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Abstract. Designing software subject to uncertainty in a way that provides guar-
antees about its run-time behavior while achieving an acceptable balance between
multiple extra-functional properties is still an open problem. Tools and techniques
to inform engineers about poorly-understood design spaces in the presence of un-
certainty are needed. To tackle this problem, we propose an approach that com-
bines synthesis of spaces of system design alternatives from formal specifications
of architectural styles with probabilistic formal verification. The main contribu-
tion of this paper is a formal framework for specification-driven synthesis and
analysis of design spaces that provides formal guarantees about the correctness
of system behaviors and satisfies quantitative properties (e.g., defined over system
qualities) subject to uncertainty, which is factored as a first-class entity.
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1 Introduction

Engineering modern software-intensive systems requires engineers to explore design
spaces that are often poorly understood due to their complexity and different kinds of
uncertainty about the behavior of their constituent components [8] (e.g., faults, network
delays). Achieving a good design with behavioral guarantees and a balance between
extra-functional concerns is challenging – especially when the context that the system
will run in contains unknown attributes that are hard to predict. Designing for this con-
text is as often a matter of luck as it is principled engineering.

Design decisions frequently involve the selection and composition of loosely-coupled,
pre-existing components or services with different levels of quality (e.g., of reliabil-
ity, performance) that may be offered by independent providers. For instance, modern
robotic software systems consist of a set of processes running in components, poten-
tially on a number of different hosts, connected at run time in a peer-to-peer topol-
ogy [22]. Different implementations of these components (e.g., for navigation, plan-
ning) offer different levels of energy consumption, reliability, or accuracy. Similarly,
service-based systems are built by composing third-party services with different levels
of availability, performance, and cost [18]. Quality attributes of constituent compo-
nents in such systems are often subject to uncertainties introduced by nondeterministic
behaviors of individual components (e.g., derived from the lack of control over system
components in the cloud, humans-in-the-loop, or physical interactions in cyber-physical



systems) that can be captured in the form of probability distributions (e.g., over the re-
sponse time of a Web service, fault occurrence). For a designer, it is difficult to envisage
how these uncertainties will affect overall system behavior and qualities, despite the
fact that they can sometimes have a remarkable impact on them.

Often, design spaces are also constrained by the need to design systems within cer-
tain patterns or constraints that comprise an architectural style. Architectural styles [23]
characterize the design space of families of software systems in terms of patterns of
structural organization, defining a vocabulary of component and connector types, as
well as a set of constraints on how they can be combined. Styles help designers con-
strain design space exploration to within a set of legal structures that the system must
conform to. However, while the structure of a system may be constrained by some style,
there is still considerable design flexibility left for exploring the tradeoffs on many of
the qualities that a system must achieve.

Formal characterization of architectural styles combined with formal methods like
Alloy [11] have proved to be a valuable tool to aid designers in exploring rich solution
spaces, by synthesizing possible system configurations that satisfy the constraints im-
posed by a given architectural style [3, 7, 19]. However, these solutions tend to focus
on structural properties, and when available, analysis of system behaviors and qualities
are performed separately. So, these approaches are limited in their ability to consider
interactions between behavioral properties and qualities (e.g., impact of failure in serv-
ing a request and a subsequent retry on overall system performance). Moreover, the
approaches that explore non-structural properties tend to be based either on dynamic
analysis or simulations. Such approaches cannot exhaustively explore the state space
of design alternatives or provide formal guarantees that encompass both their behavior
and qualities (both in general, and in particular, in the presence of uncertainties).

Architects need tools and techniques that can help them explore this complex design
space and guide them to good designs. Providing such tool support demands investigat-
ing questions such as: (i) how to integrate formal descriptions of structural, behavioral,
and quality aspects of design alternatives to enable integrated reasoning about all these
aspects, and (ii) how to effectively streamline the exploration of the solution space while
providing formal guarantees about solutions in the presence of uncertainty (e.g., with
respect to correctness of behaviors, or quantitative and structural constraints).

