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Abstract—Although architecture-based self-adaptation has
been widely used, there is still little understanding about
the validity and tradeoffs of incorporating it into real-world
software-intensive systems which already feature built-in adap-
tation mechanisms. In this paper, we report on our experience
in integrating Rainbow, a platform for architecture-based
self-adaptation, and an industrial middleware employed to
monitor and manage highly populated networks of devices.
Concretely, we reflect on aspects such as the effort required
for framework customization and legacy code refactoring,
performance improvement, and the impact of architecture-
based self-adaptation on system evolution.

I. INTRODUCTION

Architecture-based self-adaptation [7], [9], [10] is re-
garded as a promising approach to building flexible and
dependable software systems able to autonomously adapt to
changes in the conditions prescribed by their environment at
run-time. Although there is previous experience in applying
architecture-based self-adaptation in practice [2], [5], [6],
[8], the common denominator for the existing case studies
is that they deal with target systems in which self-adaptive
capabilities are designed and incorporated from scratch.
However, in practice, many legacy systems have some
adaptation mechanisms already built-in (and often tightly
coupled with the rest of the system).

Currently, there is little understanding about the feasibil-
ity and tradeoffs of implementing architecture-based self-
adaptation in such systems. This paper tackles this issue by
addressing two fundamental questions: (i) Can architecture-
based self-adaptation be applied to legacy systems that have
existing self-adaptation encoded in them?, and (ii) What is
the effort associated with improving adaptation behavior in
such systems using architecture-based self-adaptation?

To answer these questions, we report on our experience in
applying architecture-based self-adaptation to an industrial
middleware system developed at Critical Software called
Data Acquisition and Control Service (DCAS), which is
used to monitor and manage highly populated networks of
devices in renewable energy production plants.

For the implementation of our prototype we used Rain-
bow [7], a framework that provides a reusable infrastructure
for the engineering of self-adaptive capabilities to monitor,
decide, and act on situations that require system adaptation.

To achieve our goal, first, we removed built-in adaptation
mechanisms in DCAS in order to obtain a version that could
be integrated with Rainbow, thus allowing us to replicate on
our Rainbow-based prototype the adaptation behavior of the
original DCAS. Secondly, since DCAS was slow in recov-
ering its performance in situations in which devices were
persistently slow in reporting data, we assessed the difficulty
of modifying adaptation behavior using architecture-based
self-adaptation when using our Rainbow-based prototype.

The rest of this paper is organized as follows. Section II
provides a general description of DCAS. Section III briefly
describes the Rainbow approach for architecture-based self-
adaptation and summarizes applications to other case stud-
ies. In Section IV, we describe the approach followed for
the integration of Rainbow and DCAS. Section V provides
an evaluation of different aspects regarding the process of
integration and results obtained. Section VI concludes the
paper and indicates directions for future work.

II. DATA ACQUISITION AND CONTROL SERVICE (DCAS)

The Data Acquisition and Control Service (DCAS) is a
middleware from Critical Software that provides a reusable
infrastructure to manage monitoring and (non-automatic)
control of highly populated networks of devices. In particu-
lar, the middleware is designed to be seamlessly integrated
with Critical’s Energy Management System (csEMS)1,
which is a platform that provides asset management sup-
port for power producing companies based on renewable
energy sources. The overall csEMS architecture aims at high
scalability, flexibility and customization with management
capabilities that enable the operation of control centers
independently of the underlying application (e.g., wind,
solar, etc).

1http://solutions.criticalsoftware.com/products services/csems/
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The basic building blocks in a DCAS-based system (Fig-
ure 1) are the following:

Figure 1. Architecture of a DCAS-based system

• Devices are equipped with one or more sensors to
obtain data from the application domain (e.g., from
wind towers, solar panels, etc.). Each one of these
sensors has an associated data stream from which data
can be read. There may be different types of devices
connected to the network, each type with its particular
characteristics (e.g., protocols, type of data collected,
etc.). Each type of device has an associated device
profile that specifies the rate at which the device should
be polled for data, or which are the expected value
ranges for the data being collected.

• Database server stores all the information collected
from devices, as well as, configuration data for the
system (e.g., device profiles, etc.).

• Processor nodes pull data from the devices at a given
rate (configured in the device profile), and dispatch
this data to the database server. Each processor node
executes an instance of DCAS.

• Application server is connected to the database server
to obtain data, which can be presented to the operators
of the system or processed automatically by application
software. However, the DCAS service is application-
agnostic, so the application server will not be discussed
in the remainder of this document.

