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Abstract—Self-diagnosis is a fundamental capability of self-
adaptive systems. In order to recover from faults, systems need
to know which part is responsible for the incorrect behavior. In
previous work we showed how to apply a design-time diagnosis
technique at run time to identify faults at the architectural level
of a system. Our contributions address three major shortcomings
of our previous work: 1) we present an expressive, hierarchical
language to describe system behavior that can be used to
diagnose when a system is behaving different to expectation; the
hierarchical language facilitates mapping low level system events
to architecture level events; 2) we provide an automatic way to
determine how much data to collect before an accurate diagnosis
can produced; and 3) we develop a technique that allows the
detection of correlated faults between components. Our results
are validated experimentally by injecting several failures in a
system and accurately diagnosing them using our algorithm.

I. INTRODUCTION

Within a self-adaptive system, fault diagnosis and localiza-
tion is one of the most important concerns – corresponding to
the Monitoring and Analysis parts of the “classical” MAPE
loop [15]. Automated fault diagnosis is necessary for recog-
nizing when a system needs to adapt to problems. And fault
localization is important to focus the adaptation mechanism on
the parts of the system that need attention.

In our own research on architecture-based self adaptation
we have proposed the use of a technique termed Spectrum-
based Multiple Fault Localization (SMFL) [4], which provides
a list of candidate fault explanations, ranked by probability
of likelihood in causing a detected problem [6]. The key
idea behind the technique is to identify finite transactions
of run-time behavior, and the sets of architectural elements
that were involved in those behaviors. As we describe in
more detail later, each of these transactions is evaluated using
predicates that judge success or failure of the behavior based
on properties of the transaction. A collection – or window –
of such transactions can then be analyzed to determine which
architectural element, or sets of architectural elements, could
have caused the observed successes and failures.

SMFL was originally developed for development-time de-
bugging, where each generated transaction is the result of
running a test case. In our research we have shown how
to adapt the ideas to the run-time setting using architectural
(component and connector) models. Specifically, in [6] we
proposed a simple specification language, based on Message
Sequence Charts (MSCs), for specifying types of behaviors to
monitor, which we termed transaction types, and the use of
predicates over instances of those types as oracles for judging

success and failure. We were able to show that this approach
could be effective in identifying faults, and demonstrated its
use in the context of typical web-based applications, such as
news servers.

The runtime infrastructure for diagnosis is illustrated in
Figure 1. We probe the Base System to observe low-level
events of interest. For this, we can use a variety of off-the-shelf
techniques such as aspects, standard network-based monitoring
tools, or wrappers around system calls. Probed events are fed
into the Recognizer, which matches these events against the
set of transaction types as described by a Behavior Model,
which specifies what patterns of events should be recognized
and how they are related to elements in the architecture,
to produce transactions. The Oracle takes each transaction
and determines whether or not it was successful, using the
Correctness Criteria. All transactions are passed to the Fault
Localizer, which periodically analyzes a subset of them using
the STACCATO [1], [2] algorithm to determine the health of
each element in the transaction. The Fault Localizer then
reports the health of each element involved in the transaction,
which can be used by a self-adaptive system to plan adapta-
tions to repair unhealthy elements.

The results of this work were encouraging in that we
were able to detect and localize many common faults with
good performance. Further experience has identified a number
of limitations of our initial approach. First is the choice of
language for specifying behaviors. While MSCs, are simple
and relatively intuitive for specifying finite behaviors, they
have several serious limitations including their expressiveness
and potential for reuse. In terms of expressiveness, there are
some kinds of behaviors that are difficult, if not impossible, to
specify. For instance, MSCs are not capable of specifying that
an event does not happen. This is a crucial limitation, because
it makes it difficult to identify faults where non-response is
a possibility, and should be noticed since it may reflect the
failure of a component. Moreover, as we explain later, MSCs
do not provide appropriate support for reuse: for example,
because they do not provide any support for specialization,
two MSCs which differ only in a single message will have to
be fully coded as separated MSCs.

The second limitation is the lack of a principled way
to determine the window size for collecting transactions. As
we elaborate later, selecting an appropriate window is crucial
for a successful application of the technique: if the window
is too small, there is not enough evidence to generate an
accurate diagnosis; but if the window is too large, there may
be a long delay between the occurrence of a problem and
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Fig. 1. Approach overview.

its diagnosis. In our earlier work we used experimentation to
determine an appropriate window. However, this has its own
limitations. Most importantly, it does not allow one to vary the
window dynamically, for example when more transactions are
generated under high load. Also, it requires a large amount of
up-front calibration, raising the cost of using the method.

The third limitation is the inability to detect correlated
faults. While SMFL is specifically designed to identify sit-
uations where multiple faults may occur, it assumes that
those faults are independent (i.e, not correlated). In practice,
however, faults are often correlated. For example, a particular
server may only fail when accessing a particular database.

In this paper we show how to address these three limi-
tations. With respect to behavior specification, we introduce
a language, based on first-order predicate logic, that has
more expressiveness than MSCs, and also allows one to reuse
behavior patterns by refining abstract patterns to concrete ones,
using a form of behavior specialization – providing a form of
inheritance that simplifies the specification of specific behavior
patterns for a new system. With respect to window size, we
introduce the concept of entropy as a run-time measure of
adequacy for window size. The basic idea is to continue to
collect more transactions until the probabilities of candidate
explanations for the fault rise to a significant enough level.
With respect to correlated faults, we show how SMFL can
be adapted, with some loss of performance, to handle those
situations. For all three techniques, we illustrate their use in
terms of a common running example, and provide experimental
evidence of their usefulness.