This paper explores these questions by introducing a formal framework that enables
the: (i) exhaustive exploration of a rich space of design alternatives by automatically
synthesizing architecture configurations that satisfy the constraints imposed by an ar-
chitectural style, and (ii) provision of formal guarantees with respect to the functional
behaviors and qualities (i.e., extra-functional properties) of configurations by analyz-
ing exhaustively the state space of each configuration’s behavior. Our framework explic-
itly considers interactions between functional behaviors and extra-functional properties
while factoring in uncertainty as a first-class entity.

The framework is grounded on two related formalisms: (i) predicate logic and sets
capture the structural aspects of system configurations, and (ii) probabilistic automata
and formal quantitative verification (e.g., probabilistic model checking [15]) capture
behavior and qualities.



The key novelty of our approach is that it is the first, to the best of our knowledge,
that combines automatic synthesis of design alternatives with quantitative formal ver-
ification that factors in uncertainty as a first-class entity. This combination is enabled
by the seamless integration of different types of models by means of common abstrac-
tions that enable reasoning about different types of properties in a combined manner.
More specifically: (i) interaction points (e.g., ports) on the component-and-connector
view of configurations correspond to synchronization points of component and connec-
tor behaviors, (ii) uncertainties are captured as probabilities in the behavior models of
components and connectors, and (iii) reward structures built on behaviors enable rea-
soning about quantitative aspects of system behaviors (e.g., qualities). We implemented
our approach in a prototype tool that uses a back-end based on Alloy and the PRISM
probabilistic model checker [16]. We illustrate the approach on a Tele Assistance Sys-
tem (TAS) [25] for the validation of service compositions.

The rest of this paper is organized as follows: Section 2 provides an overview of
our approach. Section 3 describes the TAS exemplar. Next, Section 4 describes the
formalization of models employed by our approach. Section 5 details our approach,
Section 6 presents results, and Section 7 overviews related work. Finally, Section 8
presents some conclusions and future work.

2 Overview of the Approach

Finding system configurations in an architectural style that satisfy a set of formal guar-
antees with respect to their behavior and qualities requires appropriate models and
mechanisms to: (i) systematically generate configurations in the style, and (ii) formally
verify their behavior and qualities. To achieve this goal, we propose a formalization of
architectural style extended with behavioral types that specify the abstract behavior of
components and connectors, as well as quantitative aspects via reward structures built
on their behavioral descriptions (described in Section 4).
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Fig. 1. Overview of the approach.

Based on our formaliza-
tion, our approach for design
space exploration consists of
three stages (Figure 1):
Configuration generation (Sec-
tion 5.1), during which a set of
configurations that satisfy a set
of structural constraints is gen-
erated. This process takes as
input the description of an ar-
chitectural style formalized as
a set of constraints in predi-
cate logic defined over abstract
types (e.g., those imposed by
the style, such as a component
of type X can only be connected to a component of type Y) and a set of concrete archi-
tectural element definitions (i.e., the different instances of candidate components and



connectors that can be employed to realize the architecture). The output is the collec-
tion of system configurations that satisfy the style constraints.

Configuration behavior model generation (Section 5.2), during which a set of be-
havioral models that refine the configurations obtained in (1) is generated. This process
takes as input: (i) the set of concrete architecture element definitions, (ii) the configu-
rations generated in (1), and (iii) the set of behavioral types1 that capture the behavior
of each abstract type in the architectural style. For every configuration, the behavior
of each concrete component and connector is instantiated using the behavioral types
of their corresponding abstract types. To realize the binding among components and
connectors in the behavioral model (via synchronization actions), we employ the topo-
logical information of the graph from the system configuration. Note that, while the
behavioral type is shared among all component (or connector) instances of the same
type, their actual behavior can differ due to the specific attributes of the instance that
parameterize its behavior (e.g., response time for a service, or number of retries after
a failed service invocation). The behavioral model of a configuration is constructed as
the parallel composition of the behavior of all the instances in the configuration.