The main objective of DCAS is collecting data from
the connected devices at a rate as close as possible to the
one configured in their device profiles, supporting as many
connected devices as possible. To achieve this objective, a
DCAS-based system shall be able to scale up, making use
of the computational resources in the node(s) where it is
running, and scale out, supporting the deployment of several

instances of the service within the same system to extend
the number of connected devices.

A. DCAS Structure and Functionality

A different instance of DCAS runs in each of the proces-
sor nodes of a DCAS-based system. The main components
of the service (shown in Figure 2) are the following:
• Service Engine is in charge of orchestrating all the flow

of data among the different components of the service.
• Polling Scheduler triggers the process to perform

requests to devices according to their scheduled time
of execution.

• Data Requester performs requests to devices.
• Data Persister stores the information obtained from

devices into the database.
• Alarmer raises alarms if the data coming from the

devices is corrupted (e.g., values out of expected range).
• Data Stream Manager manages the information re-

garding the device response time (i.e., the elapsed time
since a particular device is polled until it responds)
associated with the different data streams of the devices.

Polling 

Scheduler

Service 

Engine

1.Dispatch Request

Device

Alarmer

Data 

Requester

Data 

Persister

2.Perform Request

3a.Get Data

5a. Dispatch Item 4. Dispatch Item

5b. Dispatch Item

6. Write Item

Data 

Stream 

Manager

0.Update Stream 
Elapsed Time (and Priority)

3b.Update Stream 
Elapsed Time

Figure 2. DCAS service operation

Figure 2 illustrates the operation of an instance of DCAS:
1. When the Polling Scheduler determines that the sched-

uled time for the execution of a request has arrived, the
request is dispatched to the Service Engine.

2. The Service Engine forwards the request to the Data
Requester.

3. The Data Requester:
3a. Communicates with the device, retrieving the re-

quested data and packing it into an item.
3b. Updates the elapsed time information of the stream

from which data has been read in step 3 (it is worth
reminding that a device can have one or more data
streams assigned from which data is read).

4. The item is dispatched by the Data Requester to the
Service Engine.

5. The Service Engine:
5a. Dispatches a copy of the item to the Data Persister.



5b. Dispatches a copy of the item to the Alarmer.
The information of a data stream is updated according

to the time elapsed since the request for data is performed
by the Data Requester, until a response is received from
the device. Moreover, the Polling Scheduler continuously
updates the priorities of the scheduled requests according to
the information updated in the Data Stream Manager (see
step 0 in Figure 2). Further details about this issue can be
found in Section II-B1.

Two important components in DCAS for achieving the
desired quality goals are the Data Requester and the Polling
Scheduler, which are instrumental in the self-adaption mech-
anisms of DCAS. The following subsections describe these
components in more detail.

1) The Data Requester: The Data Requester is in charge
of retrieving data from connected devices. Internally, the
Data Requester contains a collection of sub-components
called Data Requester Processors (DRPs), which perform
requests on devices of a single type (Figure 3), and a primary
queue from which requests are distributed to the different
DRPs (based on the device type targeted by the request).

Each DRP contains an internal secondary queue in which
device-type specific requests are enqueued, and a collec-
tion of processes, called Data Requester Processor Pollers
(DRPPs), that dequeue requests from the secondary queue
and retrieve the data from the appropriate device according
to the specific contents of the request.

Concretely, the sequence of events concerning the opera-
tion of the Data Requester is as follows:

1. The service engine sends a request to the Data Requester,
which is enqueued in the primary queue.

2. A process called Data Requester Poller retrieves a request
from the primary queue, and forwards it to the appropriate
DRP. The request is enqueued in the secondary queue of
the DRP (if the queue is full, the request is discarded).

3. One of the DRPPs in the DRP dequeues the request
from the secondary queue and retrieves the data from
the device. The communication between the DRPP and
the device is synchronous, so the DRPP remains blocked
until the device responds or a timeout expires. This is the
main bottleneck regarding performance of DCAS.

4. When the data is received (or the timeout has expired),
the priority associated with data stream from which data
was read is updated on the data stream manager.

5. If data has been received, the DRPP packs it into a data
item and dispatches it to the service engine.

2) The Polling Scheduler: The Polling Scheduler is in
charge of starting the process to request data from devices
according to their scheduled time of execution. Internally,
the scheduler contains a collection of request queues, each
one specific to a particular polling rate of devices (or
more concretely, data streams - Figure 4). Hence, all the
requests to be performed on data streams with the same

assigned polling rate are located within the same queue
(independently of the type of the device to which they
are associated). During the initialization of the service, the
information regarding the polling rates of the different data
streams is loaded from preconfigured values in the database,
and then distributed across the different queues.