The remainder of this paper is organized as follows: in
Section II we summarize the SMFL algorithm as applied
to testing, and introduce an example that will be used for
applying and evaluating our approach a run time. We present
our approach in Section III, highlighting the improvements in
our technique over our previous approach. Our evaluation is
described in Section IV, and how our work is positioned with
respect to related work in V. Finally, in Section VI, we discuss
future work.

II. BACKGROUND

In this section we summarize the reasoning approach to
fault localization considered in this paper and introduce the
the system used throughout this paper.

A. Classical SFML

Fault localization based on reasoning over program spectra
is characterized by the use of (a) program spectra, 1 abstracting
from actual observation variables, structure, and component
behavior; (b) a low-cost, heuristic reasoning algorithm, STAC-
CATO [2], [1], to extract the significant set of multiple-fault
candidates; and (c) abstract, intermittent models, that take
into account that a faulty component (or combination of
components) may behave correctly with a specific probability,
to compute the candidate probability of being the true fault.

In this section, we describe how SFML works, defining
how spectra are denoted, and how candidate faulty elements
are generated and ranked.

1) Program Spectra: Assume that a software system is
comprised of a set of M components c j where j ∈ {1, . . . ,M},
and can have multiple faults, the number being denoted C
(fault cardinality). A diagnostic report D=< .. . ,dk, . . . > is an
ordered set of diagnostic (possibly multiple-fault) candidates,
dk, ordered in terms of likelihood to be the true diagnosis.

A program spectrum is a collection of flags indicating
which components have been involved in a particular dynamic
behavior of a system. Our behavioral model is represented
simply by a set of components involved in a computation,
and does not have to indicate at a detailed behavioral level
exactly what that involvement was. Thus, recording program
spectra is light-weight, compared to other run-time methods
for analyzing dynamic behavior (e.g., dynamic slicing [18]).
Although we work with these so-called component-hit spectra,
the approach outlined in this section easily generalizes to
other types of program spectra [14], possibly with additional
overhead in time or space.

Program spectra are collected for N (pass/fail) executions
of the system. Both spectra and program pass/fail information

1Spectra used in classical SMFL refers, in the scope of our work, to the
set of architectural elements that exist in a transaction.



are input to spectrum-based fault localization. The program
spectra are expressed in terms of a N×M activity matrix A.
Table I illustrates a small (A,e) pair for 3 components and 4
observations. An element ai j has the value 1 if component j
was observed to be involved in the execution of run i, and 0
otherwise.

2) Candidate Generation: As with any model-based diag-
nosis (MBD) approach, the basis for fault diagnosis is a model
of the program. Unlike many MBD approaches, however, no
detailed modeling is used, but rather a generic component
model. Each component (c j) is modeled in terms of the logical
proposition

h j⇒ (okinp j ⇒ okout j) (1)

where the booleans h j, okinp j , and okout j model component
health, and the (value) correctness of the component’s input
and output variables, respectively. “Correctness” is broadly
defined including evaluation of quality attributes in addition
to normal functional correctness. The above weak model2
specifies nominal (required) behavior: when the component is
correct (h j = true) and its inputs are correct (okinp j = true),
then the outputs must be correct (okout j = true). As Eq. (1)
only specifies nominal behavior, even when the component is
faulty and/or the input values are incorrect it is still possible
that the component delivers a correct output. Hence, a program
pass does not imply correctness of the components involved.

c1 c2 c3 e
1 1 0 1 obs1
0 1 1 1 obs2
1 0 0 1 obs3
1 0 1 0 obs4

TABLE I. PROGRAM SPECTRA EXAMPLE

By instantiating the above equation for each component
involved in a particular run (row in A) a set of logical
propositions is formed. Since the input variables of each test
can be assumed to be correct, and since the output correctness
of the final component in the invocation chain is given by e
(pass implies correct, fail implies incorrect), we can logically
infer component health information from each row in (A,e).
To illustrate how candidate generation works, for the program
spectra in Table I we obtain the following health propositions
for h j:

¬h1∨¬h2 (c1 and/or c2 faulty)
¬h2∨¬h3 (c2 and/or c3 faulty)
¬h1 (c1 faulty)

These health propositions have a direct correspondence with
the original matrix structure: there is one line for each failing
run and the boolean elements in each line correspond to the
components that participated in the observation. Note that only
failing runs lead to corresponding health propositions, since

2Within the model-based diagnosis community, two broad categories of
model types have been specified: (1) weak-fault models, which describe a
system only in terms of its normal, non-faulty behavior, and (2) strong-fault
models, which also include a definition of some aspects of abnormal behavior.

(because of the conservative, weak component model) from a
passing run no additional health information can be inferred.

As in most MBD approaches, the health propositions are
subsequently combined to yield a diagnosis by computing
the so-called minimal hitting sets (MHS, minimal set cover),
i.e., the minimal health propositions that cover the above
propositions. In our example, candidate generation yields two
double-fault candidates d1 = {1,2}, and d2 = {1,3}. The step
of transforming health propositions into diagnosis is generally
responsible for the prohibitive cost of reasoning approaches.
However, we use an ultra-low-cost heuristic MHS algorithm
called STACCATO [2], [1] to extract only the significant set of
multiple-fault candidates dk, avoiding needless generation of
a possibly exponential number of diagnostic candidates. This
allows a spectrum-based reasoning approach to scale to real-
world programs [4].

3) Candidate Ranking: The previous phase returns diagno-
sis candidates dk that are logically consistent with the observa-
tions. However, despite the reduction of the candidate space,
the number of remaining candidates dk is typically large, not all
of them equally probable. Hence, the computation of diagnosis
candidate probabilities Pr(dk) to establish a ranking is critical
to the diagnostic performance of reasoning approaches. The
probability that a diagnosis candidate is the actual diagnosis
is computed using Bayes’ rule, that updates the probability
of a particular candidate dk given new observational evidence
(from a new observed spectrum).

