broad categories of model types have been
specified: (1) weak-fault models, which describe a system only in terms of its normal, non-
faulty behavior, and (2) strong-fault models, which also include a definition of some aspects of
abnormal behavior.
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¬h1∨¬h2 (c1 and/or c2 faulty)
¬h2∨¬h3 (c2 and/or c3 faulty)
¬h1 (c1 faulty)

These health propositions have a direct correspondence with the original matrix struc-
ture. Note that only failing runs lead to corresponding health propositions, since (be-
cause of the conservative, weak component model) from a passing run no additional
health information can be inferred.

As in most MBD approaches, the health propositions are subsequently combined
to yield a diagnosis by computing the so-called minimal hitting sets (MHS, aka mini-
mal set cover), i.e., the minimal health propositions that cover the above propositions.
In our example, candidate generation yields two double-fault candidates d1 = {1,2},
and d2 = {1,3}. The step of transforming health propositions into diagnosis is generally
responsible for the prohibitive cost of reasoning approaches. However, we use an ultra-
low-cost heuristic MHS algorithm called STACCATO [1] to extract only the significant
set of multiple-fault candidates dk, avoiding needless generation of a possibly exponen-
tial number of diagnostic candidates. This allows a spectrum-based reasoning approach
to scale to real-world programs [4].

4.3 Candidate Ranking

The previous phase returns diagnosis candidates dk that are logically consistent with
the observations. However, despite the reduction of the candidate space, the number
of remaining candidates dk is typically large, not all of them equally probable. Hence,
the computation of diagnosis candidate probabilities Pr(dk) to establish a ranking is
critical to the diagnostic performance of reasoning approaches. The probability that a
diagnosis candidate is the actual diagnosis is computed using Bayes’ rule, that updates
the probability of a particular candidate dk given new observational evidence (from a
new observed spectrum).

The Bayesian probability update, in fact, can be seen as the foundation for the deriva-
tion of diagnostic candidates in any reasoning approach: i.e., (1) deducing whether a
candidate diagnosis dk is consistent with the observations, and (2) computing the pos-
terior probability Pr(dk) of that candidate being the actual diagnosis. Rather than com-
puting Pr(dk) for all possible candidates, just to find that most of them have Pr(dk) = 0,
candidate generation algorithms are used as shown before, but the Bayesian framework
remains the formal basis.

For each diagnosis candidate dk the probability that it describes the actual system
fault state depends on the extent to which dk explains all observations. To compute the
posterior probability that dk is the true diagnosis given observation obsi (obsi refers to
the coverage and error information for computation i) Bayes’ rule is used:

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
·Pr(dk|obsi−1) (2)

The denominator Pr(obsi) is a normalizing term that is identical for all dk and thus need
not be computed directly. Pr(dk|obsi−1) is the prior probability of dk. In the absence of
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any observation, Pr(dk|obsi−1) defaults to Pr(dk) = p|dk| ·(1− p)M−|dk|, where p denotes
the a priori probability that component c j is at fault, which in practice we set to p j = p.
Pr(obsi|dk) is defined as

Pr(obsi|dk) =

0 if obsi∧dk are inconsistent;
1 if obsi is unique to dk;
ε otherwise.

(3)

As mentioned earlier, only candidates derived from the candidate generation algorithm
are updated, meaning that the 0-clause need not be considered in practice.

In model-based reasoning, many policies exist for defining ε [9]. Amongst the best
ε policies is one that uses an intermittent component failure model, extending h j’s per-
manent, binary definition to h j ∈ [0,1], where h j expresses the probability that faulty
component j produces correct output. (h j = 0 means persistently failing, and h j = 1
means healthy, i.e., never inducing failures).

Given the intermittency model, for an observation obsi = (Ai∗,ei), the ε policy in
Eq. (3) becomes

ε =


∏

j∈dk∧ai j=1
h j if ei = 0

1− ∏
j∈dk∧ai j=1

h j if ei = 1
(4)

Eq. (4) follows from the fact that the probability that a run passes is the product of the
probability that each involved, faulty component exhibits correct behavior. (Here we
adopt an or-model; we assume components fail independently, a standard assumption in
fault diagnosis for tractability reasons.)