Each queue has an associated process called Polling
Scheduler Poller (PSP), which cycles through the queue
processing requests in the following manner:
1. The PSP dequeues the request in the first position of the

queue.
2. The PSP clones the request retrieved from the queue and

dispatches the clone to the service engine.
3. The queue retrieves an updated value for the elapsed time

of the data stream targeted by the request and computes
a priority for it based on the retrieved value.

4. The PSP re-inserts the original request into the queue in
a new position that depends on the priority of the data
stream. The higher the priority of the data stream, the
closer to the first position of the queue the request will be
inserted. This guarantees that requests that correspond to
data streams with low priority (i.e., those associated with
devices that take more time to respond) get processed less
often, improving the overall performance of the service.

B. Adaptation Mechanisms

In Section II-A, we have described the structure and
functionality of DCAS. In this section, we focus on the
existing adaptation mechanisms of DCAS that are aimed at
maintaining the performance of DCAS under different loads.
These adaptation mechanisms respond to failing devices,
increased number of devices, and changing data rates.

1) Rescheduling: The rescheduling mechanism affects
the Polling Scheduler, and is aimed at avoiding the degrada-
tion of performance of the system caused by devices which
fail to respond in a timely manner (or do not respond at
all) when polled. In a nutshell, the mechanism consists in
decreasing the priority of the data streams associated with
the failing devices, so that they are polled less often (thus
reducing the amount of time that Data Requester Processor
Pollers - or DRPPs - remain blocked waiting for device data).

To illustrate the rescheduling process, we introduce the
following concepts:
• Device Response Time (DRT) is the time that takes

for a device to respond when polled by a DRPP.
• Sample Rate (SR) is the preconfigured value for the

rate at which a device is polled, and is fixed throughout
the execution of DCAS.

• Sample Rate Delay (SRD) is an increment that can be
added to the sample rate to poll devices less frequently.
When the execution of the DCAS service starts, the
SRD for all devices is equal to zero. Moreover, through-
out the execution of DCAS, all devices responding in
a timely manner should have an SRD equal to zero.
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Figure 3. Data requester operation

• Effective Sample Rate (ESR) is the rate at which
devices are effectively polled (ESR=SR+SRD).

Figure 5 illustrates the adaptation process followed for
rescheduling. The process starts by checking if the device
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Figure 4. Polling scheduler operation

response time is above its effective sample rate:

• If the device response time is indeed above effec-
tive sample rate, the algorithm checks if the number
of consecutive checks in which device response time
for the device has been above effective sample rate
(represented by counter CI) exceeds a threshold F
(preconfigured value). If the threshold F has not been
crossed, then counter CI is incremented. Otherwise,
counter CI is reset to zero and the sample rate delay
for the device is incremented 2 (thus resulting also in
the increment of the effective sample rate).

• If the device response time is below the effective
sample rate, the algorithm checks if the number of
consecutive checks in which device response time has
been below sample rate (represented by counter CD)
exceeds threshold F. If threshold F has not been crossed,
counter CD is incremented. Otherwise, counter CD is
reset to zero, and only if the sample rate delay is greater
than zero, the sample rate delay is decremented.

2) Scale Up: The scale up mechanism affects the be-
havior of the Data Requester, and is aimed at improving
the performance of the system by exploiting as much as

2The concrete details regarding the calculation to increment and decre-
ment the sample rate delay are not discussed in this document.
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possible the resources (CPU and memory) of the processor
node in which a DCAS service instance is running. This is
achieved by adding or removing Data Requester Processor
Pollers (DRPPs) in the secondary queues of Data Requester
Processors (DRPs) as required. Concretely:
• If the size of the queue of the DRP remains close to

zero, the system is running as expected, so nothing
needs to be done. Indeed, if the queue size is consis-
tently zero after a fixed number of consecutive checks,
the scale up mechanism considers that there are active
DRPPs which probably are not necessary and starts
removing them (one at a time).

• If the queue size of the DRP increases consistently
during a fixed number of consecutive checks, scale up
tries to increase performance by adding new DRPPs.

It is worth observing that the addition of new DRPPs
does not always result in a proportional increment in the
number of requests processed per time unit since the system
is limited by the throughput of the devices being polled.

3) Scale Out: Scaling out is supported in DCAS only
as manual operation. When the system is unable to cope
with the given configured data rates while using maximum
computational resources, it writes an entry to the log in the
database in order to notify this event to a human operator.