The Bayesian probability update, in fact, can be seen as
the foundation for the derivation of diagnostic candidates in
any reasoning approach: i.e., (1) deducing whether a candidate
diagnosis dk is consistent with the observations, and (2)
computing the posterior probability Pr(dk) of that candidate
being the actual diagnosis. Rather than computing Pr(dk) for
all possible candidates, just to find that most of them have
Pr(dk) = 0, candidate generation algorithms are used as shown
before, but the Bayesian framework remains the formal basis.

For each diagnosis candidate dk the probability that it
describes the actual system fault state depends on the extent to
which dk explains all observations. To compute the posterior
probability that dk is the true diagnosis given observation
obsi (obsi refers to the coverage and error information for
computation i) Bayes’ rule is used:

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
·Pr(dk|obsi−1) (2)

The denominator Pr(obsi) is a normalizing term that is iden-
tical for all dk and thus need not be computed directly.
Pr(dk|obsi−1) is the prior probability of dk. In the absence
of any observation, Pr(dk|obsi−1) defaults to Pr(dk) = p|dk| ·
(1− p)M−|dk|, where p denotes the a priori probability that
component c j is at fault, which in practice we set to p j = p.
Pr(obsi|dk) is defined as

Pr(obsi|dk) =

{ 0 if obsi∧dk are inconsistent;
1 if obsi is unique to dk;
ε otherwise.

(3)

As mentioned earlier, only candidates derived from the can-
didate generation algorithm are updated, meaning that the 0-
clause need not be considered in practice.



In model-based reasoning, many policies exist for defining
ε [9]. Amongst the best ε policies is one that uses an
intermittent component failure model, extending h j’s perma-
nent, binary definition to h j ∈ [0,1], where h j expresses the
probability that faulty component j produces correct output.
(h j = 0 means persistently failing, and h j = 1 means healthy,
i.e., never inducing failures).

Given the intermittency model, for an observation obsi =
(Ai∗,ei), the ε policy in Eq. (3) becomes

ε =


∏

j∈dk∧ai j=1
h j if ei = 0

1− ∏
j∈dk∧ai j=1

h j if ei = 1
(4)

Eq. (4) follows from the fact that the probability that a run
passes is the product of the probability that each involved
faulty component exhibits correct behavior. (Here we adopt
an or-model; we assume components fail independently, a
standard assumption in fault diagnosis for tractability reasons
which we will extend later in section III-C.)

Before computing Pr(dk) the h j must be estimated from
(A,e). There are several approaches that approximate h j by
computing the probability that the combination of components
involved in a particular dk produce a failure, instead of com-
puting the individual component intermittency rate values [3],
[10]. Although such approaches already give significant im-
provement over the classical model-based reasoning (see [4]
for results), more accurate results can be achieved if the indi-
vidual h j can be determined by an exact estimator. To compute
such an estimator, h j is determined per component based on
their effect on the ε policy (Eq. (4)) to compute Pr(dk). The
key idea is to compute the h js for the candidate’s dk faulty
components that maximizes the probability Pr(obs|dk) of a set
of observations obs occurring, conditioned on that candidate
dk (maximum likelihood estimation for naı̈ve Bayes classifier
dk). Hence, h j is solved by maximizing Pr(obs|dk) under the
above epsilon policy, according to argmax

{h j | j∈dk}
Pr(obs|dk).

To illustrate how candidates are ranked, consider the com-
putation of Pr(d1). As the four observations are independent,
from Eq. (3) and Eq. (4) it follows

Pr(obs|d1) = (1−h1 ·h2) · (1−h2) · (1−h1) ·h1 (5)

Assuming candidate d1 is the actual diagnosis, the correspond-
ing h j are determined by maximum likelihood estimation,
i.e., maximizing Eq. (5). For d1 it follows that h1 = 0.47
and h2 = 0.19 yielding Pr(obs|d1) = 0.185 (note, that c2 has
much lower health than c1 as c2 is not exonerated in the
last matrix row, in contrast to c1). Applying the same pro-
cedure for d2 yields Pr(obs|d2) = 0.036 (with corresponding
h1 = 0.41, h3 = 0.50). Assuming both candidates have equal
prior probability p2 (both are double-fault candidates) and
applying Eq. (2) it follows Pr(d1|obs) = 0.185 · p2/Pr(obs) and
Pr(d2|obs) = 0.036 · p2/Pr(obs). After normalization it follows
that Pr(d1|obs) = 0.84 and Pr(d2|obs) = 0.16. Consequently,
the ranked diagnosis is given by D =< {1,2},{1,3}>.

B. The ZNN example

To illustrate and evaluate our approach, we use a custom-
built web system, znn. Znn is a typical web system us-
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Fig. 2. Architecture of the znn web system used for evaluation.

ing a standard LAMP stack (Linux, Apache, MySQL, PHP)
mimicking a news site with multimedia new articles. Znn’s
architecture is depicted in Figure 2.

In this system, multiple clients access one of two dispatch-
ers (also termed “load balancers”), which forward requests to
a random web server in a farm. If the request is not for an
image, the web server will access the database to fetch the
required information and generate the news page with HTML
text and references to images. Web clients will then access the
system to fetch the images. Images are served from a separate
file system storage component, shared among all web servers.

To provide observations about the system to the diagnosis
infrastructure, we attach probes to the dispatchers and web
servers. These probes report low-level system calls detected
using Linux’s ptrace mechanism such as OPEN(2) or BIND(2).
The probes relay events to the Recognizer in figure 1.

III. APPROACH

This section details our approach to perform automatic
diagnosis in a running system.