Before computing Pr(dk) the h j must be estimated from (A,e). There are several
approaches that approximate h j by computing the probability that the combination of
components involved in a particular dk produce a failure, instead of computing the indi-
vidual component intermittency rate values [3, 10]. Although such approaches already
give significant improvement over the classical model-based reasoning (see [4] for re-
sults), more accurate results can be achieved if the individual h j can be determined by an
exact estimator. To compute such an estimator, h j is determined per component based on
their effect on the ε policy (Eq. (4)) to compute Pr(dk). The key idea is to compute the
h js for the candidate’s dk faulty components that maximizes the probability Pr(obs|dk)
of a set of observations obs occurring, conditioned on that candidate dk (maximum
likelihood estimation for naı̈ve Bayes classifier dk). Hence, h j is solved by maximizing
Pr(obs|dk) under the above epsilon policy, according to argmax

{h j | j∈dk}
Pr(obs|dk).

To illustrate how candidates are ranked, consider the computation of Pr(d1). As the
four observations are independent, from Eq. (3) and Eq. (4) it follows

Pr(obs|d1) = (1−h1 ·h2) · (1−h2) · (1−h1) ·h1 (5)

Assuming candidate d1 is the actual diagnosis, the corresponding h j are determined by
maximum likelihood estimation, i.e., maximizing Eq. (5). For d1 it follows that h1 = 0.47
and h2 = 0.19 yielding Pr(obs|d1) = 0.185 (note, that c2 has much lower health than c1

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.



Architecture-based Run-time Fault Diagnosis 9

as c2 is not exonerated in the last matrix row, in contrast to c1). Applying the same proce-
dure for d2 yields Pr(obs|d2)= 0.036 (with corresponding h1 = 0.41, h3 = 0.50). Assum-
ing both candidates have equal prior probability p2 (both are double-fault candidates)
and applying Eq. (2) it follows Pr(d1|obs) = 0.185 · p2/Pr(obs) and Pr(d2|obs) = 0.036 ·
p2/Pr(obs). After normalization it follows that Pr(d1|obs)= 0.84 and Pr(d2|obs)= 0.16.
Consequently, the ranked diagnosis is given by D =< {1,2},{1,3}>.

5 Adapting SMFL to Architecture-based Run-time Diagnosis

On the surface of it, combining SMFL with architecture-based adaptation would ap-
pear to be a natural synthesis. Architecture models, on the one hand, provide an abstract
component-oriented view that can form the basis for a scalable representation of the el-
ements that might contribute to faulty behavior. Further, architecture-based monitoring
and fault detection (but not diagnosis) are reasonably well established [29]. SMFL, on
the other hand, provides a light-weight, efficient, statistical approach that supports diag-
nosis in the face of uncertainty, coordinated faults, and transient errors. Further, SMFL
is agnostic about the nature of a fault, allowing systemic properties based on quality
attributes (such as performance) to guide the ranking procedure.

However, there are a number of obstacles that must be overcome to synthesize these
two disciplines. First, there needs to be some way to define the traces of interest: one
must be able to describe what kinds of computations should be monitored, as well as the
criteria for determining whether a computation has succeeded or failed. Moreover, while
SMFL expects finite traces, in general the behavior of a running system is not finite (or so
one hopes). Second, there must be a way to detect the occurrence of traces in the running
system. As noted earlier, concurrency makes this difficult, since many simultaneously
executing traces may be present in a system. (Recall that in the development time context
for which SMFL was originally created, each trace can be observed as a separate run of
the system under test.) Third, the algorithm for performing SMFL must be adapted to
handle concurrently executing traces, and provide an appropriate window of observation
(as described later).

5.1 Defining Transactions

Recall that SMFL expects as input a series of spectra, where each spectrum is a finite set
of components that participated in a given computation (a finite program trace), together
with an indication of its status (pass/fail). How can we define such computations – which
will in turn serve as the basis for monitoring, diagnosis, and fault localization?