Then, a new instance of the DCAS service must be manually
deployed, and devices re-attached across the different service
instances (i.e., processor nodes), according to the particular
situation. Each service instance is not aware of the existence
of others, but there is a basic mechanism implemented so
that each instance gets only the data streams it should
process. Concretely, data stream entries in the database
include a DCAS instance identifier (manually configured
by the human operator) indicating which service instance
should process its requests.

III. THE RAINBOW APPROACH

Rainbow is an architecture-based platform for supporting
self-adaptation of software systems, which has the following
distinct features: an explicit architecture model of the target
system, a collection of adaptation strategies, and utility pref-
erences to guide adaptation. Rainbow is aimed at reducing
engineering effort by incorporating an explicit representation
of adaptation knowledge.

The Rainbow framework (Figure 6) includes mechanisms
for: monitoring a target system and its environment (using
the observations for updating the architectural model of the
target system), detecting opportunities for improving the
target system’s quality of services (QoS), and deciding the
best course of adaptation based on the state of the target
system. The main components of the framework are:
• Architecture Evaluator evaluates the model to ensure

that the target system is operating within an acceptable
range, as determined by the architectural constraints. If
the evaluator determines that the system is not operating
within the accepted range, it triggers adaptation.

• Adaptation Manager chooses a suitable adaptation
strategy based on the current state of the target system
(reflected in the architectural model).

• Strategy Executor executes the adaptation strategy
chosen by the adaptation manager on the running target
system via effectors.

• Model Manager updates the architecture model using
the information observed in the running target system
by the monitoring mechanisms in the translation infras-
tructure (probes and gauges).

Rainbow leverages the notion of architectural style [1] to
exploit commonalities between systems, providing reusable
infrastructures with explicit customization points that can
be applied to a wide range of systems: (i) the architecture
model of the target system customizes the model manager;
(ii) architectural constraints related to adaptation goals cus-
tomize the architecture evaluator; (iii) style operators and
their mappings to target system effectors customize the
strategy executor; and (iv) utility preferences and a collection
of adaptation strategies with their associated cost-benefit
impacts customize the adaptation manager.

Providing this substantial base of reusable infrastructure
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Figure 6. The Rainbow framework

through customization has the advantage of reducing re-
markably the cost of development.

Building upon the elements of the architectural style,
Rainbow provides the Stitch [5] language to represent human
adaptation knowledge using three high-level concepts:

• Operator is the most primitive unit of execution and
represents a basic configuration command provided
by the target system (corresponding to a system-level
effector). They are defined in the architectural style of
the system.

• Tactic is an abstraction that groups operators to form a
single step of adaptation. Tactics are used as primitive
actions, and have an associated cost/benefit impact on
the different quality dimensions.

• Strategy encapsulates an adaptation process, where
each step is the conditional execution of a tactic. Strate-
gies are characterized in Stitch as a tree of condition-
action-delay decision nodes, where delays correspond
to a time-window for observing tactic effects. System
feedback (through the dynamically-updated architec-
tural model of the system) is used to determine the
next action (i.e., tactic) at every step during strategy
execution.

In previous work, we have applied Rainbow to several
different kinds of systems, and to adapt to maintain different
types of quality attributes. In terms of sytems, the most
widely reported has been the ZNN exemplar [6]. ZNN is
an example web server that uses open source, off-the-shelf
web servers, load balancers, and databases to implement
a simple news site. We have applied adaptation in this
context for quality attributes such as performance, cost, and
information quality. In addition to this, Rainbow has been
applied to manage and repair the archiving pipeline of a web-
based voice talk show and discussion group provider called
TalkShoe. In this case, Rainbow would report problems with
the production of the MP3 file recordings of the episode
and report to a human operator [4]. In both of these cases,
self-repair was added to these systems through Rainbow;

there was no existing control loop that managed the kinds
of adaptations that we implemented in Rainbow. The effort
required for doing this for ZNN was 92 man-hours, and for
TalkShoe, 34 man-hours. We will discuss these numbers in
more detail in Section V.

IV. INTEGRATING RAINBOW AND DCAS

In this section, we describe the process followed for
the integration of DCAS and Rainbow, describing: (i) the
evolution of DCAS, carried out to enable its integration with
Rainbow; and (ii) the customization of the different elements
of the Rainbow framework, including architectural model,
operators, tactics, and adaptation strategies.

