
Applying Autonomic Diagnosis

at Samsung Electronics

Paulo Casanova, Bradley Schmerl and David Garlan
School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
{paulo.casanova,garlan,schmerl}@cs.cmu.edu

Rui Abreu
University of Porto
Porto, Portugal

rui@computer.org

Jungsik Ahn
Samsung Electronics
Republic of Korea

jungsik.ahn@samsung.com

September 30, 2013
CMU-ISR-13-111



Abstract

An increasingly essential aspect of many critical software systems is the ability
to quickly diagnose and locate faults so that appropriate corrective measures
can be taken. Large, complex software systems fail unpredictably and pinpoint-
ing the source of the failure is a challenging task. In this paper we explore
how our recently developed technique for automatic diagnosis performs in the
automatic detection of failures and fault localization in a critical manufactur-
ing control system of Samsung Electronics, where failures can result in large
financial and schedule losses. We show how our approach scales to such systems
to diagnose intermittent faults, connectivity problems, protocol violations, and
timing failures. We propose a set of measures of accuracy and performance that
can be used to evaluate run-time diagnosis. We present lessons learned from
this work including how instrumentation limitations may impair diagnostic ac-
curacy: without overcoming these, there is a limit to the kinds of faults that
can be detected.



Acknowlegements

This work was supported in part by the National Science Foundation under
Grant CNS 1116848, the Army Research Office under Award No. W911NF-09-
1-0273, the Office of Naval Research under Grant N000141310401 and Samsung
Electronics. Furthermore we would like to thank Jungsik Ahn, of Samsung
Electronics, who helped us define the simulator described herein.

1



Chapter 1

Introduction

Product manufacture, notably technology manufacture, is highly automated,
involving critical software to schedule, control, and monitor the manufactur-
ing process. The large volume of items produced, the high competitiveness in
manufacturing costs, and global supply chains make failures in this industrial
setting costly, leading to schedule overruns and large financial losses [9, 14].

The inherent complexity in the manufacturing process, exacerbated by ex-
tremely optimized production processes, and the high volume of production
makes identifying faults in the underlying running software difficult [12]. Soft-
ware systems controlling the manufacturing process communicate by sending
a large number of messages between equipment and the controlling software
to coordinate manufacturing, and involve little human intervention. Although
hardware faults (i.e., equipment failure) may also lead to software faults, in this
paper we primarily address failures triggered by software faults.

While this software system works most of the time, intermittent faults can
cause cascading errors that can delay or halt manufacturing. In such a case, the
software typically needs to be rebooted, causing further delays. Furthermore,
isolating which parts of the system caused the initial problem is a difficult
process, where developers manually examine volumes of log files to see if they
can determine why the problems occurred.

Identifying failures in a running system is challenging [4, 7, 10, 11, 16]. First,
while failures commonly manifest themselves at a high level of abstraction, like
degradation of quality of service below minimum thresholds or violation of high-
level protocols, monitoring is usually performed at a lower level and we need
to bridge the gap between these two levels. Second, these systems perform
multiple activities concurrently. These activities, even if they are unrelated to
each other, will appear mixed to an observer and it is necessary to split them
in order to check their correctness.

Performing diagnosis is also challenging, even assuming that failures are
correctly identified. First, there can be multiple possible explanations for a
failure. For example, a system slowdown may be caused by a slow database,
a component failure or a faulty network connection. Second, diagnosis has to

2



be performed within a useful time frame. For example, if diagnosis takes too
long to detect that an equipment is malfunctioning, the production process may
already have been compromised.

In this paper, we report on our experience applying our run-time fault diag-
nosis approach [6] to dynamically and automatically diagnose and locate faults
for a chip manufacturing process for Samsung Electronics. The criticality of
the control software prevents us from performing monitoring and diagnosis in
the real system. Also, lack of factory equipment makes using the real software
impossible. Therefore, we developed a simulator mimicking the behavior of the
Samsung Electronics’ manufacturing control system, which has been validated
by Samsung Electronics.

In previous work we have tested our approach successfully on several research
prototype software systems, reported in [6, 5]. In this paper we discuss how the
technique works in a real-world setting (albeit simulated), with the scale and
problems that exist in that system. In particular, we validate that our approach
to autonomic monitoring and diagnosis (a) accurately identifies the fault of
a problem by observing the run-time behavior; and (b) achieves the desired
performance without violating quality attributes of the system. Furthermore,
in our previous work we have argued that:

• The specifications of system behavior required for our approach were an
intuitive concept for system designers.

• These computations could be reused within systems of the same architec-
tural family.

• Defining correctness criteria for computations is simple, being directly
derived from business requirements and quality attributes, and in terms
familiar to system designers.

• The statistical analysis provided by the diagnostic algorithm can pinpoint
the source of the fault accurately.

In this paper we analyze how our algorithms matched the challenges and
how they fulfill the claims just outlined. We further propose two metrics to
evaluate runtime diagnosis algorithms. Previous design-time fault localization
techniques have only considered diagnostic accuracy as evaluation metric. We
argue that at run-time one is not only concerned with diagnostic accuracy but
also with the performance of the algorithm. Hence, we propose this two metrics
to evaluate the performance of run-time fault localization techniques. Finally,
we summarize lessons learned, which we believe to be applicable in other run-
time diagnosis systems.

