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Abstract—Modern enterprise IT systems are increasingly be-
coming compositions of many subsystems each of which is
an autonomic system. These individual autonomic systems act
independently to maintain their locally defined SLAs but can take
actions which are inconsistent with and potentially detrimental
to the global system objective. Currently, human administra-
tors intervene to resolve these conflicts but are challenged by
complexity in the prediction of current and future states of
the constituent systems and their managers, multiple conflicting
quality dimensions which may change over time, combinatorially
large configuration space across the set of constituent systems,
and the time critical nature of the decisions to be made to prevent
further degradation. To address these challenges, this paper
proposes an approach that enables the creation of a higher level
autonomic system, referred to as a meta-manager, that does not
subsume the control functions nor does it directly orchestrate the
actions of the sub-autonomic managers. Instead, we encapsulate
and abstract the behavior of each subsystem as a parameterized
adaptation policy which can be adjusted by the meta-manager
to tune the adaptive behavior of the subsystem adaptation. We
can effectively instantiate this idea by considering each of the
subsystems as a player in a stochastic multi-player game against
it’s local environment, and synthesize an adaptation strategy
using off-the-shelf tools for stochastic game analysis.

I. INTRODUCTION

To meet the demands of high availability and optimal
performance in dynamic environments, modern systems deploy
autonomic or self-adaptation mechanisms. These autonomic
mechanisms are responsible for continuously monitoring oper-
ating conditions and effecting changes in the system to ensure
defined quality objectives are achieved. However, increasingly
today’s enterprise systems are compositions of many constituent
systems, each an adaptive system. Each constituent system has
its own defined objectives, reasoning methods, and adaptation
tactics.

Typically, each autonomic manager operates to maintain
locally defined service level agreements (SLAs), but their
independent actions often lead to globally sub-optimal results.
For example, the autonomic manager of an n-tiered enterprise
system could be scaling up the capacity of the middle tier while
the manager for the database tier is scaling down: at least one
of them is likely to be inconsistent with the best global action.
These globally sub-optimal behaviors are the result of the
constituent systems having incomplete information about the
current and future state of their environment, interdependency
between systems propagating detrimental behavior, and changes
in the global definition of optimal behavior due to shifting
organizational priorities. Some of these sub-optimal results
can be potentially catastrophic to the collective system. For

example, the Northeast Blackout of 2003 was the result of a
fault in a specific electrical grid, an autonomic system, which
eventually cascaded to over 100 power plants and affected
10 million people in Ontario, Canada, and 45 million people
in 8 US states with an estimated economic impact of $6.4
billion.[1]

Commonly, human administrators handle situations in which
the collection of autonomic systems is behaving sub-optimally
by reconfiguring the system manually. However, generating a
plan to change the configurations of the constituent autonomic
managers is a complex, challenging, and error-prone task. This
task includes analysis of the current and potential future states
of each constituent system each subject to multiple types of
uncertainty, considering multiple quality dimensions for each
constituent system, selecting an appropriate plan of action from
a combinatorially large set of options, and performing all of
these actions on a timescale appropriate to the context.

Given the complexity of managing such systems, a natural
solution would be to introduce a global autonomic manager,
which would oversee the operation of the subsystems. However,
it is not entirely clear how one should do this. There are two
readily available approaches; a subsumption approach [2] [3]
that replaces the autonomic management of the subsystems
with a higher-level manager that subsumes the control functions
of the sub-autonomic managers, and an orchestration approach
[4] that updates the knowledge models of the sub-autonomic
managers with information relevant to their operation (e.g.,
the availability of a common resource or an action taken by
another sub-autonomic manager). Both of these approaches
have a number of problems.

First, it may not be possible to directly control the systems
under the management of the individual autonomic managers –
for example, if they are provided by third parties and provide
only partial external control. Second, for a subsumption ap-
proach, the complexity of the analysis required to appropriately
select or synthesize an adaptation strategy across the set of
all managed resources, which will grow exponentially in the
number of control actions and subsystem states, will likely
make such a solution infeasible for non-trivial systems. Further,
for an orchestration approach, the number of relevant pieces
of information and the challenge of maintaining consistent
information across a distributed system becomes prohibitive
for any system of practical size. Finally, both fail to exploit the
engineering advantages of separating the concerns of global
management and local adaptation.