A. Evolution of DCAS

Previous case studies in which Rainbow has been ap-
plied [5], [6] describe systems that typically feature compo-
nents that include public interfaces to access their functional-
ity (e.g., starting/stopping a web server, etc.). In contrast, im-
plementing the translation infrastructure between DCAS and
Rainbow required exposing part of the internal functionality
in DCAS through a public interface, enabling communica-
tion with Rainbow for extracting system information through
probes and effecting changes through system-level effectors.
To achieve this, we implemented a lightweight server com-
ponent embedded in DCAS that enables the exchange of
information between a running instance of the DCAS service
and Rainbow using TCP sockets. Figure 7 illustrates the
translation infrastructure used between Rainbow and DCAS.
Probes and effectors in Rainbow act as clients of the TCP
server, which acts as a mediator between them and the actual
probes and effectors embedded in DCAS:
• Probes embedded in DCAS keep the values of probed

variables updated in a data store local to the TCP server,
pushing updates whenever variables change (P1a and
P2a). Then, when a probe client in Rainbow requests the
value of a particular variable (P1b) , it is directly served
from the local data store to the probe client (P2b). This
approach was chosen due to the difficulty of invoking
the necessary operations to retrieve data in DCAS from
the TCP server. Concretely, information such as queue
sizes or number of active pollers in the data requester,
as well as information relative to device data streams
could not be obtained from the TCP Server, so different
parts of DCAS code were instrumented to extract this
information and update it in the TCP server data store.

• Effectors clients in Rainbow send requests for com-
mand execution to the TCP Server (E1), which forwards
them to the effector embedded in DCAS (E2). Next,
the effector executes the command (E3) and returns a
response to the TCP server that states whether execution
was successful (E4). Finally, the TCP server forwards
the response to the effector client in Rainbow (E5).



Figure 7. DCAS-Rainbow translation infrastructure

B. Customizing the Rainbow Framework

The typical DCAS-based system presents a blackboard
architecture in which the database server acts as a centralized
data manager into which processor nodes running DCAS
write information collected from network devices.

We can identify two quality objectives for the self-
adaptation of a DCAS-based system: (A) performance, and
(B) cost. Performance analysis suggests we monitor the
requests per second (rps) stored in the database server.
Cost analysis identifies the number of active pollers in data
requesters as the primary contributor to cost.

Type Property Operator
DeviceT sampleRateDelay changeSampleRateDelay

effectiveSampleRate (sampleRateDelay :int)
deviceResponseTime

ProcessorNodeT numPollers increasePollers()
queueSize decreasePollers()
queueStatus

DBServerT rps

Table I
DCAS ARCHITECTURAL STYLE ELEMENTS

Table I displays the major elements of the blackboard
architectural style for DCAS, including architectural types,
properties, and operators. Properties sampleRateDelay, effec-
tiveSampleRate, and deviceResponseTime in DeviceT can be
mapped to the concepts discussed in Section II-B1. Property
numPollers in ProcessorNodeT corresponds to the number of
active pollers (DRPPs) in the Data Requester of a processor
node, whereas property queueSize corresponds to the size of
its primary queue, and queueStatus to the growth rate of the
queue (negative values indicate that the number of elements
in the queue is shrinking). Finally, property rps in DBServerT
indicates the number of requests per second stored.

The ProcessorNodeT.increasePollers() operator increases

the capability of a processor node by activating a
new Data Requester Processor Poller in its Data Re-
quester, while decreasePollers() deactivates it. The De-
viceT.changeSampleRateDelay(sampleRateDelay : int) operator
sets the effective sample rate of the data streams in a device
by setting the value of its sample rate delay.

Using these operators, we specified two pairs of tactics
with opposing effects. One pair adds (i) or removes (ii)
pollers, whereas the other pair increases (iii) or decreases
(iv) the sample rate delay of the streams associated with a
device. When performance is low, objective A suggests that
the system should activate additional pollers (using tactic (i)
above) if the processor node has not exhausted the resources
assigned to DCAS (memory and cpu), or otherwise increase
the sample rate delay of devices with higher response time
using tactic (iii). When rps remains close to the top of its
expected range, objective B suggests that the system should
reduce cost by deactivating pollers (using tactic (ii)) which
may not be required to maintain an acceptable level of
performance in the system.