This paper is organized as follows: in section 2 we provide a description of
Samsung Electronics’ system we’re targeting. Section 3 describes our approach
to autonomic diagnosis and how it was applied in Samsung Electronics. In
section 4 we propose metrics for evaluation of run-time diagnosis algorithms. In
section 5 we provide the results of our case study in a set of scenarios mimicking
problems detected at Samsung Electronics. In section 6 we list lessons learned

3



that can be useful for future systems. Section 7 summarizes our finds, discusses
threats to validity and future work.

4



Chapter 2

Target system

Samsung Electronics’ manufacturing system is a large-scale industrial control
system responsible for manufacturing control of semiconductors1. The system
controls the stages of wafer manufacture, deciding to which equipment wafers
are sent for processing. Furthermore, the software tracks of not only the lots
being manufactured, but also the equipment used: which equipment is allocated,
whether and what it is processing, what its output quality is, and so on.

The system is divided into subsystems, which perform specific tasks related
to the manufacturing process. For example, the MOS (Manufacturing Operating
System) subsystem controls the stages of the manufacturing process, and the
ADS (Automatic Dispatch System) subsystem performs equipment scheduling,
deciding which equipment is the best to perform a step in the manufacturing
process.

Each of these subsystem is built by multiple concurrent processes that pro-
vide various manufacturing services, load distribution, and fault tolerance. These
are connected through an event bus, which mediates event exchange amongst
them. A subset of the system’s architecture is abstractly depicted in Figure 2.1.
Due to confidentiality reasons, specific details about system implementation
cannot be reported. The total message throughput in all buses combined is
around 2000 events per second.

The systems communicate with each other exchanging messages according to
several predefined protocols. One such protocol is the track-in (TKIN) protocol.
This protocol is used before a wafer lot is sent to another stage of processing.
It determines what equipment the wafers should be sent to, performs valida-
tion operations and does some housekeeping, like ensuring that the equipment
for processing the next steps are available and that no scheduling and quality
constraints are violated.

Several factors make this system complex:

1. The TKIN protocol contains more than just message exchange between
components: it also involves databases accessed through standard proto-

1http://www.samsung.com/global/business/semiconductor/

5



Event Bus

TC.1 TC... TC.M

TCDB

EES

EESDB

ADS

ADSDB

MOS.1 MOS... MOS.N

MOSDB

Figure 2.1: High-level architectural view of the manufacturing system at Sam-
sung Electronics. For simplicity, only the MOS and TC systems are shown decom-
posed.

6



cols. This means that observation of the event bus will only yield partial
information.

2. Several components of the same type exist, but only one will receive each
message although it is not known which. This makes tracking messages
harder as we don’t know what the destination of the message will be: all
possible destinations have to monitored and searched for a match.

3. Multiple TKIN protocols are occuring in parallel and they may be exe-
cuted with different timings. For example, the MOS may send two BEST EQP

messages to the same ADS which returns two EQP responses whose contents
have to be analyzed to identify which response matches which request.

4. More messages circulate through the bus between these components to
address other protocols besides the TKIN protocol. This means that we
will see spurious messages in the bus.

2.1 Operation issues

While TKIN protocols are executed correctly most of the time, once in a while
problems arise that cause failures in the system. These problems vary, but some
of the typical problems are messages being lost (or not sent at all), messages
sent too late, or unexpected messages being sent. Other problems are database
performance slowdowns, which affect overall system performance.

Such problems can have a significant impact on the manufacturing process
as they can lead to stalling lots and unneccesary equipment reservations. Given
the sheer volume of messages being exchanged it is not possible for human
operators to even realize that a problem has occurred until later when more
serious consequences become visible. Also, given the independent development
of all the systems involved, it is difficult for the system developers to figure out
what the problem is and where it is located.

Yet another difficulty is that these problems, although serious, are rare - and
therefore are difficult to diagnose. Although the system operates with around
2000 messages exchanged per second, it generally functions correctly for many
weeks in a row before any failure is detected. This sets up a scenario in which
millions of observations are performed before a single failure can be identified.

2.2 Simulating the target system

There are several barriers to developing a diagnosis system for systems such as
the Samsung Electronics’ manufacturing control systems. The criticality of such
systems makes testing on the production system unacceptable; the size of the
system and its need to work connected to factory equipment makes it impossible
to run it in a different environment. Also, the rareness and unpredictability of
the faults make testing a diagnosis system difficult.

7



We addressed these issues by creating a simulator of Samsung Electronics’
production system and performing diagnosis in the simulator. This simulator
was engineered with the help of Samsung Electronics to produce a TKIN protocol
resembling the real one and to allow manual control of faults for testing purposes.

The TKIN protocol is described using a message sequence diagram in Fig-
ure 2.2. The messages in the sequence diagram correspond to types of events
sent: for example, BEST EQP is a request for an equipment to process a wafer lot
and EQP is the event with the ADS’s decision on the equipment to perform the
process step.

The simulated system does not, naturally, control any equipment. Rather,
it generates messages that conform to the protocol, both in terms of their types
and also in their timing. This simulator allows us to develop test scenarios in
which we arrange for specific faults to happen, check whether they are diagnosed
correctly, and have a credible expectation that it can be successfully transitioned
into Samsung Electronics’ production system.

The simulated system is similar to the one in Figure 2.1, but it has only two
MOS components, one event bus, and two TC components. This is in contrast with
the real system which includes more than 20 of each type. However, because the
computation performed by our individual components is much simpler than the
real one, they are able to generate a much higher message rate than their real
counterparts yielding a message rate closer to the real system. Consequently,
our smaller number of components is actually simulating a higher number of
real system components from a message exchange perspective.

