
Dynamically Discovering Architectures with DiscoTect
Bradley Schmerl

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213 USA
+1 412 268 5889

schmerl@cs.cmu.edu

David Garlan
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213 USA

+1 412 268 5057

garlan@cs.cmu.edu

Hong Yan
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213 USA

yh@cs.cmu.edu

ABSTRACT
One of the challenges for software architects is ensuring that an
implemented system faithfully represents its architecture. We
describe and demonstrate a tool, called DiscoTect, that addresses
this challenge by dynamically monitoring a running system and
deriving the software architecture as that system runs. The
derivation process is based on mappings that relate low level
system-level events to higher-level architectural events. The
resulting architecture is then fed into existing architectural design
tools so that comparisons can be conducted with the design time
architecture and architectural analyses can be re-run to ensure that
they are still valid. In addition to the demonstration, we briefly
describe the mapping language and formal definition of the
language in terms of Colored Petri Nets.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Data Abstraction

General Terms
Measurement, Documentation, Design, Economics, Verification.

Keywords
Architecture discovery, reverse engineering, architecture design
tools and analyses.

1. INTRODUCTION
One of the challenges for software architects is ensuring that an
implemented system faithfully represents its architecture. The
software architecture of a system defines its high-level
organization as a collection of interacting components,
connectors, and constraints on interaction. Without assurance that
the implementation matches the architecture, the value of the
architectural design is significantly reduced, since architectural
analyses may have little relationship to the deployed system.
One way to address this challenge is to provide tools and
techniques that formally relate the software architecture to an
implementation. Researchers have proposed various strategies for
doing this, including embedding architecture concepts in the
source code [1] and conducting static analysis of the code to elicit
architectural views [10] [16]. However, both approaches are
problematic for representing abstract component and connector
(C&C) architectural views because C&C views are fundamentally
about the runtime layout of a system, which may not be
observable in the static artifact.

We have been investigating an approach that circumvents these
difficulties by monitoring the system as it runs and relating these
runtime observations to a C&C view of the system [20]. In
addition to accurately reflecting the runtime architecture of a
system, the approach has the benefits that:
- architectural analyses conducted during design can be

conducted on the derived runtime architecture to determine
whether the system is behaving in the manner intended by its
design;

- observations about the run-time architecture can be used by
dynamic adaptation tools so that a system may reflect on
itself and repair observed problems or mismatches.

In this demonstration, we present a tool, called DiscoTect
(Discovering Architectures), which
1. allows mappings to be specified to relate runtime system

observations to architectural events that construct C&C
architectural views;

2. runs alongside a system, interpreting these mappings to
incrementally, and in real time, construct the current
implementation architecture; and

3. hooks into existing architectural design tools to present,
analyze, and compare the runtime architecture of the system.

2. DISCOTECT OVERVIEW
The DiscoTect architecture is presented in Figure 1. Probes are
inserted in the running system to report system-level events such
as method calls, object creation, value changes, etc. These
runtime events are consumed by the DiscoTect engine, which
interprets the events according to the specified mapping to
produce architectural events. Architectural events include
component and connector creation, and setting architectural
property values. These architectural events are then fed into
existing architectural tools to produce the runtime architecture.
While this paper focuses on DiscoTect (the area in the dotted box
in Figure 1), in the demonstration we will also show how to probe
the system and how to view and analyze the architecture.

2.1 TECHNICAL CHALLENGES
Writing mappings between system level and architectural events
is challenging for the following reasons:
1. Mappings between low-level system observations and

architectural events are not usually one-to-one. Many low-
level events may be completely irrelevant. More importantly,
a given abstract event, such as creating a new architectural
connector, might involve many runtime events, such as

object creation and lookup, library calls to run time
infrastructure, initialization of data structures, etc.
Conversely, a single implementation event might represent a
series of architectural events. For example, executing a
procedure call between two objects might signal the creation
of a new connector, and its attachment to the run time ports
of the respective architectural components. This implies the
need for a technique that can keep track of intermediate
information about mappings to an architectural model

2. Architecturally relevant actions are typically interleaved in
an implementation. For example, at a given moment, a
system might be midway through creating several
components and their connectors. This implies that any
attempt to recognize architectural events must be able to
cope with concurrent intermediate states.