In this paper we propose an approach that addresses these
shortcomings by enabling the creation of a higher level
autonomic system, referred to as a meta-manager, that does not
subsume the control functions nor does it directly orchestrate
the actions of the sub-autonomic managers. The key idea of the
approach is to exploit the homogeneity in the type of resource
being managed and assume that the behavior of each autonomic
subsystem is described by a parameterized adaptation policy.
That is, each subsystem provides a set of parameters that
allows the meta-manager to tune subsystem adaptation within
a specified range of behaviors. The meta-manager can then
synthesize a plan that determines the configuration settings of
the subsystems most likely to improve global aggregate utility.

As we will show in this paper, we can effectively instantiate
this idea by considering each of the subsystems as a player in
a stochastic multi-player game against its local environment.
The encapsulation of a subsystem as the set of adaptation
strategies that it will use locally (dependent on its tuning
parameters) allows us to encapsulate those subsystems, reducing
complexity and preserving separation of concerns, while still
allowing a range of global supervisory control. Specifically,
the contribution of this paper is:

1) A game-theoretic approach to meta-management of a
collection of autonomous subsystems that respects local
autonomy, but allows global optimization through the
synthesis of strategies for stochastic games.

The approach presented in this paper is applicable to
collections of autonomic systems which are non-adversarial
in nature and where each subsystem provides an interface to
adjust the configuration parameters of the autonomic manager
and can elaborate what adaptive action they will employ for
a given state of the environment under a set of configuration
parameters. While these applicability conditions apply to a
significant subset of all collections of autonomic systems, the
common threat to practicality is the scalability of the approach.
Because our approach operates on an abstraction of the adaptive
behavior and does not subsume control by performing the
decision analysis for each subsystem, our approach is believed
to scale to collections of autonomic systems with practical
scale. This will be discussed further in Section V.

This paper is organized as follows: Section II gives an
exemplar scenario of collections of autonomic systems in
enterprise environments, Section III discuses the approach to
synthesizing adaptation strategies in detail, Section IV provides
the background on related work in relevant areas, and Section
V outlines the future work to be conducted in this space.

II. EXEMPLAR SCENARIO

This section describes an exemplar scenario for a collection
of autonomic systems, which will be used as context to
elaborate on the automated approach to managing a collection
of autonomic systems, referred to as meta-management, and
the proof-of-concept experiment that illustrates how this can be
implemented using an off-the-shelf probabilistic model checker.

A large scale web system, like amazon.com, is built to
handle a wide range of functional use cases including the

ability to display products, manage the shopping cart process,
and playback video for subscribers. Because each of these
functional use cases has a different set of quality objectives,
the system has been designed as a collection of sub-autonomic
systems. For the purposes of this exemplar, we will assume
that the system has the following four constituent systems: a
shopping cart system, a video playback system, a common
middle services tier, and a back end data services tier. Figure
1 is a simplified diagram of the system.

Figure 1: Exemplar System Diagram

Each of these constituent systems has an autonomic manager
with the ability to make changes to the managed system to
maintain performance against defined quality objectives in
response to various environmental stimuli. However, autonomic
managers do not typically react to the environmental stimuli
directly. Instead, they track the values of key system metrics
that directly relate to the desired quality of service objectives
(see Table I), referred to as QoS properties, which are dependent
upon both the environment and the architectural configuration
of the managed system. Focusing the example on the shopping
cart web system, the environment establishes the user load
for the system, the environmental stimuli, and the autonomic
manager tracks the average web page response time which is
influenced by both the user load on the system and various
architectural properties such as the number of servers and the
fidelity[5] of the content being presented.

When the autonomic manager of the shopping cart web
system determines that the quality of service objective for
average page response time is either not currently being met
or is unlikely to be met within a particular time horizon
then the autonomic manager examines potential alternative
configurations for the architectural properties of the managed
system. For example, adding servers or lowering the fidelity
of the content, or both, are potential alternative architectural
configurations of the managed system that will influence the
average page response time.