Quantification, filtering and ranking (Section 5.3), during which behavioral and
quantitative properties are checked on the configuration behavioral models. This step
filters out configurations that do not meet a set of properties and constraints imposed
by designers, which may include: (i) behavioral properties (e.g., safety, liveness), and
(ii) quantitative constraints (e.g., on quality attributes). This stage also allows factoring
probabilistic aspects into the analysis of behavioral and quantitative properties, as well
as solution selection that optimizes quantitative properties.

3 Motivating Scenario

We illustrate our approach the TAS exemplar system [25], whose goal is tracking a
patient’s vital parameters to adapt drug type or dose when needed, and taking actions in
case of emergency. The system combines three service types in a workflow (Figure 2).

When TAS receives a request that includes the vital parameters of a patient, its Med-
ical Service analyzes the data and replies with instructions to: (i) change the patient’s
drug type, (ii) change the drug dose, or (iii) trigger an alarm for first responders in case
of emergency. When changing the drug type or dose, TAS notifies a local pharmacy
using a Drug Service, whereas first responders are notified via an Alarm Service.

The functionality of each service type can be implemented by a number of providers
that offer the service with different levels of performance, reliability, and cost (Fig-
ure 2.a). The metrics employed for the different quality attributes in TAS are the per-
centage of service failures for reliability, and service response time for performance.

In this context, finding an adequate design for the system entails understanding the
tradeoff space by finding the set of system configurations that satisfy: (i) structural
constraints imposed by the style (e.g., the Drug Service should not be connected to
an Alarm Service), (ii) behavioral correctness properties (e.g., the system is eventually

1 Although the notion of behavioral type is more general [21], we employ the term to refer to an
abstract state machine specification capturing the behavior of an architectural abstract type.
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[pick!=stopMsg]

[analysisResult==changeDrug]

[analysisResult==changeDose]

TAS

Service Name Fail. rate Resp. time Cost
(%) (ms.) (usd)

S1 Med. Service 1 0.06 22 9.8
S2 Med. Service 2 0.1 27 8.9
S3 Med. Service 3 0.15 31 9.3
S4 Med. Service 4 0.25 29 7.3
S5 Med. Service 5 0.05 20 11.9

AS1 Alarm Service 1 0.3 11 4.1
AS2 Alarm Service 2 0.4 9 2.5
AS3 Alarm Service 3 0.08 3 6.8
D1 Drug Service 0.12 1 0.1

(a) Properties of TAS service providers.

Name Description

R1 The average failure rate should not exceed
0.03%.

R2 The average response time should not exceed
26 ms.

R3 Subject to R1 and R2, the cost should be min-
imized.

(b) Example of quality requirements.

Fig. 2. Tele assistance service workflow, service provider properties, and quality requirements.

going to provide a response – either by dispatching an ambulance or notifying the phar-
macy about a change), and (iii) quality requirements, which can be formulated as a
combination of quantitative constraints and optimizations (Figure 2.b).

Generalizing from this scenario, the problem to solve is: “Given an architectural
style A, a set of concrete architecture elements E, a specification of correct behaviors
B, and a set of quality requirements Q, find the set of system configurations combining
elements of E that: (i) conform to style A (i.e., satisfy its structural constraints), (ii) sat-
isfy the specification of correct behaviors B (i.e., safety and liveness properties), and
(iii) maintain the desired level and/or optimize a set of quality goals specified by Q.”

Exploring the design space to find the best possible configurations that conform to
the style goes beyond the mere instantiation of architectural types, and entails flexi-
bility when envisaging design alternatives that may not always be obvious to a human
designer. An example in the context of TAS is allowing invocation of multiple alarm
services concurrently. This may of course increase the cost of operating the system, but
can also potentially reduce the response time and increase the reliability of the system
(the combined probability of multiple alarm services failing is much smaller than the
probability of failure of each individual alarm service).