The system starts multiple TKIN protocols at random time intervals. Com-
ponents have random processing delays and a single TKIN protocol takes around
1 minute to complete, similar to the TKIN protocol in the real system. The
rate at which TKIN protocols are initiated can be used to control the level of
concurrency.

Both MOS components work in fault-tolerance mode: either MOS.1 or MOS.2

will receive messages addressed to the MOS, but not both. They maintain a
“keep-alive” mechanism, allowing one to take over if the other fails to respond.
The TC components work in “load-distribution” mode: each request will be
forwarded to either TC.1 or TC.2.

Implementing fault tolerance in our simulator was done by creating a syn-
thetic component (MOS.S) that acts like the MOS for all other components (except
MOS.1 to MOS.2). It will forward through the event bus any message to either
MOS.1 or MOS.2, depending on which component is active. Load distribution
is implemented similarly using a synthetic TC.S component. This mimicks the
way the event bus system used at Samsung handles load balancing and fault
tolerance.

Although we did not have access to the actual factory control software, we
were careful to work with Samsung Electronics engineers to ensure that the
simulator we developed was faithful to the real system in the following ways:

• event timings were designed to produce delays close to the real system;

8



MOS MOSDB TC TCDB EES EESDB ADS ADSDB

UPD ST 1

BEST EQP

ADB Q1

ADB Q2

EQP

UPD MOSDB

PREP EQP

OK

UPD ST 2

CK ST 1

PREP DB

CHECK EQP

EESDB Q

PASS

UPD ST 3

CK ST 2

UPD

UPD OK

Loop 0 . . . ∗Loop 0 . . . ∗

TKIN

If passIf pass

FAIL

UPD FAIL

UPD ST 4

CK ST 3

UPD EFAIL

UPD FAIL

If failIf fail

Loop 1 . . . 3 if EES failLoop 1 . . . 3 if EES fail

Figure 2.2: Simulated TKIN protocol.

9



• the protocol was designed according to Samsung Electronics’ specifica-
tions;

• the faults that were injected (see Section 5) were typical of real problems
experienced by Samsung Electronics and which are hard to locate in the
real system.

We are therefore reasonably confident that the results reported in this pa-
per will apply when Samsung Electronics transitions our approach to the real
system.

10



Chapter 3

Approach

This section details our approach to automatic monitoring and fault localization,
as well as how we applied it to the Samsung Electronics’ system.

3.1 Overview

A detailed description of our approach for autonomic diagnosis is described
in [5, 6]; see Figure 3.1 for an overview. It consists, at a high level of ab-
straction, of defining a behavior model (equivalent, to some extent, to the TKIN

protocol described in Figure 2.2) over the system’s architecture (such as the one
in Figure 2.1) and monitoring the system to identify patterns that match to the
model.

These behavior specifications are high-level computations1 that occur at the
architecture level. These high-level computations are not directly observable
in the system. Instead, low-level events such as a message sent from the EES

to the ADS with type UPD FAIL for equipment lot X.445, can usually be ex-
tracted through instrumentation. These low-level events are then combined by
the Recognizer using a Behavior Model (see figure 3.1), to form the high-level
computations.

The high-level computations are then analyzed by an Oracle to check whether
they represent correct or incorrect behaviors, according to some predefined Cor-
rectness Criteria. Correctness is derived from the business rules that define the
system’s functional requirements and quality attributes. For example, an incor-
rect computation can occur because a protocol did not complete successfully,
or it completed, but without satisfying desired performance requirements. This
information is sent to a Fault Localizer which will compute health estimates for
the component and connectors in the system.

The output of the fault localizer is a set of fault candidates ranked by the
probability of being the explanation of the observed failures [2]. The fault

1We termed them transactions in [5, 6], but use computations to avoid confusion with
database transactions

11



Fault Localizer

Component and connector health
estimates

Correctness Criteria Oracle

High-level computations + correct-
ness evaluation

Behavior Model Recognizer

High-level computations

Base System

Low-level events Run
time

Design-time specifications

M
on

it
or

A
n

a
ly

ze

Figure 3.1: Structure of the diagnosis system.

localizer gathers information until it is able to produce an accurate report based
on a limit on entropy [15]. Borrowed from information theory, entropy is a
measure of the uncertainty in the ranking produced by the diagnostic algorithm.
This allows us to dynamically adjust the number of computations we need to
observe before being able to accurately diagnose a fault.

Having a set of computations over the architecture classified as correct and
incorrect allows us to use static-time algorithms used for fault localization, such
as the one in [2]. This algorithm was initially designed to localize faults in source
code in the presence of a set of successful and unsuccessful runs of test cases (i.e.,
at development time, during the debugging phase of the software development
life-cycle). We apply them at runtime, using observed run-time computations as
“test cases”, and localize the faults to the respective components in the system’s
architecture.

The essence of the technique is identifying which components contributed to
which computations, determining the possible combinations of failures in com-
ponents that could explain the visible faults. These combinations of components
are then probabilistically ranked according to the likelihood of explaining the
visible faults. Being a technique that reasons over information about run-time
behavior, the diagnostic accuracy increases with the number of observations.

The key ideas of our approach are:

• System designers reason about systems using high-level computations like
the TKIN protocol, which are meaningful from a business perspective and
whose structure and design is driven by the system’s requirements.