The problem is non-trivial for two reasons. First, a trace defines a finite execution.
However, we are interested in systems that operate continuously, so that at a system
level the behavior of the system is infinite. Second, different kinds of systems embody
very different kinds of computational models. For example, complex computations in a
service-oriented architecture (SOA) are often defined by an orchestration script, which
indicates how the various components are coordinated, and how data passes from one to
another. In contrast, a system based on sensor networks may involve processing streams
of sensor readings.
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Our approach is based on two key ideas. The first is the idea of a transaction family.
A transaction family defines a parameterized pattern of behaviors as finite computations,
expressed in terms of the architectural elements (components and connectors) that are
involved in that computation, and the flow of information/control between them (in a
way similar to [20]). An instantiation of that pattern (in terms of specific architectural
elements) is an individual transaction. Additionally we associate a set of properties with
the components and flows. These properties indicate things like the time that a flow
event happened or the load on a server. Finally, a transaction family includes a boolean
function that determines whether a given transaction has succeeded.

The second idea is to associate these transaction families with architectural styles.
An architectural style describes the types of elements and their possible legal associ-
ations in a system, which allows architectural patterns referring to those types to be
defined. Several transaction families can be defined for each architectural style, each
representing a different pattern of computation. Note that the transaction families need
not cover all of the behaviors of systems in the family – only the ones that are of in-
terest to diagnosis. However, by defining transaction families at the architectural style
level, we can immediately reuse diagnosis systems for different systems. And although
a different technology may be required to place probes (techniques for probing C pro-
grams are different from those for Java programs), both the diagnosis system and its
configuration are fully reusable.

There are many possible ways that one might define transaction families, including
state machines, process algebras, and so on. In our work we adopt a form of message
sequence charts [13]. For example one transaction family for a web-server family that
might be used to model the system in Figure 1 would be represented by the sequence di-
agram in Figure 2. The pattern of communication shown there defines the client-server
round-trip execution flow discussed earlier. It involves an arbitrary client, dispatcher,
and server, as well as the database. The first three represent parameters of the family
which (as we describe below) will be instantiated with specific components during sys-
tem execution. Properties associated with the family include the time taken to serve a
client’s request (i.e., the request latency). An associated boolean function returns true if
the latency (difference in request and reply times) is under the appropriate threshold.

:Client :Dispatcher :Server :Database

HTTP Get

HTTP Get

SQL Query

Query Response

HTTP Response

HTTP Response

Fig. 2. Example Message Sequence Chart for a HTTP Request Transaction.

Transaction families have several important benefits. First, they involve relatively
minimal specification: rather than requiring a full formal account of the architectural

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.



Architecture-based Run-time Fault Diagnosis 11

behavior, we focus only on finite abstract “slices” of it, reducing the overhead of defining
relevant behavior and making the approach generally accessible. Second, definition of
transaction families for a given system or architectural style can be incremental: it is
possible to add new templates or to add detail to an existing template (for example,
by including a finer-grained account of the set of elements involved in the transaction).
This allows users of the technique to get increased benefits for increased effort. Third,
by associating transaction families with architectural families, we amortize the effort of
defining behaviors, and allow reuse of prepackaged collections of transaction families
for commonly-used architectural styles.

5.2 Detecting Traces
Given a way to specify transactions, we now need a way to observe them in a running
system and then use those observations to carry out fault diagnosis. Figure 3 shows the
process that we use do to this.

Detection Diagnosis

System Transaction
Detector Oracle Window

Determinator
Fault

Detector
Report

Generator

System Events

Transactions

Transaction evaluation (pass/fail)

Spectra matrix

Failure probabilities

Fig. 3. The Architecture of our Experimental Framework.

To detect transactions, we adapt earlier work in architecture-based monitoring [29].
First, a system is instrumented so that it can be monitored at runtime. Monitored events
are placed on an “event bus” where they can be consumed by the detection phase of our
diagnostic infrastructure. In the client-server example above, monitored events include
activities like initiation of HTTP requests over the client-dispatcher connectors.