A. Describing architecture-level behavior

As mentioned in Section II-B, the probes placed in znn
provide low level system events. However, system architects
reason about system behavior at the component and connector
level. For znn, they would reason about architectural concepts
such as dynamic web requests (to serve news pages) and
static web requests (to serve images). In our previous work,
we assumed we could identify those requests directly from
observable events using MSCs. As we will see in more detail
this section, MSCs have two important limitations: they do
not allow reasoning about events that do not happen and
they do not allow reuse of specifications among similar, but
different, systems. But because they do provide an intuitive
way of specifying behavior as long as the behavior conforms
to certain constraints, we still support them as surface syntax
for the more expressive language that is described below.

Identifying architecture-level transactions directly using
low-level events is possible but it is not intuitive, non-portable
and hard to maintain: a small change in the probing system
(for example, porting znn to a different platform) could require
that all system behaviors be rewritten to use the new low-level
events of the new platform.
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To address this problem, we decompose the system be-
havior into a hierarchy in which detection of lower-level
transactions feeds events for the detection of higher-level
transactions. Figure 3 contains a partial hierarchy of events
and transactions. The higher-level transactions (dynamic web
request and static web requests) can be computed from the
proxied requests – HTTP requests sent to the load balancer
and forwarded to a web server – and database queries.

1 // Defining of HTTP result codes.
2 typedef int32 http_result {
3 invariant self >= 0 and self <= 599;
4 }
5
6 // Proxied request: send from client to dispatcher and
7 // then to a web server (and then back to the client).
8 computation type pxr : tc::htc{
9 result : http_result;

10 }
11
12 // Database query.
13 computation type dbq : tc::htc{}
14
15 // Static and dynamic web requests.
16 computation type dwr : tc::htc{
17 result : http_result;
18 dwr(r : http_result) {
19 result = r;
20 }
21 }
22 computation type swr : tc::htc{
23 result : http_result;
24 swr(r : http_result) {
25 result = r;
26 }
27 }

Listing 1. Simplified definition of dynamic and dynamic web requests.

In listing 1 four simplified types of transactions (declared
as COMPUTATION TYPE) are defined: PXR, a proxied request,
DBQ, a database query issued from a web server, DWR, a
dynamic web requests and SWR, a static web request. All
these four computations inherit properties from the generic
HTC (host/thread computation) in “package” TC (threaded
computation). The threaded computation package defines the
concept of a thread running in a host.

The language contains primitives akin to well-known
object-oriented languages. This has the advantage of easing

the learning curve for software engineers and bringing the
power of established development techniques. For example,
computation types are akin to classes and families to names-
paces (or packages). Computation types represent events in
the system, either detected by probes or fired by recognition
of transactions.

Recognizing transactions from computations (events re-
ported by probes or transactions already identified) is done
through the definition of recognizers as shown, in simpli-
fied form, in Listing 2. The detection of these high-level
transactions demonstrates the need for more expressiveness
than what MSCs could give us in [6]. Static and dynamic
web requests are, essentially, equal, except that dynamic web
requests involve a database query whereas static web requests
do not. In our recognition language, we can now express the
difference in the two transactions.

1 // The dwr recognizer
2 recognizer dwr_rgn(r : pxr) {
3 invariant exists q : dbq | r->during_same_thread(q);
4 emit new dwr(r.result);
5 }
6
7 // The swr recognizer
8 recognizer swr_rgn(r : pxr) {
9 invariant not (exists q : dbq | r->during_same_thread(q));

10 emit new swr(r.result);
11 }

Listing 2. Identifying dynamic web requests and static web requests.

The two recognizers in Listing 2 identify the static and
dynamic web requests from proxied requests depending on
whether a database query is made during the process of the
request or not. The INVARIANT clause contains the first-order
logic condition under which the transaction is recognized.
The EMIT clause defines which transaction is identified and
initializes it with the data from the lower-level computations.

Also, in Listing 2 we can see the other limitation of MSCs.
In plain English, a proxied request is a dynamic web request
when there is at least one database query performed during
the request by the same thread. The DURING SAME THREAD
method of the PXR computation type is actually defined in
its super type, the TC::HTC computation type. This method is
defined as in Listing 3.

1 family tc {
2 computation type htc {
3 // ...
4 bool during_same_thread(c : htc) {
5 return same_thread(c)
6 and start(c) >= start(this)
7 and end(c) <= end(this);
8 }
9 // ...

10 }
11 }

Listing 3. Definition of the DURING SAME THREAD method.

The sort of reuse of connection logic provided in Listing 3
is not possible to achieve using MSCs. The separation of
behavior into different families and structures also allows much
easier understanding and reuse. The transactions we recognize
in listing 2 can be used for any system that proxies requests
to web servers regardless of: (1) how PXR and DBQ are
detected and (2) whether DWR and SWR are the most high-
level transactions specified or whether other transactions are
defined on top of those.
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As stated in the introduction of this section, use of MSCs
is still possible as they can be converted into recognizers with
the following assumptions:

• Each message in the MSC corresponds to two lower-
level events: a message sent from the origin and a
message arrive at the destination;

• All events detected in an architectural element are
detected in the same thread;

• All events inherit from the TC::HTC computation type.

As an example of the application of this transformation,
consider the message sequence diagram in Figure 4. In this
small example, the client sends a request to the dispatcher
which forwards it to the web server. There are three observable
events: the request is received at the dispatcher (D RECV),
the request is sent from the dispatcher (D SENT) and the
request is received at the web server (W RECV). D SENT.ID
= W RECV.ID is the condition used to link the two events (in
this case we use a unique ID sent with every request).

Listing 4 contains the transformation of the MSC into a
recognizer with the assumptions stated earlier. With transfor-
mation rules like these we can, under the previously stated
assumptions, automatically convert MSCs into recognizers.
This allows software designers to express the behavior of
the system using a more intuitive notation as long as the
description fits into the limitations of the MSCs.