Based on the tactics described above, we designed a
baseline set of strategies for system adaptation to balance
the different quality objectives in the system. This set of
adaptation strategies is able to reproduce the original adap-
tation behavior of DCAS (as described in Section V-B1):
IncreasePerformance. When DCAS is experiencing low per-
formance (rps below threshold, rpsViolation), and the number
of active pollers is not above the number of data streams
with low responsiveness (!maxLazyStreams), activate a new
poller if queues are not shrinking, then if queues are still
not shrinking after 5 seconds, add another poller.
1 s t r a t e g y I n c r e a s e P e r f o r m a n c e
2 [ s t y l e A p p l i e s && r p s V i o l a t i o n && ! maxLazyStreams ]{
3 t 0 : ( ! q S h r i n k i n g )−>a d d P o l l e r ( )@[5000 /∗ms∗ / ]{
4 t 0 a : ( ! q S h r i n k i n g )−>a d d P o l l e r ( )@[10000 /∗ms∗ / ]{
5 t 0 b : ( q S h r i n k i n g )−>done ;
6 }
7 }
8 t 1 : ( q S h r i n k i n g ) −> done ;
9 }

ReduceCost. When DCAS detects small queue sizes (qViola-
tion2) and the minimum level of pollers has not been reached
(!minPollers), remove one poller. If queue sizes remain below
the threshold after 3 seconds, remove another poller.
1 s t r a t e g y ReduceCost
2 [ s t y l e A p p l i e s && q V i o l a t i o n 2 && ! m i n P o l l e r s ]{
3 t 0 : ( q V i o l a t i o n 2 )−>r e m o v e P o l l e r ( )@[3000 /∗ms∗ / ]{
4 t 0 a : ( q V i o l a t i o n 2 )−>r e m o v e P o l l e r ( )@[3000 /∗ms∗ / ]{
5 t 0 b : ( ! q S h r i n k i n g )−>done ;
6 }
7 t 0 c : ( ! q S h r i n k i n g )−>done ;
8 }
9 }

IncreaseDelay/DecreaseDelay. Increase/decrease sample rate
delay of all devices which exhibit response time above/below
(tViolation/tViolation2) one step.



1 s t r a t e g y I n c r e a s e D e l a y [ s t y l e A p p l i e s && t V i o l a t i o n ]{
2 t 0 : ( t V i o l a t i o n )−>i n c r e a s e S a m p l e R a t e D e l a y (M.

SRD INCREMENT)@[5000 /∗ms∗ / ]{
3 t 1 : ( ! t V i o l a t i o n )−>done ;
4 }
5 }
6 s t r a t e g y Dec rea seDe lay [ s t y l e A p p l i e s && t V i o l a t i o n 2 ]{
7 t 0 : ( t V i o l a t i o n 2 )−>d e c r e a s e S a m p l e R a t e D e l a y (M.

SRD INCREMENT)@[5000 /∗ms∗ / ]{
8 t 1 : ( ! t V i o l a t i o n 2 )−>done ;
9 }

10 }

Although this baseline set of adaptation strategies was
able to successfully replicate the adaptation behavior of
DCAS, we evolved them since, in some cases, this behavior
is not enough to recover system performance in a timely
manner (please refer to Section V-B1 for details). Concretely,
we modified IncreasePerformance to add pollers more aggres-
sively by shortening the observation delay between checks in
queue sizes, as well as increasing the number of pollers that
can be activated to a maximum that duplicates the number
of unresponsive data streams. The results of applying these
modifications are described in Section V-B2.

V. EVALUATION

In this section, we evaluate our modifications to DCAS
in two dimensions. Firstly, we report on the implementation
effort involved in (i) customizing Rainbow to apply it
to DCAS, (ii) modifying DCAS to remove its existing,
hardcoded self-adaptation mechanisms, and (iii) the effort
in improving the new adaptation strategies to make the
adaptations more responsive to problems. Secondly, we
evaluate the performance of the adaptations (i) to verify
that replicating the adaptations in DCAS with Rainbow
provides similar adaptation performance, and (ii) to measure
the adaptation improvement in Rainbow.

A. Implementation Effort

1) Rainbow Customization: We tracked the activities
carried out during the customization of Rainbow. The overall
effort invested in customization including the modeling of
the system’s architecture (making use of Acme), scripting of
the adaptation (developing tactics and strategies in Stitch),
and development and testing of the translation infrastructure,
including probes, gauges, and effectors amounts to a total
of 91 hours (approximately 2 1/3 work weeks).

Task Time %
Architecture modeling 20 21.9
Implementing client probes and gauges 22 24.1
Implementing client effectors 12 13.1
Scripting adaptation (tactics and strategies) 35 38.4
Miscelaneous configurations 2 2.1
Total 91 100

Table II
RAINBOW CUSTOMIZATION EFFORT FOR DCAS

Table II details the effort devoted to customization. It is
worth observing that more than half of the effort (59.1 %)
was devoted to the development of the translation infrastruc-
ture (probes, gauges, effectors) and the architecture model,
whereas the time devoted to scripting adaptation was 38.4%.