However, the autonomic manager cannot simply select any
course of action that will improve performance against a quality
of service objective; it must select the ‘best’ option under some
constraints and preference conditions. For example, adding
servers to the shopping cart system will also increase the run-
time cost of the system, and lowering content fidelity [5] will



TABLE I. Exemplar Sub-System Properties

System Primary Users Tactics Utility
Dimensions

Config
Parameters

Video System Internet Users Add Server,
Change Fidelity

Response Time,
Runtime Cost

Capacity Buffer

Shopping Cart Internet Users Add Server,
Add Bandwidth,
Change Fidelity

Response Time,
Runtime Cost

Capacity Buffer

Middleware Front End
Systems

Add Server Response Time,
Runtime Cost

Capacity Buffer

Data Services Middle Tier
Systems

Add Server,
Change Replication

Response Time,
Runtime Cost

Capacity Buffer

decrease users’ level of interaction with the system, both of
which are undesirable and should be minimized.

Therefore, the organization can establish a preference for
adding servers and increasing costs, up to a specific maximum,
instead of decreasing fidelity of the content. This allows the
autonomic manager the option of adding servers as long as the
maximum cost constraint is not violated, but when the system
reaches that value then the only architectural configuration
option available, in this exemplar, is to reduce content fidelity.

In addition to the constraints and preferences that define
the tradeoff space for each autonomic manager, there are
potentially an additional set of configuration options available
to the autonomic manager that serve as architectural guidelines
which should be adhered to when possible. This is in contrast
to a constraint which is applicable in all states of the managed
system. For example, the autonomic manager for the shopping
cart system might have a ‘capacity buffer’ setting which sets
the guideline for how much spare processing capacity the web
system should have available to handle small fluctuations in
user load. In the event that the shopping cart system is running
near its maximum cost, this is likely to be a state in which the
‘capacity buffer’ setting would no longer be applicable in order
to comply with the maximum cost constraint which applies in
all system states.

Further, there are also defined constants that are a result of
something in the operating context of the autonomic manager
and managed system and cannot be changed. For example, the
cost per server per unit time for the shopping cart system is a
constant defined by the context and potentially required for the
autonomic manager to make appropriate adaptation decisions.

Finally, the adaptive actions of the shopping cart web system
can affect the other constituent systems. An example of this
interdependency is that the systems all draw from a common
resource pool (e.g., allocated monetary budget or network
bandwidth) that if overused by the shopping cart system (e.g.,
adding too many servers or overusing bandwidth) can ultimately
lead to fewer adaptation choices for the other constituent
systems.

While the autonomic managers for the managed systems
in this exemplar are distinct with different implementations,
architectural properties, preferences, constraints, constants, and
guidelines, each of them will function similarly to the shopping
cart example as described. Table I outlines the similarities and
differences between the subsystems in the exemplar.

III. APPROACH

Our approach enables the creation of a higher level auto-
nomic system, referred to as a meta-manager, that does not
subsume the control functions, nor does it directly orchestrate
the actions of the sub-autonomic managers. Instead our
approach exploits the homogeneity in the type of resources
being managed to assume that each sub-autonomic manager
provides a set of configuration parameters that allow the meta-
manager to tune the subsystem adaptation within a specified
range of behaviors.

This is accomplished by understanding and defining the
nature of an individual autonomic manager. A critical function
of autonomic managers is the ability to apply adaptation actions
to the managed system to improve its ability to meet the
defined SLAs. However, when the autonomic manager applies
an adaptation action, the result of that action is probabilistic.
The new state of the managed system that results from the
application of the adaptation action is influenced by the state
of the system prior to the application of the adaptive action, the
adaptation action applied, and the state of the environment. For
example, in the exemplar, the local environment could increase
the user load on the product catalog system which causes
the average page response time to rise above a configured
acceptable level. The resulting state of the system could be
dependent upon several factors including if the managed system
is operating near or well below maximum cost and whether or
not the system characterises the state of the environment as a
‘slashdot effect’ or a transient spike in user load.