To monitor a system, there are numerous mechanisms that can be used that vary in
terms of the kind of behavior they detect and the kind of system they are appropriate
for. For distributed systems, standard middleware and network communication infras-
tructure provide mechanisms to monitor communication events and their properties. For
systems working on a single host, code-oriented monitoring can be used. For example,
aspect-oriented techniques can weave monitoring code into an existing code base (see,
for example, [29]). In this research the choice of monitoring mechanism and the place-
ment of relevant probes has not yet been a major focus of our efforts. However, as we
discuss later, we view this as an area for future research.

During the detection phase, events are first filtered to extract those relevant to the
transaction families that are being observed. Next, events are passed to a detection ma-
chine generated from the transaction families. Specifically, adapting earlier work on
DiscoTect, we monitor events as a set of concurrent state machines, modeled as Petri
Nets [29]. The key idea is that behavior is tracked by moving tokens through a state
machine in response to low-level events. When tokens reach certain terminal states the
machine emits the set of architectural elements that were involved in the trace and an
indication of the transaction type. This information is then fed to an oracle that evaluates
the boolean function associated with that spectrum type on the detected spectrum.
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5.3 Diagnosis

The second phase of processing is diagnosis. This is broken down into three parts. The
first part is window determination. This step is responsible for aggregating a sequence of
transactions to define the matrices – the (A,e) of Section 4 – that can be analyzed by the
SFML algorithms. In determining these matrices it is important to define an appropriate
window. If the window is too small, there may be too few transactions for the results to be
statistically significant. If the window is too large, it may contain out-of-date transactions
that may skew the diagnosis towards past behavior.

There are a number of criteria that might be used to determine this window. In our
current experiments we have found that a time-based window works well. That is, we
aggregate all spectra within a temporal window. The value for that time bound needs to
be determined by experimentation as it is dependent on the rate of system usage: with
high transaction rates, a smaller time window can aggregate enough traces, but if the
transaction rate is low then we need a larger time window.

Once a window of spectra has been determined, the associated matrices are given
to the SMFL algorithm, which calculates a list of candidate fault explanations (if any)
ordered by probability of being the likely cause. This is simply a straightforward appli-
cation of the SFML algorithms described earlier.

Finally the results are passed to a Report Generator, which outputs the results of the
SFML analysis: a list with sets of failed components and their associated probabilities.
Automated repair mechanisms (or human operators) can then interpret the results in
architectural terms.

6 Evaluation
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To evaluate the approach we conducted experiments on a system similar to the exam-
ple in this paper. In particular, we investigated the hypothesis that the technique could
accurately pinpoint problems in a system exhibiting (a) variability in the number of
components; (b) distributed system structures that involve realistic, off-the-shelf com-
munication infrastructure and componentry; (c) the presence of transient faults, where
failure is based on systemic attributes like end-to-end performance; and (e) faults that
might involve more than one component. The combination of these properties yields a
system that would be challenging to diagnose given current technology.

One class of problems that fits this criteria are intermittent multi-component faults
with additional noise. These problems arise with faulty network connections or appli-
cation errors that occur only with specific combinations of input data. With these kinds
of problems, a fault occurs only sometimes and is generally associated with a specific
path on the system. However, other intermittent faults may occur less often due to other
reasons, generating additional noise in the spectra. We want to be able to separate out
the real errors from the noise.

To create this experiment, we recreated an environment similar to the one Figure 1.
In this system, two virtual machines (simulating two servers) run two web servers and
dispatchers. The dispatchers choose which web server to send requests to using a round-
robin algorithm. An external multi-threaded load test program, Apache JMeter, gener-
ates requests on both virtual machines simulating clients accessing the system.

A trace family is defined for this system: a standard request in which the client
performs a request to a dispatcher which forwards it to a web server.

Two interception points, or probes, were placed in each machine, one before the
request arrives at each dispatcher and one between the dispatchers and the web servers.
These interception points (custom-developed based on the pygmy HTTP server) add a
specific header to the HTTP request to allow tracking the transaction and report to an
event bus all events with the component name.