3. There is no single gold standard for indicating what
implementation patterns represent which architectural events.
Different implementations may choose different techniques
for creating the same abstract architectural element. Consider
the number of ways that one might implement pipes, for
example. Indeed, one might even find multiple
implementation approaches in the same system. Moreover,
for the purposes of architectural discovery, there is no single
architectural style that can be used for all systems. For
example, the use of sockets might be used to represent many
different types of connector. This means we need a flexible
way to associate different implementation styles with
architectural styles.

To address these challenges, we have developed a language,
called DiscoSTEP (Discovering Structure Through Event

Processing), that is used in DiscoTect to specify the mappings.
The execution semantics of DiscoSTEP are specified in terms of
Colored Petri Nets.

Running System

Runtime Events

DiscoTect Engine

Probes

Architecture Events

Figure 1. The DiscoTect Architecture

Architecture Tools
Th

is
 p

ap
er

2.2 DISCOSTEP PROGRAMMING
A DiscoSTEP specification has three main ingredients:

1. Events. The types of events produced and consumed by
DiscoSTEP are specified in XML Schema definitions. This
allows DiscoSTEP to be flexible in the types of events that it
receives from a system, and the types of events it passes to
the architecture builder. For example, DiscoSTEP could
output style-specific events such as the creation of
architectural client components in an architectural style.
Events are partitioned into those events that are inputs to
DiscoSTEP and those that are output by DiscoSTEP. The
DiscoSTEP compiler can then conduct some simple type
checking to ensure correct type usage.

2. Rules. Rules specify how to map a series of system events
into architectural events. A rule itself consists of four parts:

a. Input events. Events consumed by the rule.

b. Output events. Events produced by the rule.
c. Trigger. A condition that determines whether

inputs match a pattern that will cause the rule to
fire.

d. Actions. A set of actions that produce the output
events.

rule CreateServer {
 input { init $e; }
 output { string $server_id;
 create_component $create_server; }
 trigger {?
 contains($e/@type, “ServerSocket”)
 ?}
 action = {?
 let $server_id := $e/@instance_id;
 let $create_server :=
 <create_component name=”{$server_id}”
 type=”ServerT” />;
 }
}

<init
 type= ”java.net.ServerSocket”
 instance_id=”0x0f67d9”
/>

<string value=”0x0f67d9”/>
<create_component
 name=”0x0f67d9” type=”ServerT”/>

Figure 2. Example Rule with Example Events Consumed
and Produced.

Because events are formatted in XML, the triggers and
actions are specified using XML Query syntax [19] because
it provides a convenient mechanism for manipulating and
creating XML elements.

3. Compositions. To complete a DiscoSTEP specification,
compositions of rules are defined that allow complex
sequences of rules to be constructed. Compositions are
defined by connecting the outputs from one rule into the
inputs of another. Output events that are not passed to
another rule are emitted by DiscoTect to construct the
architecture.

The center of Figure 2 presents a simple DiscoSTEP rule (called
CreateServer) for creating a Server component when it notices
an init event that constructs an implementation object of type
java.net.ServerSocket. The rule takes one input (an example
XML element corresponding to the input is presented at the top of
the figure) and two output events (presented at the bottom). The
types of input and output events, and the names given to them in
the rule, are defined in the input and output section of the rule.
The trigger is an XML Query FLOWR expression that checks to
see if the value of type attribute of the init event contains the
string “ServerSocket”. If it does, then the actions of the rule are
fired. The actions are specified in XML Query syntax, and create
XML elements for each of the output variables.
Informally, all init type XML events will be queued into the rule,
but only those matching the trigger will cause the actions to be
executed. Rules may specify multiple inputs, in which case each
event is queued with the rule, and when sets of these events match
a trigger, that set is passed to the action to produce output events.
In this way, some order can be given interleaving of
architecturally relevant events.