To attempt to select the ‘best’ adaptation action available,
the autonomic manager measures each of the possible resulting
states resulting from the application of each adaptation and,
depending on the analysis, applies the one that will improve the
managed systems ability to meet its defined SLAs. However,
if one is able to enumerate the possible states of the managed
system and the environment, it is possible to predetermine what
adaptive action the autonomic manager will apply given any
combination of managed system state and environment state.
This enumeration of the combinations of managed system state,
environment state, and adaption action is referred to as the
adaptation policy.

However, the adaptation policies are influenced by the
configuration of the autonomic manager itself. In the exemplar,
if the configuration options were changed to significantly
decrease the amount of monetary resources available, then



the autonomic manager may no longer be able to select ‘Add 1
Server’ as an adaptation action, leaving only ‘Reduce Content
Fidelity’. This would result in a different adaptation action
being selected for a specific combination of managed system
state and environment state resulting in a different adaptation
policy.

We can formalize this by, defining an autonomic manager
as a tuple A = (C,E,F,D,λ, π, σ, θ) where:

- C is a set of possible states of the managed system,
- E is a set of possible states of the local environment,
- F is the set of configuration options where each f ∈ F is

a function, f(c)→ [0∣1] where c ∈ C,
- D is the set of adaptation actions available to the

autonomic system,
- λ(c, c′, d, e) = Pr(ct+1 = c′∣ct = c, dt = d, et = e) is the

probability that action d ∈ D in system state c ∈ C and
environment state e ∈ E will lead to state c′ at time t + 1,

- π(c)→ [0,1] where c ∈ C is the utility function,
- σ(c, e,F,D) → d returns the adaptive action that maxi-

mizes utility where d ∈D, c ∈ C and is the current state
of the managed system, and e ∈ E is the current state of
the environment and is defined as:

σ(c, e,F,D) = argmax
d∈D

{∑
c′
λ(c′∣c, d, e)π(c′∣c, d, e)H}

(1)
where:

H = min
f∈F

f(c′∣c, d, e) (2)

The term H ensures that the configuration parameters for
the system are satisfied. If any of the terms are unsatisfied,
then the term will return 0, ensuring that strategy cannot
produce a maximum utility score.

- θ(c, e,F, d) → R where c ∈ C and e ∈ E returns a
measure of the utility generated for the managed system.

There are several ways of potentially instantiating θ
including calculating the utility generated by the adaptation
action with the maximum score, defined as:

θ(c, e,F, d) = π(c′∣c, d, e) (3)

and the total amount of utility created by a set of
configuration options, defined as:

θ(c, e,F, d) =∑
c′
λ(c′∣c, d, e)π(c′∣c, d, e)H (4)

where H is the same as previously defined. The choice
of how to score the value of a given set of configuration
parameters is important and can lead to different adaptive
behaviors. For example, calculating θ based on only the
state resulting from the best adaptation tactic can overvalue
a small set of desirable states and possibly lead to poorer
overall utility. However, selection of a total aggregate

utility measure can fail to take advantage of the existence
of a highly desirable state in favor of the possibility of
broader utility gains.

The adaptation policy for the autonomic manager is then
defined as: P (F,D) = {(c, e, σ(c, e,F,D)) ∶ ∀c ∈ C∧∀e ∈ E}.
The set P contains the strategy that the autonomic manager
will use for any state of the environment and any state of the
managed system given the configuration. It is also necessary to
understand the measure of utility generated by an adaptation
policy which is defined as: P ∗(P,F ) = ∑p∈P θ(p1, p2, F, p3)
where px references the xth element (i.e., projection) of the
tuple p.

By using the set P , the adaptation policy, one can then
elaborate the extensive form of a game [6] between the
autonomic manager and its local environment. For example,
for each time step, t, the local environment will have a current
state, et, this will be the ‘move’ of the environment. Further,
at the same time step, the managed system will have a current
state, ct. Using et and ct, one can use P to determine which
adaptation strategy the autonomic manager will use, this is the
‘move’ of the autonomic manager. This process can repeat for
as long as desired and over as many differing branches as need
to define the extensive form of the game.

The fact that each of the adaptation policies is sensitive to
the configuration options of the autonomic manager provides
an opportunity to influence its adaptive behavior without
subsuming its adaptation functions. This is how the meta-
manager operates. The meta-manager evaluates how changes
to the configuration options, referred to as meta-tactics, will
change the adaptation polices of a sub-autonomic system and
determines which configuration change will improve the global
aggregate utility.