• It is possible to classify these high-level computations as either correct
or incorrect behavior. Since these computations are meaningful from a
business perspective, their correctness is usually defined directly in terms
of system requirements. For example, a TKIN protocol which halts half way

12



through is considered incorrect behavior. Also, a TKIN protocol which takes
more time to complete than the established maximum is also incorrect
behavior.

• High-level computations of a system cannot generally be observed directly
in a system, but can be detected by observing lower-level events. For ex-
ample, it is not possible to directly see the TKIN protocol, as a whole, in
the system. But we can see individual messages sent from components to
other components. These individual messages (which are directly observ-
able) allow us to reconstruct the higher-level behavior, the TKIN.

• Run-time observation of both correct and incorrect behavior can be fed
into design-time fault localization algorithms as if each run-time observa-
tion was the execution of a test case.

3.2 Architecture

An illustration of the architecture of the approach is presented in Figure 3.2. To
achieve a high level of parallelism that supports scalability, each individual step
in the recognition of the computation is done in its own individual recognizer.
So, matching the BEST EQP sent by the MOS to the EQP received by the ADS is done
by one recognizer but matching the resulting pair with the respective PREP EQP

sent by the MOS is done by another recognizer that executes concurrently with
the first, in an independent process. The same structure applied to the Oracle:
each individual computation type is handled by an individual Oracle and all
individual Oracles are processing in parallel. All individual Recognizers and
individual Oracles communicate through a private event bus system that can
scale up to thousands of messages per second.

The recognizer and oracle of Figure 3.1 are therefore broken down into mul-
tiple independent processes that communicate through an event bus. This event
bus is not the same as the one used for the target system.

3.3 Behavior specification language

To apply our diagnosis framework to a system, we have to provide both a be-
havior model of the system and the correctness criteria (see Figure 3.1), which
are used as inputs by the Recognizer and the Oracle.

The behavior model describes how higher-level computations are built from
lower-lever computations. This is done by declaring individual recognizers that
will be instantiated at runtime. The structure of a recognizer is represented in
Listing 3.1.

1 /* Declares the recognizer "name ". The formal parameters represent the
computation types this recognizer will use to recognizer a higher -level
computation . */

2 recognizer name(a0 : a0_type , ...) {
3 /* The invariant contains a first -order predicate logic statement over the

arguments that recognized computations must maintain. */

13



E
ve

n
t

b
u

s

Probe 3
Publish
events

Probe 2
Publish
events

Probe 1
Publish
events

Recognizer 3

Subscribe
low-level
events/

computations

Publish
recognized

computations

Recognizer 2

Subscribe
low-level
events/

computations

Publish
recognized

computations

Recognizer 1

Subscribe
low-level
events/

computations

Publish
recognized

computations

Oracle 1

Subscribe
high-level

computations

Oracle 2

Subscribe
high-level

computations

Figure 3.2: Architecture of the diagnosis system. Each box represents an inde-
pendent process.

4 invariant ... ;
5 /* The emit clause (more than one may be present) defines what higher -level

computations are recognized . */
6 emit ... ;
7 /* Alternatively , a emit fail clause says that we explicitly identified

incorrect behavior. */
8 emit fail;
9 }

Listing 3.1: Structure of a recognizer.

An important aspect of recognition is how to treat events that do not fit into
any pattern. We adopted a conservative approach: we assumed our knowledge
of how the system works is limited and, therefore, more computations can be
detected that we do not know about. Unmatched events are ignored.

In some cases we know that some events must always be matched according
to some pattern, and the absence of a match signals a failure. For example, a
request for an equipment without a response indicates a failure. Our approach
supports detecting these situations by specifying recognizers that detect illegal
computations. These recognizers, which make use of first-order logic’s existential
quantifiers, can detect that there is an event of type X for which there is no match
with a required event. They use the emit fail clause to report that incorrect
behavior has been detected.

The correctness criteria is described using oracles that can be grouped into
types to allow reuse. An example of an oracle is represented in Listing 3.2.

1 /* The oracle type construction defines a class of oracles that can be
instantiated . */

14



2 oracle type latency_oracle {
3 /* Oracle types may have instance variables . The max_latency variable , of

type "period" (a primitive data type representing a time span), contains
the maximum latency allowed. */

4 m_max_latency : period;
5 /* The oracle ’s constructor . */
6 latency_oracle(max_latency : period) {
7 m_max_latency = max_latency;
8 }
9 /* The evaluate method receives as argument the type of computation that is

evaluated by the oracle and returns true or false depending on whether
the computation is correct or incorrect. */

10 bool evaluate(c : c_type) {
11 /* end () and start () are built -in functions that return when a

computation ended and started , respectively . */
12 return end(c) - start(c) < m_max_latency;
13 }
14 }
15
16 /* Oracles clauses specify the oracles themselves , instances of their types.

note that 15s in the argument is a literal value of "period" primitive
data type. */

17 oracle limit_15s = new latency_oracle (15s);

Listing 3.2: Structure of an oracle

Both oracles and recognizers refer to computation types. Computation types
have to be declared and may represent architecture-level computations, such
as the TKIN, or simple events probed by the system’s instrumentation. Con-
ceptually, computation types are similar to Java classes. Listing 3.3 contains
the computation type and associated declarations of the probed ebus msg com-
putation, which represents a message flowing in the event bus probed by the
system’s instrumentation.