1 recognizer my_rgn(c1 : d_recv, c2 : d_sent, c3 : w_recv) {
2 invariant
3 // Linkage between d_recv and d_sent.
4 // Note that this is an instantiation of template
5 // code which is always the same for two
6 // events in the same thread.
7 c1->same_thread(c2)
8 and start(c2) >= end(c1)
9 and not (exists c2b : d_sent | c1->same_thread(c2b)

10 and start(c2b) >= end(c1)
11 and start(c2b) < start(c2))
12 // Linkage between d_sent and w_recv.
13 // Note that this is an instantiation of a template
14 // that makes use of the MSC condition.
15 and start(c3) >= end(c2)
16 and c3.id == c2.id
17 and not (exists c3b : w_recv | start(c3b) >= end(c2)
18 and c3b.id == c2.id
19 and start(c3b) < start(c3));
20 emit new proxied_http_request(r.result);
21 }

Listing 4. Result of transformation of the MSC.

B. Defining a window size

As previously presented, SFML requires program spectra
– the (A,e) of section II-A – which, with our approach, is
collected at run time. In our previous work we used a fixed
time window to collect transactions whose size was determined
experimentally. Making the time window fixed in size has
several drawbacks: it requires a significant amount of up-front
calibration and it does not allow for dynamic adaptation to
system changes. If the time window is set too large then
problems may be underestimated due to the high volume out-
of-date transactions that may skew the diagnosis towards past
behavior [6]. If the time window is set too small then diagnosis
results may be inconclusive.

There are a number of criteria that might be used to
determine this window. Based on the previous discussion and
our work in [6], we decided on the following two elementary
requirements:

• It has to be large enough to produce a good diagnosis:
if not enough evidence is collected, diagnosis may be
inconclusive;

• It must be as small as possible to discard out-of-date
past transactions and obtain an accurate diagnosis as
fast as possible: if a component fails at a certain point
in time, all previous successful transactions will only
reduce the confidence on the diagnosis;

Since our main goal is diagnosis accuracy and accuracy
is highly related to the information collected in the program
spectra, we need a metric that computes whether a spectra has
enough information for diagnosis. As explained before, SFML
explores a Bayesian update framework (namely, Barinel [2],
[4]) that determines the set of valid diagnosis candidates and
assigns probabilities to them. Given that the diagnostic ranking
is a list of candidates, in order of likelihood of being faulty,
one can compute the entropy of the ranking as follows

H(D) =− ∑
dk∈D

Pr(dk)× log(Pr(dk))

The entropy (borrowed from Information Theory [24]) char-
acterizes the (im)purity of an arbitrary collection of, in our
case, diagnosis candidates. The idea is to adapt the time
window considered given the entropy, knowing that more valid
informations decrease the entropy of the ranking.

Therefore, depending on the rate at which transactions are
generated, this window will change as the system runs. Our
implementation defines two parameters: a time rate parameter
∆ and a maximum entropy Hm. We perform diagnosis every ∆

and our window W initially is set to ∆.

At regular intervals of ∆ we apply SFML to all transactions
that completed up to W . SFML produces a set of candidates dk
ranked probabilistically (Pr(dk)) and we compute the entropy
of the distribution, H(D).

If H(D)≤Hm then we consider the diagnosis to be accurate
and we output the result of the diagnosis. If H(D)> Hm then
we need to collect more data and increase W by ∆. This means
that the next time we apply the SFML algorithm, we will use



all the data we have plus all transactions that finished in the
last ∆.

We reset the time window to ∆ as soon as we produce a
diagnosis result to start collecting data for the next diagnosis.
Because W increases with ∆ and we compute the diagnosis
every ∆, past information is prevented from interfering in
future diagnosis.

C. Adapting SMFL to detect correlated faults

In general, when software errors are detected, several
architectural elements may have been involved in the execution
of the computation. In some of those cases the fault may be
attributed to one of those components. But in other cases,
the fault is a correlated fault: it results from the interaction
of multiple components and connectors and is unrelated to
individual failures. For example, a difference in the output
guarantees of a component and input preconditions of another
may yield a failure with both components being perfectly
healthy on their own. Another example is when the connection
between two components is faulty and may introduce errors
in the communication.

SMFL assumes each component c j has a health indicator,
h j ∈ [0,1], which represents the probability of the component
generating a correct output given a correct input. When two
components ci and c j are invoked, the probability of success
is given by hih j: a model that assumes that failures are
independent and, therefore, the failure of one component is
not related to the failure of other components.

A simple example illustrates this: if ci and c j always fail
when used together and if 50% of the time each one of them
is used, it is used with the other one, the standard SMFL
would report hi < 1 with 50% probability and h j < 1 with 50%
probability. This result means it is equally likely that either
ci or c j are faulty. However, we would like the algorithm to
report that, with 100% probability, failures occur when both
components are used.

In order to extend SMFL to support correlated faults, we
add virtual components representing the interactions among the
various components. If ci and c j represent two components
with health hi and h j then ci, j represents the interaction
between ci and c j and hi, j its health.

Each spectrum is extended with all interactions. The ex-
ample from Table I would become Table II under this new
model.

c1 c2 c3 c1,2 c1,3 c2,3 e
1 1 0 1 0 0 1 obs1
0 1 1 0 0 1 1 obs2
1 0 0 0 0 0 1 obs3
1 0 1 0 1 0 0 obs4

TABLE II. EXTENDED PROGRAM SPECTRA EXAMPLE

This process increases the number of “components” that
SMFL has to handle. If the system has N components, in
order to detect correlated faults of 2 components, O(N2) virtual
components have to be added. In order to detect correlated
faults of 3 components, O(N3) virtual components have to
added. The total number of components SMFL has to handle is

O(NF) where F is the maximum number of components SFML
has to handle if we want to handle all possible combinations
of correlated faults.