2.3 DISCOTECT FORMAL MODEL
In [20] we presented a preliminary description of the formal
model of DiscoTect mappings in terms of state machines.
Recently, however, we have redefined the semantics of
DiscoSTEP mappings in Colored Petri Nets (CPN) [8]. A full
treatment of the formal semantics is obviously not possible in the
space of this paper – we refer to the reader to [21] for the full
definition. Here, we merely give a flavor of the formal model.
Each rule is modeled as a CPN transition, with the trigger
corresponding to a CPN guard and the actions corresponding to
CPN arc expressions. Each event type for a rule is modeled as a
CPN place, where the color of the place is dictated by the type of
the event. The determination of whether an event is an input or
output event, and their use in a composition, is used to construct

the node function of the CPN that maps places to transitions, and
transitions to places. Figure 3 gives an example of the CPN that is
formed from the rule in Figure 2. A composition is used to
compose transitions and places into a complete CPN. DiscoTect
events are modeled as tokens. For each input event that is
received by DiscoTect, a token of the color is produced for every
input place able to receive that color.
We believe that using Colored Petri Nets is a more natural way of
representing the mapping than what we described in [20]. We
also use the runtime semantics of CPNs to guide the
implementation of the DiscoTect Engine.

3. IMPLEMENTATION
DiscoTect itself is implemented in Java. Once a DiscoSTEP
program is compiled, the data structures created to represent the
program are serialized and then read in by the DiscoTect Engine
for processing. The DiscoTect engine then waits for messages
from the probes in a system. To deliver these messages, we use
the Java Messaging System (JMS) from Sun.
We use various existing probing technologies to extract
monitoring events. In this demonstration, we will illustrate the use
of AspectJ [7], to handle low-level monitoring of object creation,
method invocation, etc. We provide a library that allows aspects
to produce system events formatted as XML that are placed on a
JMS event bus to be consumed by DiscoTect.
AcmeStudio [14] is an architecture development environment that
is primarily used for constructing architectures at design time. It is
implemented as a plugin to the Eclipse environment, a framework
for developing integrated development environments. DiscoTect
produces architectural events formatted as XML that are
forwarded by the AcmeStudio Remote Control plugin,
communicating over Java RMI, to incrementally construct the
architecture. The analysis capabilities of AcmeStudio can then be
used to check the architecture with respect to its style, or conduct
analyses such as performance or schedulability.

4. RELATED WORK
Our work is mostly related to other approaches for dynamic
analysis of a system. A number of techniques and tools have been
developed to extract information from a running system. These
include instrumenting the source code to produce trace
information and manipulating runtime artifacts to get the
information (e.g., [3] and [18]). There are many technologies
available for monitoring systems, and we build on those.
However, they do not by themselves solve the hard problem
mapping from code to more abstract models. In previous work,
we developed an infrastructure doing certain kinds of abstraction
[6]; however, this approach was limited to observing properties of
a system and reflecting them in an architectural model in a
preconstructed architectural model. In this work we show how to
create that model in the first place.

init

string

create_component

$e
$server_id

$create_server

[contains(…)]

Figure 3. The Colored Petri Net Corresponding to
the Rule in Figure 2.