1 /* All messages in the TKIN. */
2 enum msg_type {
3 mt_best_eqp ,
4 mt_eqp ,
5 // ...
6 };
7
8 /* A struct represents a composite data type , like a Java class. The msg_data

structure contains information about a lot being processed (the lot ’s
unique ID) and the type of message. */

9 struct msg_data {
10 m_lot_id : string;
11 m_type : msg_type;
12 /* Constructor . Works like Java. */
13 msg_data(t : msg_type , l : string) {
14 m_lot_id = l;
15 m_type = t;
16 }
17 /* Function that checks whether two message data refer to the same "thread" (

lot). */
18 bool same_thread(m : msg_data) {
19 return m_lot_id == m.m_lot_id;
20 };
21
22 /* A computation type is , syntax -wise , similar to a structure . Computations

always have a start and end time and are associated with the set of
architectural elements that contributed to them. These aspects of the
computations are handle mostly automatically and are , therefore ,
invisible in the syntax. The colon represents inheritance in the object -
oriented sense. */

23 computation type probed_ebus_msg : msg_data {

15



24 /* Name of the components that originated the message and to whom the message
is destined. A single message may have multiple destinations . */

25 m_src_name : string;
26 m_dst_name : set of string;
27 /* Constructor . The msg_data constructor is invoked with the colon syntax. */
28 probed_ebus_msg(t : msg_type , l : string ,
29 src_name : string ,
30 dst_name : set of string)
31 : msg_data (t , l) {
32 m_src_name = src_name;
33 m_dst_name = dst_name;
34 }
35 };

Listing 3.3: Event bus message type.

Computation types, recognizers and oracles form the basis of the language
used to recognize computations. In general, the diagnosis system’s runtime
keeps track of which components contributed to each computation as the com-
putations are recognized into higher-level computations. Computations classi-
fied by oracles are sent, together with the list of components that contributed
to them, to the fault localizer which, in turn, evaluates them using the state-of-
the-art Staccato/Barinel toolchain for automatic fault localization [2].

Staccato [1] offers an algorithm that uses a low-cost heuristic for computing
a relevant, and valid, set of multiple-fault diagnosis candidates, given a set of
computations. The Barinel [3] toolchain is used to compute the probabilities
for each diagnosis candidate yielded by Staccato. Barinel assumes critical
importance in the performance of our approach for two main reasons:

1) Staccato may yield a long list of diagnosis candidates; and

2) not all diagnosis candidates are equally probable to be the true fault ex-
planation.

When compared to other state-of-the-art approaches to fault localization [2],
Barinel yields more information rich diagnostic reports due to the fact that it
reasons in terms of multiple faults. We refrain from detailing the approach as
it is not the focus of this paper. Further information about the framework and
underlying technique can be found in [2].

To perform fault localization, we need to define what the system’s architec-
ture is. Our language implements a subset of the Acme language [8] supporting
the declaration of component and connect types and their instantiation. List-
ing 3.4 contains a partial declaration of the system structure.

1 /* A component type specifies a class of components . */
2 component type proc {
3 };
4
5 /* The ADS is a specialization of the proc component type. */
6 component type ads : proc {
7 };
8
9 /* An event bus represents a class of connectors . */

10 connector type ebus {
11 };
12

16



13 /* ads_1 is a concrete component . */
14 component ads_1 = new ads;
15
16 /* bus is the event bus. */
17 connector bus = new ebus;

Listing 3.4: Declaration of the system structure.

3.4 Application to the target system

Applying our approach to the system at Samsung Electronics required defining
the behavior of the system in terms of the language described in Section 3.3.
The main lines of our approach were:

• Each bus message was recognized to produce several messages: a message
being sent by components and one message (or more, depending on the
destinations) being received at components.

• The receive/send message pairs that contain call/return behavior, were
recognized as a single computation.

For example, the BEST EQP received at the ADS is paired with the EQP sent
by the ADS to produce a ads eqp computation.

• Each pair also produced recognizers that detect behavior failures on time-
outs.

For example, ads eqp no response recognizer recognizes a BEST EQP for
which no EQP exists.

• Sequential computations were then bound together in a single computation
that represents a sequential flow. We ended up with three sequential flows:
eqp prep which corresponds to the flow until the EES decides on a pass or
fail, a test pass which corresponds to the “pass” optional section in the
protocol flow and a test fail which corresponds to the “fail” optional
section in the protocol flow.

For example, the ads eqp is matched to the mos start (recognized from a
BEST EQP detected at the MOS) to yield a mos ads eqp. The mos ads eqp

is matched with a mos prep (recognized as a EQP/PREP EQP pair at the
MOS) to yield a mos eqp prep and so on.

• The alternative flow was modeled using four recognizers: one that recog-
nizes a eqp prep and a test pass into a eqp pass, one that recognizes
a eqp prep and a test fail into a eqp fail, one that ensures either
test pass or test fail, and one that recognizes a single run from ei-
ther an eqp pass or an eqp fail.

• Loops were modeled using recursion and loop limitation by placing a
counter in the computation.

17



For example, the tkin computation type has an attribute m count that
specifies the run count. A tkin can be recognized from another tkin and
a single run. The newly generated tkin has a m count which is one
value higher the the previous tkin.

It is worthy discussing more deeply the matching of call / return patterns
within the TKIN protocol. If the contract for the ADS is, as is the case, to
always reply with an EQP to a BEST EQP request, then receiving an EQP and not
replying with a BEST EQP is a failure regardless of whether there is any other
component involved. However, if the contract for the ADS were to only reply to
some requests (for example, invalid requests would not have a response), then
the pair BEST EQP/EQP would not be enough to pinpoint a failure in the ADS

component and the call / return pattern could not be applied.
The previous discussion hints at two important aspects of our approach: (1)

because behavior is formally modeled, it reduces ambiguity in system specifica-
tions, and (2) the small pieces of the protocols follow patterns that are reusable
across multiple systems, while the large, complete protocols generally do not.