In the next section we describe our formal model, and then detail our approach for
design space exploration in Section 5.

4 Formalizing Structure, Behavior, and Qualities

4.1 Architectural Style, Configurations, and States

We characterize the possible structures of a family of systems that are related by shared
structural and semantic properties employing an architectural style [23].

Definition 1 (Architectural Style). Formally, we characterize an architectural style as
a tuple (Σ, CS), where:



– Σ = (CompT,ConnT,Π,Λ) is an architectural signature, such that:
• CompT and ConnT are disjoint sets of component and connector types.
• Π : (CompT ∪ ConnT ) → 2D is a function that assigns sets of symbols typed

by datatypes in a fixed set D to architectural types κ ∈ CompT ∪ ConnT . Π(κ)
represents the properties associated with type κ. To refer to a property p ∈ Π(κ),
we simply write κ.p. To denote its datatype, we write dtype(κ.p).

• Λ : CompT ∪ConnT → 2P ∪2R is a function that assigns a set of symbols typed
by a fixed set P to components κ ∈ CompT . This function also assigns a set of
symbols in a fixed setR to connectors κ ∈ ConnT . Λ(κ) represents the ports of a
component (conversely, the roles if κ is a connector), which define logical points of
interaction with κ’s environment. To denote a port/role q ∈ Λ(κ), we write κ :: q.

– CS is a set of structural constraints expressed in a constraint language based on
first-order predicate logic in the style of Acme [9] or OCL [24] constraints (e.g., ∀
t:AssistanceServiceT •∃ a:AlarmServiceT • connected(t,a) – “every tele assistance
service must be connected at least to one alarm service”).

For the remainder of this section, we assume a fixed universe AΣ of architectural ele-
ments, i.e., a finite set of components and connectors forΣ typed byConnT ∪CompT .
For a given architectural element c ∈ AΣ , we denote its type as type(c).

A configuration is a graph that captures the topology of a feasible structure of the
system in the style.

Definition 2 (Configuration). A configuration in an architectural style (Σ, CS), given
a fixed universe of architectural elements AΣ , is a graph G = (N , E) satisfying the
constraints imposed by CS , where: N is a set of nodes, such that N ⊆ AΣ , and E is a
set of pairs typed by P ×R that represent attachments between ports and roles.

A system state is the combination of a system configuration, along with an assignment
of values for the properties of the nodes in the configuration graph.

Definition 3 (Σ-system State). A Σ-system state s is a pair (G, λ), where G is a sys-
tem configuration, and λ is a function that assigns a value Jc.pKs in the domain of
dtype(κ.p) to every pair c.p, such that c is a node of G, κ = type(c), and p ∈ Π(κ).
The set of all Σ-system states is denoted by SΣ .

Example 1. We can characterize the family of TAS systems by a style with the follow-
ing architectural signature:
CompT = {MedicalServiceT,DrugServiceT,AlarmServiceT, AssistanceServiceT}
ConnT = {HttpConnT}
Π = {(MedicalServiceT, {FailRate,RespTime,Cost}), . . .}
Λ = { (MedicalServiceT, {analyzeDataPS}), (HttpConnT, {CallerR,CalleeR}),
(AssistanceServiceT, {changeDrugPTS, changeDosePTS, sendAlarmPTS, analyzeDataPTS}),
(DrugServiceT, {changeDrugPD, changeDosePD}), (AlarmServiceT, {sendAlarmPAS}) }

Employing the elements of that signature, we can specify a set of structural con-
straints that the style imposes on valid configurations (c.f. Listing 1.1).

Figure 3 depicts a sample TAS configuration with service instances TAS1, S1, D1,
and AS2 (c.f. Fig. 2.a). The connectors are instances of the http connector type (Http-
ConnT) for each of the operations that are invoked by the assistance service TAS1 to
change drug type or dose in D1, invoke an alarm in AS2, and analyze patient data on
S1, connecting the corresponding ports on the component instances.