2) Evolution of DCAS: The overall time spent in readying
DCAS for Rainbow was 145 hours (approximately 3 2/3
work weeks). As can be observed in Table III, although the
implementation of the bulk of the translation infrastructure
(TCP Server) did not require much effort, about 55% of the
overall time was spent in developing probes and effectors.
This stems from the fact that most of the time needed for
developing probes and effectors was devoted to code refac-
toring and instrumentation required to enable access to the
classes and methods needed to obtain probe information and
effect changes in the system (please refer to Section IV-A).

Task Time %
Implementing TCP server 15 10.3
Indentifying and removing built-in adaptation 40 27.5
Implementing probes 45 31
Implementing effectors 35 24.1
Miscelaneous configurations 10 6.8
Total 145 100

Table III
DCAS EVOLUTION EFFORT

3) Evolution of Rainbow-DCAS: Once we had a first
version of Rainbow-DCAS, which included a baseline set
of adaptation strategies that replicated DCAS adaptation
behavior, we evolved the set of adaptation strategies to
improve the performance of Rainbow-DCAS. Specifically,
in the original DCAS adaptations the system was slow to
recover if devices were persistently slow in reporting data.

Item # SLOC # Classes
Rainbow-DCAS tactics 88 -
Rainbow-DCAS strategies 57 -
DCAS scale-up 93 2
DCAS rescheduling 115 6

Table IV
SIZE/SCATTERING OF DCAS ADAPTATION MECHANISMS

Table IV shows the size of the alternative adaptation
mechanisms implemented in Rainbow-DCAS and DCAS, as
well as the number of classes involved in each of the adapta-
tion mechanisms in the latter. The data shows that, although
there is not a substantial difference between the number of
lines of source code in Rainbow-DCAS and DCAS (145
lines of Stitch vs. 208 lines of C#), the implementation of
adaptation mechanisms in DCAS is scattered across different
classes, hampering the evolution of adaptation mechanisms.
However, in Rainbow-DCAS the specification of adaptation
is centralized, easing the modification of adaptation behav-
ior. Indeed, we found that the evolution of the baseline



set of adaptation strategies demanded time of an order
of magnitude of just minutes, not hours. This contrasts
with the effort required to evolve the original adaptation
mechanisms in DCAS, which typically demands about 2
man-days to tune when the middleware is deployed in a
new location. Moreover, modifying adaptation mechanisms
in Rainbow-DCAS requires just restarting the system after
modifying scripted strategies in Stitch, whereas in DCAS the
system has to be recompiled and redeployed (two processes
that demand additional infrastructure and time).

B. Experimental Evaluation

The aim of our experiments is assessing the validity of
architecture-based self-adaptation mechanisms in the con-
text of an application-agnostic middleware, comparing their
performance and efficiency with those achieved by DCAS
built-in adaptation mechanisms.

For our experimental setup, we deployed both versions
of DCAS across three different machines (Figure 8): dcas-
db acts as the backend database running on Oracle 10.2.0,
dcas-main acts as a processor node, running DCAS, and
(dcas-devs) is used to simulate the response of network
devices from which DCAS retrieves information. In the case
of Rainbow-DCAS (Figure 8, left), Rainbow’s master is
deployed in a separate machine (dcas-master). All machines
run on Windows XP Pro SP3 (DCAS is deployed as a Windows
service), and an Intel core i3 processor, with 1GB of memory.

dcas-main

dcas-db

dcas-devs

dcas-

master

dcas-maindcas-db dcas-devs

Figure 8. Experimental setup: Rainbow-DCAS (left) and DCAS (right)

Our experiments include 100 data streams with a sample
rate of 1 second. The duration is 40 minutes (2400s), and
the pattern followed is: (i) 600s of normal activity to let
the system achieve a steady state; (ii) 600s of disturbance,
during which we induce low responsiveness in data streams
(adding a 2-second delay in the response time of 25% of the
data streams); and (iii) 1200s of normal activity.

To assess the effectiveness and flexibility of the Rainbow
approach in the context of DCAS, we carried out two sets of
experiments: (i) using a baseline set of adaptation strategies
to show that the adaptation behavior of DCAS can be
replicated using Rainbow, and (ii) using an evolved set of
adaptation strategies to improve adaptation behavior.