18



Chapter 4

Metrics for evaluation

To evaluate how well the diagnosis algorithm performs, we need to identify
a set of appropriate metrics. There are two main areas of metrics that are
applicable in domains sharing similarities with ours: metrics used for evaluation
of classifiers and metrics used for evaluation of fault localization algorithms.

Our algorithm has similarities with classifiers in machine learning: it will
output a classification of which components are faulty and which are not. In that
sense, the classic metrics of precision and recall, or one of its variants, seem to be
relevant. However, those statistics are applicable only in binary cases [13] and
our classifier outputs a probabilistically ranked classification. Many components
– maybe even all – may show up as outputs but their probability, or rank is
relevant: if the faulty component has probability of 0.99 and all the others have
probability 0.01

n−1 where n is the total number of components, this is generally
seen as a good classification although it has a low value of precision. In the
presence of few faulty components, recall will always tend to the high or low
spectrum. These metrics are, therefore, not applicable.

The fault localization literature uses ranking for evaluation: the real prob-
ability attributed to diagnosis is only relevant in comparison with the others.
The rationale behind this metric is that developers will tend, in order to correct
the faults, to inspect components by rank order and, therefore, the lower the
rank of the faulty component, the more effort will be wasted. This metric is
applicable to evaluate run-time diagnosis.

However, at runtime, timing (performance) also becomes an important issue.
If at design time, the time taken for diagnosis is not relevant, at runtime it may
be critical for autonomic recovery. Also, at runtime, many diagnoses can be
produced for the same system and they may yield different values. Therefore,
we introduce two metrics:
failure identification time (FIT) that measures the time between when the
fault is activated and when the diagnosis system presents some information that
something is wrong;
diagnosis stabilization time (DST) that measures the time between failure
identification and diagnosis stabilization: when the system decides on which

19



diagnosis to consider final.
While for some systems – like the one presented in this case study – it is

the sum of both metrics that is relevant, in other circumstances each metric
may have different impacts: e.g., if a breach in a high-security system is de-
tected (failure identification time) we may want to disconnect the system from
the network immediately even before computing which part of the system was
breached (diagnosis stabilization time).

20



Chapter 5

Evaluation

We evaluated the system by defining the computations using the specification
language outlined above. We identified a set of scenarios in which the system
would fail in some predicted way. These scenarios were designed to replicate
the types of real problems encountered at Samsung Electronics.

1. EES sends a FAIL message and, 3s later, sends the PASS message. Because
the MOS subsystem responds to both events, this starts two parallel flows:
one for the successful evaluation, which ends with a TKIN, and another for
the unsuccessful evaluation, which ends with a retry of the whole process.

2. TC database is too slow to respond.

3. TC sends CHECK EQP to ADS instead of EES.

4. Active MOS fails and is later replaced by passive MOS.

5. MOS retries four or more times.

6. ADS does not issue ADB Q1.

7. The ADS database is too slow to respond.

Evaluation addressed the two main goals stated in the introduction:

1) diagnostic accuracy, and

2) diagnostic performance.

Based on our description in Section 4, we measured the accuracy of the system as
the rank of the faulty component in the diagnosis and we measured performance
by computing the failure identification time and diagnosis stabilization time.

We also computed another measure, not directly related to the diagnosis
system, but of relevance to Samsung Electronics: an estimate of the maximum
throughput of the system. Since every recognizer can be run in a different
system, the maximum throughput of the system is limited by the amount of
time the slowest recognizer takes to perform its evaluation.

21



Scenario Component† Rank‡

1: EES sends FAIL and
PASS

EES 1

2: TC database is too slow TCDB 1
3: TC will send message to
ADS instead of EES

TC 1

4: MOS fails and is replaced
by standby

MOS.1 1

5: MOS will retry 4 times MOS.1∗ 1
6: ADS will not issue
ADS Q1

-∗∗ -∗∗

7: ADS database is too
slow

ADSDB 2∗∗∗

Table 5.1: Evaluation of performance metrics in the scenarios.
† Component where the fault was injected.
‡ Average rank among 10 scenarios.
∗ MOS.1 was the active MOS.
∗∗ No failure was detected by the diagnosis system in this scenario.
∗∗∗ ADS and ADSDB were both ranked with an equal probability of 0.5 in all 10 scenarios.
We count as 2 as a developer / system maintainer may want to inspect the ADS before the
database. We took the most conservative approach.

5.1 Accuracy evaluation

The average result of measuring accuracy in 10 scenarios is presented in Ta-
ble 5.1. These results show that the system was able to correctly detect a
failure in all scenarios except scenario 6. Because databases are a source of per-
formance bottlenecks at Samsung Electronics, it was not possible to determine
communication between ADS and ADSDB. Consequently, the diagnosis system has
no way of distinguishing between the slowness of ADS and ADSDB; each compo-
nent is equally likely to be the cause of the slowness. Interestingly, we are able
to distinguish the slowness of TCDB. Because the two TC components connect to
the same database, slowness in both increases the probability of the fault being
localized in the database itself.