Adding virtual components increases the computational
cost but does not affect the correctness of the diagnosis result.
If ci is faulty then adding ci, j is inconsequential. Similarly, if
the problem is not in ci or c j but actually in ci, j, this will be
correctly identified by SMFL. These results are guaranteed by
SMFL’s optimality theorem described in [4].

Pinpointing the diagnosis result to ci, j does not mean
that the original problem source might not be in ci or c j
individually. After all, ci and c j are the only “real” components
so the bug is likely to be in either. But the standard SMFL
approach will generally give results with less confidence if
ci, j is not considered as previously shown. With the virtual
components inserted, it will correctly pinpoint hi, j as the single
source of the problem.

IV. EVALUATION

In this section, we evaluate the diagnostic capabilities and
efficiency of the proposed approach using the znn example.

A. Evaluation scenario

To illustrate how our approach can detect both functional
and quality of service problems in a system, we injected five
different fault scenarios into znn that manifest themselves in
different ways:

• Functional failure: an image was not found in the
storage.

• Functional failure: a web server has a bug and is not
able to find the image to serve.

• Performance failure: a web server’s response time
degrades.

• Security failure: a client attempts a denial-of-service
attack.

• Performance failure (correlated): a web server is slow
to respond but only when requests come from a
specific dispatcher.

Detecting these failures requires some correctness criteria
to be defined. We define the following criteria:

• HTML response codes in the range 4xx and 5xx
represent failures.

• Response times above 2 seconds represent failures.

• Client request rates over 1 request / second for at least
5 seconds represents a failure.

Note that repair is not in the scope of our work: we
are solely concerned with pinpointing the failed component.
Strategies such as checking the image directory for consis-
tency, rebooting a slow server or blocking a malicious client
would be handled by later stages in the MAPE loop, which
would use input from the diagnosis.

The experiment demonstrates that our diagnosis system is
able to: (1) identify each of the faults correctly, and (2) identify
multiple, correlated, faults when applicable.



B. Designing recognizers and oracles

We designed the recognizer as described in Section III-A
by intercepting the following system calls: socket(2),
bind(2), accept(2), close(2) read(2), write(2)
and connect(2). We had to track several other system calls
such as clone(2) to keep track of the process IDs and
thread IDs and we had to track other system calls that can be
mapped to the ones above such as accept4(2), readv(2)
and writev(2). Using these, we built recognizers for the
following higher-level computations shown in Figure 3.

We detect correctness as we did in our previous work by
defining predicates over transactions which are evaluated by an
Oracle as presented in figure 1. In our language, we can define
several oracles: each transaction is evaluated in all oracles that
are applicable and is considered a success if and only if all
oracles evaluate it as a success. As an example, the following
listing contains the oracle that states that request/response time
must be below 2 seconds:

1 oracle type req_res_time {
2 m_max_latency : period;
3 req_res_time(max_latency : period) {
4 m_max_latency = max_latency;
5 }
6 bool evaluate(prr : px_req_res) {
7 return end(px_req_res) - start(px_req_res) <

m_max_latency;
8 }
9 }

10
11 oracle limit_2s = new req_res_time(2s);

C. Results

We made four initial scenarios corresponding to the four
fault types described above: an image is not found in storage,
an image is not found by one web server (web server 1), a
web server becomes slow (web server 2), and a client (client
3) acts maliciously and attempts a denial of service (DoS). The
web server slowness is achieved by adding a random delay
with an average of 2s (the exact limit of the allowed response
time) forcing around half of the requests to fail, while allowing
around half of the requests to succeed.

In all scenarios, clients 1, 3 and 4 will make requests
for a web page, then request all images in it, and then will
sleep for a random amount of time taken, respectively, from
the distributions N(2,0.5), N(1.75,0.5) and N(1.75,0.5). This
usage reflects a somewhat faster pace than a human would
perform (2 seconds between pages) but speeds up convergence
of the entropy. If we halve the number of requests, entropy
will converge at half the speed but all other factors remain
unchanged. In all scenarios except the DoS, client 2 will
wait according to N(2.5,0.02). In the DoS, client 2 will wait
according to N(0.2,0.02).

We aimed our diagnosis maximum entropy to 0.01 (yield-
ing certainty over 99%). Tables III, IV, V and VI reflect the
results of the first four scenarios. They contain the evolution of
diagnosis over time with the total number of architecture level
computations (dynamic web requests and static web requests)
detected, the computed entropy and the main fault candidates.
We consider t = 0 when the first failure occurs. It can be seen
by the experimental data that the algorithm is able to correctly
identify the cause of the failure in all scenarios.

Time (s) Req# Entropy Main candidates
1 8 0.823 d1=19.0%, fs=79.7%
2 15 0.704 d1=19.0%, fs=81.0%
3 20 0.036 fs=99.7%
4 29 0.067 fs=99.4%
5 31 0.054 fs=99.5%
6 36 0.064 fs=99.4%
7 44 0.006 fs=100%

TABLE III. RESULTS OF SCENARIO 1: FAULTY FILE SYSTEM.

Time (s) Req# Entropy Main candidates
1 14 1.211 web1=63.9%, d1=29.6%
2 18 1.226 web1=68.5%, d1=18.3%, fs=13.1%
3 20 1.078 web1=74.9%, d1=10.6%, fs=14.3%
4 29 0.647 web1=87.5%, d1=3.3%, fs=9.1%

(rows omitted for brevity.)
18 110 0.058 web1=99.4%, d1=0.4%, fs=0.2%
19 119 0.019 web1=99.8%
20 124 0.008 web1=99.9%

TABLE IV. RESULTS OF SCENARIO 2: FAULTY WEB SERVER 1.