The fault detector receives events from the event bus and uses a Petri Net (PN)
to determine to what family the transaction belongs, as previously discussed. The PN
used to identify the transaction family is the one in Figure 5. Transitions on the PN are
enabled when the corresponding events arrive. A transaction in the PN is initialized with
a token in the START place and ends when a token arrives at the DONE:Standard
place. The oracle considers a transaction to be a success if the time elapsed between the
request and response is less than 2.5 seconds. This is representative of systems in which
response time is a measure of success – systems that do not exhibit easier-to-detect fail-
stop failures.

To simulate network delay (or server processing delay), we added a random delay in
both IP1 and IP2 of the first virtual machine. This means that 25% of all requests receive
an added time delay that ensures some of the time they will fail. This generates a hard-
to-find problem, namely an intermittent failure on one of the paths: the one containing
the dispatcher 1 (D1) and web server 1 (WS1). Simultaneously it adds a small (but
non-zero) failure probability on both the D1-WS2 and D2-WS1 paths. The experimental
results show that the fault detection algorithm is able to statistically separate these results
and produce the correct output.

The total number of traces obtained during a run and their distribution between the
various components is shown in Table 2(a). As the results show, the D1-WS1 path fails
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Fig. 5. Petri Net used to identify the transaction family.

26% of the time. The other two paths which include D1 and WS1 fail slightly less than
5% of time time and the D2-WS2 path has no failures.

Table 2. Results.

(a) Number of success/fail
spectra for each combination
of dispatcher and web server.

WS1 WS2 Total
D1 85/31 129/5 214/36
D2 117/5 122/0 239/5
Total 202/36 251/5 451/41

(b) Time evolution of results of failure diagnosis.

Time Window Succ./Fail. Diagnosis
0-10s 30/2 D1 : 84%,WS1 : 16%
0-20s 119/8 WS1 : 100%
0-30s 201/16 D1,WS1 : 99%,D1,D2 : 1%

Because SMFL’s only input are the spectra, enough data need to be collected before
the problem can be detected. In fact, as shown in Table 2(b), the failure probabilities
change over time. For example, a 20s window would have determined that WS1 was the
only component responsible for the observed failures. Only after 30s is the algorithm
able to indict WS1 and D1 as the components responsible for the observed failures. This
means that window size needs to be carefully chosen so that the SMFL algorithm has
enough information to yield accurate diagnosis [2].

7 Conclusions and Future Work

In this paper we described an approach that combines architecture models for moni-
toring system behavior and spectrum-based fault localization for diagnosing problems.
Such a combination provides a systematic, efficient and scalable technique to deal with
run-time failures independent of the system domain. Important features of the approach
are that it is lightweight, generally applicable to any kind of system, tolerant of uncer-
tainty, and capable of detecting soft anomalies and problems that involve combinations
of components.

This line of research raises a number of research questions requiring further inves-
tigation. In our current system, probes are manually placed to monitor the activity of
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the running system. We plan to investigate methods for efficient automatic probe place-
ment, including analysis to identify the minimum set of probes required to accurately
monitor the spectrum types defined for the system, as well as techniques for dynamic
probe placement (e.g., to enable/disable probes at run-time). Our current oracle is de-
termined at design-time, but machine learning-based approaches could provide designs
that perform better in adaptive systems. Moreover, as we observed in the experiment,
SMFL window size is an important parameter that can affect the accuracy of the diag-
nosis. We plan to study a systematic, generic method to automatically determine this
parameter. We believe that this can be done in a parametric way, based on the family of
system and the kind of implementation base on which it is deployed. Furthermore, our
architecture-based fault localization approach allows the definition of multiple spectrum
types. It is not yet clear whether each type should have its own SMFL diagnosis instance,
or whether they should be combined into a single detection component. A key issue will
be to determine whether there is a need for multiple SMFL windows depending on spec-
trum type, as this will require the use of multiple SMFL instances. While the approach
scales well in terms of its algorithmic complexity, we plan to conduct experiments on
large-scale systems to evaluate the scalability of the method in practice. Finally, we plan
to integrate the diagnosis mechanism into detection-diagnosis-repair cycle, to determine
how it impacts round-trip self-repair efficiency.
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