We can formalize this by defining the meta-manager as a
tuple M = (A,N,Q,V,W,Σ) where:

- A = A1, ...,An is the set of all autonomic managers in
the collection

- N = {PA1 , ..., PAn} is the set of adaptation policies
for each system in the collection where Nx denotes the
adaptation policy for autonomic system x,

- Q = {FA1 , ..., FAn} is the set of configuration options
for each autonomic manager and Qx will denote the
configuration options for autonomic system x,

- V = {DA1 , ...,DAn} is the set of the adaptation tactics
for each autonomic manager and Vx will denote the set
of adaptation tactics for autonomic system x,

- W is the complete set of meta-adaptation tactics available
to the meta-manager where each w ∈ W is a function
such that w(Fx) → F ′

x where Fx and F ′
x are sets of

configuration options for autonomic system x and Wx ⊆
W is the set of adaptation tactics relevant to autonomic
system x and ∣Wx∣ ≥ 1 as each Wx will have a ‘null’
adaptation tactic defined as w(Fx) = Fx ,

- Σ(A,Q,W,V ) → Z where Z ⊆ W is a set of meta-
adaptation tactics and is defined as:



Σ(A,Q,W,V ) = {S(Wi,Qi, Vi) ∶ i ≤ ∣A∣} (5)

where:

S(W,q, v) = argmax
w∈W

[P ∗(P (w(q), v),w(q))] (6)

There are a number of candidate techniques that could be
used to perform this analysis in practice. Due to the ability to
elaborate an extensive form of a game for each autonomic
subsystem a likely candidate is stochastic game analysis.
Stochastic game analysis examines different probabilistic paths
resulting from alternating actions taken between the individuals
players to determine the value of a specific type of payoff (e.g.,
best base, worst case, expected case). This type of analysis
can potentially handle the complexity of the required analysis
and automate the process of selecting or synthesizing a meta-
strategy most likely to improve global aggregate utility on time
scale appropriate to the context. Further, this approach also
enables us to leverage available off-the-shelf probabilistic model
checking tools to generate the set of meta-tactics to be applied.
The use of stochastic game analysis to synthesize adaptation
strategies is well established, [7], but its specialization to this
context presents a new challenges.

IV. RELATED WORK

There are three key areas of relevant background and related
work: (1) collections of adaptive systems, (2) strategy synthesis
and assurance in autonomic systems, and (3) control theory
for autonomic systems. Each of these areas will be discussed
in more detail.

A. Collections of Autonomic Systems

To meet the complex functional objectives of organiza-
tions, autonomic systems are often composed together into
an ensemble. The most common architectural approach to
composing individual autonomic systems into an ensemble is
an agent based approach as described in [8]. These individual
systems interact with each other to achieve the functional
objectives of the ensemble system. However, as noted in
[9], agent based software systems suffer from a significant
drawback: the behavior of the overall system is unpredictable
because of the strong possibility of emergent behavior. This is
problematic in contexts which require high degrees of assurance
and predictability in the future states of the system.

The meta-management approach described in this paper pro-
vides a global coordination and management mechanism which
partially addresses this drawback of agent based architectures.
The parameterized adaptation policies from each of the sub-
autonomic systems enable the meta-manager to compose a
game representative of the complete collection of autonomic
systems. This enables the use of stochastic game analysis to
determine what the likely behavior of the collection will be.
This provides a measure of assurance about the behavior of
the collection. While this approach is not generally applicable
across all ensembles of autonomic systems or agent based

architectures, there is a significant subset of them for which
this assumption is appropriate.

B. Control Theory for Autonomic Systems

The proposed approach to meta-management includes the
creation of a higher level autonomic system with the goal of
improving and providing assurance about the performance of
a collection of autonomic systems. This approach establishes
a form of hierarchical control for which there is an extensive
body of work from control theory.