Tables VII and VIII contain the results for the fifth scenario
with and without correlation fault detection, respectively. In
the first case we can see that, because only the web server or
the dispatcher (or both but independently) can be responsible,
the system is not able to attain very low entropy values. It
blames with higher probability the web server because the
load balancer participates in more successful computations. If
we enable correlated fault detection then we can accurately
determine that the fault happens when both the dispatcher and
web server are used together.

The evaluation of the scenario results allow us to draw
three main conclusions:

• Is possible to recognize high-level architectural trans-
actions from lower-level events using our recognition
language;

• Entropy computation provides a good way to detect
when enough information has been collected for diag-
nosis;

• Correlated faults can be detected albeit at expense of
some diagnosis time penalty.

The existence of diagnosis time penalty is theoretically
predictable: because component combinations increase signif-
icantly, the number of candidates considered for fault local-
ization increases and, consequently, more data is required.

Time (s) Req# Entropy Main candidates
1 5 1.525 web2=63.5%, d1=12.2%, c4=12.2%, fs=12.2%
2 10 1.837 web2=42.3%, c4=24.1%, d1=24.1%, fs=1.0%
3 12 1.912 web2=35.9%, c4=25.9%, d1=25.9%, fs=12.3%
4 16 1.799 web2=43.3%, c4=31.3%, d1=14.8%, fs=10.6%
5 18 1.886 web2=34.5%, c4=34.5%, d1=18.5%, fs=12.5%
6 18 1.885 web2=34.5%, c4=34.5%, d1=18.5%, fs=12.6%
7 25 0.831 web2=76.6%, d1=22.9%

(rows omitted for brevity.)
21 63 0.671 web2=84.1%, d1=15.5%
22 70 0.0285 web2=99.8%
23 71 0.0266 web2=0.99.8%
24 75 0.0257 web2=99.8%
25 79 0.006 web2=100%

TABLE V. RESULTS OF SCENARIO 3: WEB SERVER 2 IS SLOW.

Time (s) Req# Entropy Main candidates
1 25 0.000 c2=100%

TABLE VI. RESULTS OF SCENARIO 4: CLIENT 2 TRIES A DOS.



Time (s) Req# Entropy Main candidates
1 7 1.889 web1=40.7%; fs=23.1%; c3=23.1%; d1=13.1%
2 10 1.750 web1=52.4%; fs=16.9%; d1=16.9%; c3=13.9%
3 15 1.253 web1=65.7%; d1=22.6%; fs=11.5%
4 19 1.103 web1=73.6%; d1=14.5%; fs=11.8%
5 21 1.059 web1=75.1%; d1=14.8%; fs=9.9%
6 24 0.874 web1=81.8%; fs=9.1%; d1=9.1%
7 30 0.847 web1=82.6%; d1=9.2%; fs=8.1%
8 34 0.711 web1=86.5%; fs=6.7%; d1=6.7%
9 38 0.808 web1=83.7%; d1=9.3%; fs=6.9%
10 38 0.808 web1=83.7%; d1=9.3%; fs=6.9%
11 41 0.925 web1=80.1%; d1=10.9%; fs=8.9%
12 41 0.925 web1=80.1%; d1=10.9%; fs=8.9%
13 52 0.120 web1=98.4%; d1=1.6%
14 52 0.120 web1=98.4%; d1=1.6%

(rows omitted for brevity.)
28 115 0.132 web1=98.2%; d1=1.8%
29 120 0.126 web1=98.3%; d1=1.7%
30 123 0.145 web1=97.9%; d1=2.1%
31 127 0.130 web1=98.2%; d1=1.8%

(rows omitted for brevity.)
54 212 0.168 web1=97.5%; d1=2.5%
55 221 0.133 web1=98.2%; d1=1.8%
56 222 0.129 web1=98.2%; d1=1.8%

TABLE VII. RESULTS OF SCENARIO 5 WITHOUT CORRELATION
DETECTION: WEB SERVER 1 IS SLOW WHEN REQUESTS COME FROM

DISPATCHER 1.

Time (s) Req# Entropy Main candidates
1 3 3.168 db+c4=12.7%; db+d1=12.7%; db+web1=12.7%;

db=12.7%; c4+d1=12.7%; c4+web1=12.7%; c4=12.7%
2 8 2.894 db+c4=19.3%; c4+d1=19.3%; c4+web1=19.3%;

c4=19.3%; db+d1=6.5%; db+web1=3.7%; db=3.7%
3 11 3.127 db+c4=20.0%; c4+web1=20.0%; c4+d1=11.4%;

c4=11.4%; db+d1=8.2%; db+web1=6.4%; db=6.4%
4 15 3.089 db+c4=20.6%; c4+web1=20.6%; c4+d1=11.7%;

c4=11.7%; db+d1=8.5%; db+web1=6.6%; db=5.4%
5 20 3.011 db+c4=22.0%; c4+web1=22.0%; c4+d1=12.5%;

c4=12.5%; db+web1=7.1%; db+d1=5.8%; db=4.3%
6 24 1.902 c4+web1=48.8%; c4+d1=21.4%; c4=21.4%
7 27 1.430 c4+web1=73.0%; c4+d1=7.7%; c4=7.7%
8 31 2.119 d1+web1=63.2%; web1=14.8%
9 31 2.119 d1+web1=63.2%; web1=14.8%

(rows omitted for brevity.)
28 97 0.905 d1+web1=80.4%; web1=17.0%
29 100 0.818 d1+web1=83.8%; web1=13.5%
30 104 0.865 d1+web1=82.1%; web1=15.2%

(rows omitted for brevity.)
57 220 0.095 d1+web1=98.9%; web1=0.9%
58 223 0.094 d1+web1=99.0%; web1=0.9%
59 223 0.094 d1+web1=99.0%; web1=0.9%
60 227 0.103 d1+web1=98.8%; web1=1.0%

(rows omitted for brevity.)
85 328 0.024 d1+web1=99.8%; web1=0.2%
86 332 0.012 d1+web1=99.9%; web1=0.1%
87 337 0.012 d1+web1=99.9%; web1=0.1%
88 343 0.012 d1+web1=99.9%; web1=0.1%
89 344 0.012 d1+web1=99.9%; web1=0.1%
90 350 0.010 d1+web1=99.9%
91 356 0.009 d1+web1=99.9%

TABLE VIII. RESULTS OF SCENARIO 5 WITH CORRELATION
DETECTION: WEB SERVER 1 IS SLOW WHEN REQUESTS COME FROM

DISPATCHER 1.