Dias et al. [4] use an XML-based language to describe runtime
events and use patterns to map these events into high-level
events. Analyzing these events to determine architectural
structure is not addressed. In addition, a simple static mapping
from low-level system events to high-level events has limited
expressiveness. For example, it cannot handle the case where the
event analyzer initially has interest in one set of events but
changes its interest after the interesting events have occurred.
Also it doesn’t provide a way of specifying event correlations or

mapping a series of correlated low-level events to a single high-
level event – a crucial capability needed when discovering the
architecture of a system. Kaiser [6] uses a collection of temporal
state machines to perform pattern matching against runtime
events,. Our approach is similar, but makes architectural style
explicit in the approach.
A number of researchers have investigated the problem of
presenting dynamic information to an observer. For example,
Reiss [13], Walker [16] [17], and Zeller [22] present information
about variables, threads, activations, object interactions, etc. Ernst
[5] shows how to dynamically detect program invariants by
examining values computed during a program execution, and by
looking for patterns and relationships among them. This is
somewhat different from detecting architectural structure.
Madhav [12] describes a system that allows Ada 95 programs to
be monitored dynamically to check conformance to a Rapide [11]
architectural specification. His approach requires the source code
to be annotated so that it can be transformed to produce events to
construct the architecture. In contrast, our approach does not
require access to the source code, and does not rely on
architectural construction operations to be embedded in the code.
A large body of research has investigated specification of the
dynamic behavior of software architectures. Of the many
approaches, some use explicit state machines (e.g., [2,25]). These
approaches, however, do not link architecture to an executing
system.

5. CONCLUSION
In this paper, we have given a brief description of DiscoTect, and
how it is used to derive software architectures from runtime
observations. The demonstration itself will show the toolset
briefly described here, as presented in Appendix A. We have used
DiscoTect to derive the architecture of various systems, including
EJB systems, a mobile simulation system, and are in the progress
of applying it to an automotive infotainment system. Some of case
studies are reported in more detail in [20] [21]. In all cases, we
have discovered discrepancies between the designed architecture
and the implemented architecture.
One of the drawbacks of using DiscoTect is that it obviously
relies on how much of the system is visited during a particular
run. This is similar to the issue of test coverage. For this reason,
we see DiscoTect as a complement to existing static analysis
techniques. We believe that DiscoTect will be of most use in
systems where the run time context is important in ascertaining
the architectural implications of an event (such as in distributed
systems or systems that use callbacks). We are actively exploring
this as future work.

6. ACKNOWLEDGMENTS
The research described in this paper was supported by DARPA,
under Grants N66001-99-2-8918 and F30602-00-2-0616, and by
an Software Engineering Institute (SEI) Internal R&D Grant.

7. REFERENCES
[1] J. Aldrich, C. Chambers, and D. Notkin. ArchJava:
Connecting Software Architecture to Implementation. In Proc.
ICSE 2002.
[2] R. Allen, D. Garlan Formalizing Architectural Connection.
In Proc. ICSE 1994.
[3] R.M. Balzer and N.M Goldman. Mediating Connectors.