Control theory has established a common approach to the
creation of hierarchical control systems which decomposes the
complex behavior into individual units to divide the decision
making responsibility. Each unit of the hierarchy is linked to a
node in the tree and commands, tasks, and goals to be achieved
flow down the tree from superior nodes, whereas sensations
and commands results flow up the tree [2] [3]. This approach
is commonly referred to as a subsumption architecture [2]
[3]. This approach assumes that the management of the lower
level components directly under the control of the higher level
components, which may not always be the case in a practical
system. Further, the complexity of the analysis necessary for
a collection of autonomic systems would grow exponentially
in the number of control actions and sub-autonomic system
states making such a solution infeasible.

However a hierarchical control approach does serve as a
guideline for the creation of a meta-manager for a collection of
autonomic systems. The control theory approach to hierarchical
control is dependent upon the ability to specify, typically in
the form of differential equations, the dynamics of the system
under control. This approach would be generally impractical,
if not impossible, for collections of autonomic systems. Our
approach of using the parameterized adaption policies from
each of the sub-autonomic systems provides a practical method
of specifying the behavior of a collection of autonomic system
and serves a similar function.

C. Strategy Synthesis and Assurance in Autonomic Systems

Probabilistic model checking has provided encouraging
initial results in improving the performance of and providing
assurances about the outcomes of individual autonomic systems,
[7]. Other work has focused on the challenges, frameworks,
benchmarks, and approaches to providing these assurances at
run-time including [10] and [11]. However, most of the existing
work focuses on the use of probabilistic model checking in the
context of a single autonomic systems. There is some limited
work in the probabilistic model checking of collections or
ensembles of autonomic systems including [12], [13], and [14].
This work focuses on verifying individual properties about
the communication or negotiation protocols amongst agent
based systems, not on their control or mitigation of globally
undesirable behaviors. Our approach uses stochastic game
analysis to synthesize an adaptation strategy for a collection
of autonomic systems that tunes the configuration parameters
of the sub-autonomic systems.



V. DISCUSSION & FUTURE WORK

In this paper we introduced a game-theoretic approach to
meta-management of a collection of autonomous subsystems
that respects local autonomy, but allows for improvement of
global aggregate utility. However, there is nothing about this
approach that is specific to any individual off-the-shelf analysis
tool nor strategy synthesis technique. For example, PRISM-
Games has the limitation that it currently only works over
zero sum games which may not be appropriate for all contexts.
Or, to further enhance scalability, one could use a method
with a non-exhaustive state space exploration (e.g., Monte
Carlo Analysis). This partially enables the technique to have a
significant degree of generality across a number of potential
domains and types of collections of autonomic systems.

While any approach that synthesizes strategies is challenged
by the scalability of the solution, individual analysis and strat-
egy synthesis techniques have various methods of improving
their scalability. For example, in stochastic multiplayer game
analysis using PRISM-Games one can consolidate players into
coalitions [15]. Each of these choices available for each strategy
synthesis technique can enhance the scalability of the solution
and provide timeliness appropriate to the context, but with
the possibility of a loss of fidelity or assurance regarding the
potential outcomes. By allowing for a variety of choices in this
tradeoff space, our approach becomes more broadly applicable
across the landscape of use cases for collection of autonomic
systems.

Future work in this area will focus on (1) better understand-
ing the relationship between the various composition techniques
and choices and the potential loss of assurance in the final
result, (2) better understanding of the applicability of various
strategy synthesis techniques and their applicability to various
use cases based upon the level of assurance they provide and the
timeliness of their analysis, and (3) better understanding of how
to represent and exploit various types of global knowledge that
are likely to exist (e.g., correlations or dependencies between
autonomic subsystems).

Another area of future work is to potentially loosen the
goal of the collection of autonomic system from improving
global aggregate utility to improving against a global objective.
Setting the goal of a collection of autonomic systems to improve
global aggregate utility allows for a certain set of assumptions,
specifically that it is in the best interest of the collection for

VI. CONCLUSION

This paper presents an approach to meta-manage a collection
of autonomic subsystems that respects local autonomy, but
allows for improvement of global aggregate utility through the
synthesis of strategies for stochastic games.

each system to individually maximize utility, that may not
hold. For example, in a security context, it might be in the
collections best interest to hold the attention of an attacker by
sacrificing the currently compromised system to allow time for
the other members of the collection to mitigate the threat to
themselves.
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