5.2 Performance evaluation

Performance metrics evaluated in all scenarios are shown in Table 5.2. For
each evaluation scenario we ran the scenario 10 times and collected the two
performance metrics discussed in Section 4. The fault localizer in Figure 3.1
outputs the results regularly (once every second).

As noted earlier, the FIT is the time between the fault being activated
and a diagnosis being produced that includes an identification of a failure. If
this diagnosis result already included the failed component ranked in the first

22



position, then the diagnosis stabilization time (DST) is 0. In several scenarios,
a later diagnosis never placed another component in first position, meaning that
most scenarios have an instantaneous DST. In scenario 2 however, because TCDB
was not instrumented, detecting that it was the source of the failure required
more data and, therefore, DST is greater than 0.

The minimum FIT column is added for reference. It is the minimum theo-
retically possible FIT that would detect the failure. In scenario 1, for example,
the FAIL message is sent 3s after the PASS message so, before that, no failure
can be detected although the invalid code has already been started. In some
examples, like this one, we could have deducted the minimum FIT from the FIT
but due to scenarios in which the timing is not so predictable (like introduced
database slowness in scenarios 2 and 7) this would not be consistent.

23



Scenario avg FIT† std FIT†† Min FIT††† avg DST‡ std DST ‡‡

1: EES sends FAIL and PASS 5,506 319 3,000 0 0
2: TC database is too slow 13,506 3,212 5,000-15,000 436 432
3: TC will send message to ADS instead
of EES

17,708 309 15,000 0 0

4: MOS fails and is replaced by standby 15,197 1,505 10,000-15,000 0 0
5: MOS will retry 4 times 2,861 0,343 0 0 0
6: ADS will not issue ADS Q1 -∗ -∗ -∗ -∗ -∗

7: ADS database is too slow 10,204 1,131 5,000-10,000 0 0

Table 5.2: Evaluation of performance metrics in the scenarios. Results in milliseconds.
† Average failure identification time. †† Standard deviation of failure identification time.
††† Theoretical minimum failure identification time. ‡ Average diagnosis localization time.
‡‡ Standard deviation of diagnosis localization time. ∗ No failure was detected by the diagnosis system in this scenario.

24



Chapter 6

Lessons learned

The application of our diagnosis framework to the system at Samsung Electron-
ics provided us with confirmation that several of our assumptions appear to be
supported in an industrial setting and also provided us with insight into some
other areas.

Decomposing computations is critical to the success of the diag-
nosis. As a result of the decomposition, failures can be identified not only in
the high-level computations but, sometimes, also in lower level computations.
This result allows diagnosis sometimes to be performed in a much smaller set
of components yielding a much faster response and a higher accuracy. For ex-
ample, a lack of EQP response allows inferring immediately a fault in the ADS

component due to the request / response low-level computation model.
Even with strict protocols, there are scenarios where reasoning-

based diagnosis analysis is of added values. The previously mentioned
decomposition allows local detection and identification of the source of the fail-
ure in some cases. This is consistent with industrial practice in which many
instances of this reasoning – like heartbeats or timeouts – are used. However, in
some cases this is not sufficient. As seen, for example, in scenario 2 where the
TC database slows down, more complex reasoning may be required to accurately
pinpoint the source of the failure.

Behavior specifications can be built up using patterns that are
reusable across systems. The computations that comprise the behavior
specification we build are defined on top of smaller patterns of well-known com-
putation styles like call/return, alternative flows or loops. Therefore, although
different systems may need to specify their own idiosyncratic high-level com-
putations, a significant number of specification blocks may be reused across
systems.

Domain experts are able to provide correctness specifications for
high-level computations. Domain experts would not be able to explicitly
state that within 15 seconds after a BEST EQP message had been seen in the event
bus, an EQP message from the same ADS to the same MOS with the same lot id

field should be seen in the event. This reasoning involves a great deal of low-

25



level detail. However, domain experts were able to state that the ADS should
respond within 15 seconds of a request for an equipment. This means high-
level computations have an abstraction level that matches the domain experts’
understanding of the system and are, therefore, a good level to write correctness
specifications.

Instrumentation design must consider a trade-off between system
performance, diagnostic accuracy and diagnostic performance. The
limitation on the observability of some events creates uncertainties which, in
some cases like scenario 2 were solved by the reasoning-based analysis with a
performance penalty. But in other cases, like scenario 7, this was not possible.
However, instrumenting the connection between the ADS and its database was
not possible because it was considered by Samsung to introduce an unacceptable
performance penalty.

This means that diagnostic accuracy and diagnostic performance have to
trade with other system quality attributes. In this system they traded with
system performance but in other systems they may have to trade with other
quality attributes. For example, probing some connections may lead to easier
information leaks, so security could be another quality attribute that would be
negatively affected by the introduction of autonomic diagnosis.

26



Chapter 7

Conclusions and future
work

The results indicated by this case study are encouraging as they show that the
expected results match practical experimentation. In addition, the study also
confirmed that several of our assumptions hold at least in this practical scenario.
These conclusions are, however, still bound to be the result of a simulation of
the real system.

We strongly believe that, in spite of being shown to work on a simulator,
our work would be usable in the real industrial setting: adapting the diagnosis
system to the real system will require some engineering, but will not raise any
new fundamental problems. The diagnosis system can receive the messages
from the real system’s event bus, just as it receives messages from the simulator
itself; the real system events have all the information required for the diagnosis
to work; the timings on the simulator are randomized and the real system’s
timings would also be seen as random, although, most likely, with a different
distribution.