Proc. 1999 ICDCD Workshop on Electronic Commerce and Web-
Based Applications, 1999.
[4] M. Dias and D. Richardson. The Role of Event Description
on Architecting Dependable Systems (extended version from
WADS). Lecture Notes in Computer Science - Book on
Architecting Dependable Systems (Spring-Verlag), 2003.
[5] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. IEEE Tans. on Soft. Eng., 27(2), 2001.
[6] D. Garlan, B. Schmerl, and J. Chang. Using Gauges for
Architecture-Based Monitoring and Adaptation. Proc. 1st Working
Conference on Complex and Dynamic Systems Architecture,
2001.
[7] IBM. AspectJ Home Page. http://www.aspectj.org.
[8] K. Jensen. Coloured Petri Nets: A High-level Language for
System Design and Analysis. In Advances in Petri Nets 1990.
LNCS 483, G. Rozenberg (Ed), 1991.
[9] G. Kaiser, J. Parekh, P. Gross, and G. Veletto. Kinesthetics
eXtreme: An External Infrastructure for Monitoring Distributed
Legacy Systems. Proc. 5th International Active Middleware
Workshop, 2003.
[10] R. Kazman, and S.J. Carriere. Playing Detective:
Reconstructing Software Architecture from Available Evidence.
Journal of Automated Software Engineering 6(2), 1999
[11] D.C. Luckham. Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Orderings of Events.
DIMACS Partial Order Methods Workshop, 1996.
[12] N Madhav. Testing Ada 95 Programs for Confomance to
Rapide Archtiectures. Proc. Reliable Software Technologies –
Ada Europe 96, 1996.
[13] S. Reiss. JIVE: Visualizing Java in Action (Demonstration
Description). Proc. ICSE 2003.
[14] B. Schmerl, D. Garlan. AcmeStudio: Supporting Style-
Centered Architecture Development. Proc. ICSE 2004.
[15] M. Vieira, M. Dias, D.J. Richardson. Software Architecture
based on Statechart Semantics. Proc. the 10th International
Workshop on Component Based Software Engineering, 2001.
[16] R.J. Walker, G.C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, J. Isaak. Visualizing Dynamic Software System
Information through High-level Models. In Proc. OOPSLA'98.
[17] R.J. Walker, G.C. Murphy, J. Steinbok, and M.P. Robillard.
Efficient Mapping of Software System Traces to Architectural
Views. In S.A. MacKay and J.H. Johnson (eds) In Proc.
CASCON 2000.
[18] D. Wells and P. Pazandak. Taming Cyber Incognito:
Surveying Dynamic/Reconfigurable Software Landscapes. Proc.
1st Working Conference on Complex and Dynamic Systems
Architectures, 2001.
[19] XML Query. http://www.w3.org/XML/Query.
[20] H. Yan, D. Garlan, B.Schmerl, J. Aldrich, R. Kazman.
DiscoTect: A System for Discovering Architectures from
Running Systems. Proc. ICSE 2004.
[21] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, R. Kazman.
Discovering Architectures from Running Systems using Colored
Petri Nets. Submitted for publication.
[22] A. Zeller. Animating Data Structures in DDD. Proc.
SIGCSE/SIGCUE Program Visualization Workshop, 2000.

APPENDIX A – TOOL AVAILABILITY
DiscoTect will be available for downloading, from
www.cs.cmu.edu/~able/discotect. AcmeStudio is currently
available from www.acmestudio.org.

APPENDIX B – DEMONSTRATION
In the demonstration, we will walk participants through the full
process of instrumenting a system, writing and compiling a
DiscoSTEP program that defines the mapping between system
level events and architectural events, running DiscoTect alongside
a running system to dynamically create the architecture in
AcmeStudio, and then using AcmeStudio to check the
architecture. The following figures outline this demonstration.

Figure 6. We will run an application and show how the
architecture is constructed incrementally. This figure shows
the completed EJB architecture of Duke’s Bank, a standard
EJB example from Sun. The architecture displayed by
AcmeStudio.

Figure 4. Defining Aspects to Instrument an EJB Application.
We provide methods to emit XML events to a JMS bus. The
instrumentor needs to determine which methods or
constructors need to be probed.

Figure 7. AcmeStudio analysis tools can discover problems in
an architecture. In this figure, the EJB architectural style
dictates that a Session bean cannot access a Database directly.
In the example derived architecture, an AccountController
session bean is accessing the database directly. AcmeStudio
flags this error (the error is highlighted at the bottom of the
figure), and AcmeStudio allows the user to highlight the parts
of the architecture caused this error (in the figure, correct
parts are dimmed).

Figure 5. Once the program has been instrumented, we write
a DiscoSTEP program to do the mapping. We will
demonstrate the support we have for this, which includes
compiling the program with feedback from DiscoTect.

http://www.cs.cmu.edu/%7Eable/discotect
http://www.acmestudio.org/

	1. INTRODUCTION
	2. DiscoTect OVERVIEW
	2.1 TECHNICAL CHALLENGES
	2.2 DiscoSTEP PROGRAMMING
	DiscoTect FORMAL MODEL
	3. IMPLEMENTATION
	4. RELATED WORK
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	
	 APPENDIX A – TOOL AVAILABILITY
	APPENDIX B – DEMONSTRATION