4.2 Behavior

!"#$

%

!"#$

%"&&'&()*+,#,-.'+,!,!/

#$

%

#$

%0,1'+)2#,-.'+,!,!/

3$

%

3$

%3-45#,-.'+,!,!/

"#6

%

"#6

%"2)-7#,-.'+,!,!/

)*)289,3)()!#$:#$

%;((<=>**!/

+?)*5,3>&,!#$:3$

%;((<=>**!/

+?)*5,3-45!#$:3$

%;((<=>**!/
<->+,&&@,A4,&(

%;((<=>**!/

B>-(

=>**,+(>-

=>7<>*,*(

C,5,*1

=)22,-

=)22,-

=)22,-

=)22,,

=)22,,

=)22,,
+?)*5,3-45!#$ +?)*5,3-453$

+?)*5,3>&,!#$ +?)*5,3>&,3$

&,*1"2)-7!#$ &,*1"2)-7"#6

)*)289,3)()!#$

)*)289,3)()#$

&,*1"2)-7!#$:"#6

%;((<=>**!/

=)22,,

=)22,-

Fig. 3. Sample TAS configuration.

To extend our formalization of ar-
chitectural style with behaviors,
we introduce the notion of behav-
ioral type, characterized as a state
machine that captures the abstract
behavior of an architectural type in
a given style.

Our instantiation of behavioral
type is inspired by discrete-time
Markov chains (DTMC), although
it can be easily adapted to other
formalisms like Markov decision
processes (MDP) or probabilistic
timed automata (PTA) to capture
aspects such as fully nondeterministic choices or continuous time.

Definition 4 (Behavioral Type). The behavioral type of an architectural type κ ∈
CompT ∪ ConnT is a tuple (Sκ, si, PΛ), where Sκ is κ’s state space, characterized
by the set of all possible value assignments for properties Π(κ), si ∈ Sκ is an initial
state, and PΛ : Sκ × Sκ → [0, 1] × (Λ(κ) ∪ {⊥}) is a transition probability matrix
extended with ports (if κ is a component) or roles (when κ is a connector).

In the definition above, each element PΛ(s, s′) yields: (i) the probability of making a
transition from state s to state s′, and (ii) the port/role (if any) on which the architectural
element typed by κ interacts with its environment when the transition between s and
s′ occurs. From a behavioral standpoint, ports and roles define potential synchroniza-
tion points for the interaction of different architectural elements in a configuration. We
denote the behavioral type of an architecture element c ∈ AΣ as btype(c).
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Fig. 4. AssistanceServiceT and MedicalServiceT behavioral types.

Example 2. Figure 4 depicts the abstract behavior specification of the AssistanceSer-
viceT and MedicalServiceT architectural types. Transition labels represent internal
actions, which can be internal to the component (e.g., pickTask after the initial state
in the assistance service), whereas transition labels between brackets denote potential
interactions with the environment. Branching transitions (denoted by a circle) indicate
a probabilistic choice, where each branch is labeled by a probability (e.g., the medi-
cal service captures the probability of the service invocation failing with a branching



transition parameterized by the value of property MedicalServiceT.FailRate and its
complementary). Unlabeled branching transitions implicitly specify a uniform proba-
bility distribution. Non-branching transitions indicate probability 1.

The behavior model of a configuration is obtained by instantiating the behavioral type
all architecture elements in the configuration (c.f. Section 5.2), and performing the par-
allel composition (with synchronization on shared actions) of the resulting processes.

Definition 5 (Configuration Behavior Model). Given an architecture configuration
G = (N = {n1, . . . , nn}, E), we define its behavior model as the parallel composition
(bn1|| . . . ||bnn), where bni∈{1..|N |} is an instance of the behavioral type btype(ni).