The main threat to the validity of the simulation is scalability: our simulated
system contains only two instances of the MOS and the TC and only one instance
of the ADS and the EES. The performance of our recognizers and oracles can
be made independent of the number of components of the architecture through
horizontal partitioning of the event space as each one is an individual process
and they use an event bus to send information. Their number increases but
they may be run in parallel if we need to scale up. The point of contention may
be the fault recognizer whose complexity raises with the number of components.
However, experimentation at design time in [2] has shown that it can handle
larger numbers of components than Samsung currently has.

With respect to future work, there are two main complementary paths that
we plan to follow: the industrial path and the research path. On the industrial
path, we plan to continue to work to bring this system into Samsung Electronics’
real system.

27



On the research path, integration of diagnosis with a self-adaptive framework
is a critical piece. It is clear that diagnosis can be used to drive self-repair.
But because diagnosis introduces the need to perform trade-offs (for example,
between performance and accuracy), it is also reasonable to assume that, ideally,
the self-adaptive control loop should tune diagnosis at run time.

Also, in this work we had to manually handle the problem of non-observability:
we added the databases to the computations because we knew they were involved
even though we did not observe the events. However, we think this approach
is more general. The observed behavior could be a projection of the complete
behavior in which non-observable computations have been removed. The recog-
nizer and the oracle will have to be updated accordingly, but further research is
required to automate this process and understand the implications for diagnostic
accuracy and performance.

28



Acknowledgment

This research was supported by Grant No. CNS 1116848 from the National
Science Foundation and by and by a grant from the Foundation for Science
and Technology via project CMU-PT/ELE/0030/2009. and by FEDER via
the Programa Operacional Factores de Competitividade of QREN (FCOMP-
01-0124-FEDER-012983).

29



Bibliography

[1] R. Abreu and A. J. C. van Gemund. A low-cost approximate minimal
hitting set algorithm and its application to model-based diagnosis. In
V. Bulitko and J. C. Beck, editors, Proceedings of the 8th Symposium on
Abstraction, Reformulation and Approximation (SARA’09), Lake Arrow-
head, California, USA, 8 – 10 July 2009. AAAI Press.

[2] R. Abreu and A. J. C. van Gemund. Diagnosing multiple intermit-
tent failures using maximum likelihood estimation. Artificial Intelligence,
174(18):1481–1497, 2010.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. Spectrum-based multi-
ple fault localization. In G. Taentzer and M. Heimdahl, editors, Proceedings
of the IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’09), Auckland, New Zealand, 16 – 20 November 2009. IEEE
Computer Society.

[4] N. Cardoso and R. Abreu. A Kernel Density Estimate-based Approach to
Component Goodness Modeling. In Proceedings of AAAI Conference on
Artificial Intelligence (AAAI’13), 2013 (to appear).

[5] P. Casanova, D. Garlan, B. Schmerl, and R. Abreu. Diagnosing architec-
tural run-time failures. In Proceedings of the 8th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. To ap-
pear., 20-21 May 2013.

[6] P. Casanova, B. R. Schmerl, D. Garlan, and R. Abreu. Architecture-based
run-time fault diagnosis. In Proceedings of the 5th European Conference on
Software Architecture (ECSA’11), pages 261–277, 2011.

[7] C. Chen, H.-G. Gross, and A. Zaidman. Spectrum-based fault diagnosis for
service-oriented software systems. In Proceedings of the 2012 Fifth IEEE
International Conference on Service-Oriented Computing and Applications
(SOCA), July 2012.

[8] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural description
of component-based systems. In G. T. Leavens and M. Sitaraman, edi-
tors, Foundations of Component-Based Systems, pages 47–68. Cambridge
University Press, 2000.

30



[9] W. Humphrey. The software quality profile. Software Engineering Institute,
Carnegy Mellon University, 1996.

[10] L. Kuhn, B. Price, J. de Kleer, M. Do, and R. Zhou. Pervasive diagnosis:
Integration of active diagnosis into production plans. In D. Fox and C. P.
Gomes, editors, Proceedings of the 23rd National Conference on Artificial
Intelligence (AAAI’08), pages 1306–1312, Chicago, Illinois, USA, 13 – 17
July 2008. AAAI Press.

[11] L. M. Ottenstein. Quantitative estimates of debugging requirements. IEEE
Transactions on Software Engineering (TSE), 5(5):504–514, 1979.

[12] J. Pietersma and A. van Gemund. Benefits and costs of model-based fault
diagnosis for semiconductor manufactoring equipment. In Proceedings of
the 17th International Symposium on Systems Engineering (INCOSE07),
San Diego, CA, USA, June 2007.

[13] D. M. W. Powers. Evaluation: From Precision, Recall and F-Factor to
ROC, Informedness, Markedness & Correlation. Technical Report SIE-07-
001, School of Informatics and Engineering, Flinders University, Adelaide,
Australia, 2007.

[14] RTI. Planning report 02-3: The economic impacts of inadequate infras-
tructure for software testing. Planning Report 02-3, National Institute of
Standards and Technology, 2002.

[15] C. E. Shannon and W. Weaver. The Mathematical Theory of Communica-
tion. Univ of Illinois Press, 1949.

[16] J. Tan, X. Pan, E. Marinelli, S. Kavulya, R. Gandhi, and P. Narasimhan.
Kahuna: Problem diagnosis for mapreduce-based cloud computing envi-
ronments. In Network Operations and Management Symposium (NOMS),
2010 IEEE, pages 112–119. IEEE, 2010.

31