The fault localization output will, as expected, converge more
slowly. However, even in this scenario, a detection with 99.9%
certainty in 90s of a web server which slows half of the
requests only when used with a certain dispatcher is still an
encouraging result.

V. RELATED WORK

Diagnosis in software systems is currently addressed both
directly and indirectly. It is addressed directly in hand-crafted
techniques usually aimed at improving quality attributes in
systems and in design-time techniques that aim at identifying
faults in developed code. Diagnosis is also addressed indirectly

in the general field of self-adaptive systems as part of repair-
based techniques.

A typical approach to diagnosis in software systems is to
develop special-purpose diagnostic mechanisms for a particular
class of system and particular classes of faults. For exam-
ple, the Google File System [13] and Hadoop [8] use fast,
local recovery and replication to achieve high availability for
scalable distributed file systems for data-intensive applications.
These systems use custom-built monitoring and diagnosis to
determine failures of individual servers. While such hand-
crafted techniques are typically very effective for the specific
kind of system they address, (1) they do not generalize to other
systems where the same architectural assumptions do not hold,
and (2) they usually assume single-fault scenarios.

Other approaches use simple heuristics to perform diag-
nosis. Both software rejuvenation [17], [25] and recovery-
oriented computing [5] fall in this category. Software reju-
venation selectively restarts components when certain mea-
surements, for example, memory usage, degrades. Recovery-
oriented computation uses statistical machine learning tech-
niques to perform diagnosis. These techniques have the advan-
tage of being easy to calculate and are often widely applicable,
but they lack precision, resulting in inefficiencies and poor
coverage.

An indirect approach to diagnosis is done by repair han-
dlers in self-adaptive systems. For example, the Rainbow
system incorporates a set of repair strategies that are triggered
when certain architectural invariants are violated in a running
system [7], [12]. Each strategy is responsible for determining
whether to correct the problem at hand, and if so, how. In order
to do this a strategy has to carry out its own fault diagnosis
and localization. But this has the disadvantage that each repair
handler must do its own diagnosis, possibly adding to run-time
overhead (if multiple strategies are used), greatly increasing the
effort required to produce repair handlers, and relying on the
strategy writer to get the diagnosis right. Similarly, in the three-
layer architecture model proposed in [19] higher level planning
mechanisms are responsible for diagnosis once a problem has
been detected.

None of these techniques provides a general, systematic
basis for run-time fault diagnosis. In contrast, there has been
considerable research on automatic fault diagnosis used at de-
sign time. Traditionally, automatic approaches to software fault
localization are based on using a set of observations collected
during the testing phase of system development to yield a
list of likely fault locations, which are subsequently used by
the developer to focus the debugging process [23]. Existing
approaches can be generally classified as either statistics-based
or model-based. The former uses an abstraction of program
traces, collected for each execution of the system, to produce
a list of fault candidates [20], [16], [21]. The latter combines
a model of the expected behavior with a set of observations to
compute a diagnostic report [11], [22].

Model-based approaches are more accurate than statistical
ones, but are much more computationally demanding (in both
time and space), and they require detailed models of the correct
behavior of the system under test. Recently a novel reasoning
technique over abstractions of program traces, combining the
best characteristics of both worlds, has been proposed [4].



It has low time/space complexity (like statistics-based tech-
niques), yet with high diagnostic accuracy (like reasoning
techniques). As we have described, such properties make the
technique especially amenable to (continuous) run-time analy-
sis. In this paper, we refer to this kind of reasoning technique
as spectrum-based multiple fault localization (SMFL), which
we use as the basis for our diagnosis.

VI. CONCLUSIONS

In this paper we have described an approach for autonomic
diagnosis of faults in a system. We developed a language
that allows system behavior to be described and which can
be composed hierarchically, facilitating reuse among systems.
This language, based on first-order logic, is very expressive and
allows the definition of a very large set of system behaviors.

We have also provided an algorithm that automatically
adjusts the amount of data required for diagnosis, the window
of observation of the system, to attain a predefined level of
certainty specified as a maximum value of entropy of fault
candidates. We further provided a technique that extends the
existing SMFL algorithm to detect correlated faults between
components in a system.

Our research on autonomic diagnosis of run-time failures
raises several questions that will need to be addressed in future
work. Our correlated fault detection algorithm is, theoretically,
exponential in the number of components if all possible
correlations are to be found. However, use of architecture
structure may restrict this significantly and this is worth further
investigation.

Also, the target of diagnosis itself can be further improved.
We do not have support for hierarchical structures (components
and connectors inside components and connectors), but many
system definitions take advantage of hierarchical decompo-
sition to improve ease of understanding and reasoning. We
are also currently targeting only architecture elements in the
dynamic perspective but this work can be extended to sup-
port both static elements (such code / libraries) and physical
elements (such as servers and network).

Finally, we plan to study how our behavior recognition
language can be integrated with the concept of architectural
styles. Architectural styles are one of the basic foundations
for reuse in software architecture and the work we developed
shows several visible connections that should be explored in
future work.
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