1) Replicating DCAS Adaptation Behavior: Figure 9
depicts the performance (top) and cost (bottom) shown
by the different versions of DCAS during the execution
of our experiments. Comparing the performance of DCAS
with Rainbow-DCAS baseline, we can observe that after
the disturbance starts, performance drops in both cases and
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Figure 9. Performance (top) and number of active pollers (bottom)

stays in low levels until the disturbance is removed. Both
implementations show a spike in performance when the
disturbance is removed, due to the number of accumulated
requests in the secondary queues of Data Requester Proces-
sors. The removal of the delay in data streams, along with
the high number of available active pollers to process the
requests in the queues at that point (t=1200s - Figure 9,
bottom), causes the sudden increase in performance, which
goes back to expected levels almost immediately when
queue sizes are reduced back to normal levels. Moreover,
the activation of pollers in DCAS presents a slight overshoot
compared to the Rainbow-DCAS baseline. This is explained
by the longer time periods between the consecutive queue
size checks required to activate pollers (as described in
Section II-B2), compared to the higher frequency of probe
updates and shorter adaptation cycle time in Rainbow.

2) Improving Adaptation Behavior: Once we reproduced
the adaptation behavior of DCAS, we evolved the baseline
set of adaptation strategies to improve performance during
the disturbance period. Results show that Rainbow-DCAS
is able to recover faster than DCAS. Concretely, when the
disturbance period starts, the performance of both DCAS
and Rainbow-DCAS degrades initially, going from values
in the expected range (200-250 rps) to values in the range
0-50. However, by t=800s, performance in Rainbow-DCAS



Task DCAS ZNN TalkShoe
Architecture modeling 20 13 6
Implementing probes and gauges 22 49 8
Implementing effectors 12 7 5
Scripting adaptation 35 21 8
Miscelaneous configurations 2 2 8
Total 91 92 34

Table V
RAINBOW CUSTOMIZATION EFFORT

has been restored to normal levels. In contrast, DCAS does
not recover throughout the whole disturbance period, only
going back to normal once the disturbance is removed
by time t=1200s. Moreover, Rainbow-DCAS is faster in
reacting to the disturbance, since we modified the adaptation
strategies to activate pollers more aggressively when low
responsiveness appears in data streams. This comes at the
cost of more active pollers, but it is an acceptable solution
given that the main priority of the system is performance.

VI. CONCLUSIONS

In this paper, we have assessed the validity of architecture-
based self-adaptation in the context of real-world software-
intensive systems which already feature self-adaptation
mechanisms. To achieve our goal, we independently de-
veloped a prototype based on the Rainbow framework for
architecture-based self-adaptation of DCAS, an industrial
middleware for data acquisition and control in power plants.

Our results show that architecture-based self-adaptation
can successfully replicate the adaptation behavior re-
quired from an industrial-class software-based system
such as DCAS. Regarding the overall distribution of the
effort, approximately 60% was used to evolve DCAS for
its integration with Rainbow, whereas the remaining time
was spent in customizing Rainbow.

Table V compares the customization effort of Rainbow
required for the implementation of DCAS, ZNN, and Talk-
Shoe. Results show that the effort required to implement
Rainbow-DCAS is consistent with the numbers reported
in previous experiences with Rainbow, with an average
time spent in each one of the tasks that ranges between one
and two days. However, our DCAS prototype was developed
independently, only with scarce consulting provided by the
original developers of Rainbow and Critical Software, so
development time was partially spent in getting acquainted
with Rainbow and DCAS. Hence, we assume that subse-
quent developments using Rainbow would require less effort.

Once the baseline set of adaptation strategies used to
replicate DCAS adaptation behavior was completed, incre-
mental changes to evolve and improve Rainbow-based
adaptation mechanisms demanded little time (on the order
of minutes, not hours).

According to our observations, we can conclude that, al-
though incorporating architecture-based self-adaptation

in an already adaptive system initially demands an
additional effort, this investment pays off by substantially
reducing effort in further system evolution (in particular
considering the fact that, typically, most of the overall effort
is devoted to system maintenance [3]).

Future work will deal with the evaluation of architecture-
based self-adaptation in other types of legacy software sys-
tems to assess the generality of our findings. In the context
of DCAS, we will tackle more sophisticated adaptation
mechanisms than those currently implemented in DCAS and
Rainbow-DCAS, which target scenarios with workloads that
feature a fixed number of data streams with varying condi-
tions (i.e., device response times). Scenarios with dynamic
workloads that might incorporate new devices at run-time
are not currently considered in DCAS, in which scale-out
is performed as a manual operation. Concretely, we aim
at using architecture-based self-adaptation to overcome the
current limitations of DCAS and report on implementing
automatic scale-out adaptation in Rainbow-DCAS.
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