4.3 Qualities

In addition to structure and behavior, we also need to capture quantitative aspects of
systems to enable the analysis of their qualities. To achieve this goal, we employ re-
ward structures to quantify information that emerges from the combined behavior of
the different elements in the system and is not explicitly captured by properties in ar-
chitectural elements. Two examples are the overall number of lost requests, and average
end-to-end response time of a system, which could be employed to analyze run-time
quality attributes such as reliability and performance, respectively.

Definition 6 (Reward Structure). A reward structure for a system with architectural
signature Σ is a pair (ρ, ι), where ρ : SΣ → R≥0 is a function that assigns rewards to
system state, and ι : SΣ × SΣ → R≥0 is a function assigning rewards to transitions.

State reward ρ(s) is acquired in state s ∈ SΣ per time step, i.e., each time that the
system spends one time step in s, the reward accrues ρ(s). In contrast, ι(s, s′) is the
reward acquired every time that a transition between s and s′ occurs. Our approach is
agnostic with respect to the way in which reward structures are defined. However, in this
paper we assume that rewards over states are defined as sets of pairs (pd, r), where pd
is a predicate over states SΣ , and r ∈ R≥0 is the accrued reward when s ∈ SΣ |= pd.
We consider transition rewards as sets of pairs (p, r), in which p ∈ P is a port type, and
reward r ∈ R≥0 is accrued when an interaction over a port of type p occurs.

Example 3. To compute the cost of operating a TAS configuration, we define a reward
structure that accrues the cost of invoking each of the services in a configuration as:
(ρ, ι)=(∅, {(̄DrugServiceT::changeDrugPD, DrugServiceT.Cost), (DrugServiceT::change-
DosePD, DrugServiceT.Cost), (AlarmServiceT::sendAlarmPAS, AlarmServiceT.Cost),
(MedicalServiceT::analyzeDataPS, MedicalServiceT.Cost)}).

5 Exploring the Design Space

5.1 Configuration Generation

Generating structurally correct configurations entails: (i) formalizing a set of structural
style constraints that all configurations must respect, (ii) instantiating the constraints for



a specific set of architecture entities into a concrete relational model, and (iii) synthe-
sizing the configurations that satisfy the constraints in the relational model.

Formalizing Structural Constraints This is a manual process that can be carried out
by producing a specification in an ADL like Acme, and then translated automatically to
an Alloy specification [14], or directly producing a specification in the latter. Listing 1.1
shows an excerpt of the encoding of the TAS architectural style in Alloy. Lines 1-4
encode the definitions of abstract architectural elements that belong to the architectural
signature like components or connectors, whereas lines 6-8 show a part of the encoding
of general constraints of the architecture (e.g., a component cannot be connected to
itself). The service types in TAS are encoded as signatures that extend the base signature
Component defined in line 1. For instance, the AssistanceServiceT component type
definition (lines 16-20) includes constraints indicating that it must contain at least one
port for invoking every possible operation type on other services (lines 17-18), and that
those invocation port types can only belong to that type of component (lines 19-20).

1 abstract sig Component {ports: set Port} // Component and Connector abstract definition
2 abstract sig Connector {roles: set Role}
3 sig Port {component: Component}
4 sig Role {connector: Connector, attachment: one Port}
5 // General constraints of the architecture
6 fact { all p:Port | one r:Role | p in r.attachment } // A port is connected to only one role
7 pred conn[c: Component, c’:Component] { some r,r’:Role | r!=r’ and r.attachment.component=c and

r’.attachment.component=c’ and r.connector=r’.connector } // Two components are connected
8 fact { all c,c’:Component | c=c’ => not conn[c,c’] } // A component must not be connected to itself
9 ... // TAS−specific definitions

10 pred invokes[p:Port, p’:Port] { one r:Caller,r’:Callee | r.attachment=p and r’.attachment=p’ and
r.connector=r’.connector } // A port (p) carries out invocations on another one (p’)

11 pred invokesOnly[p:Port, p’:Port] { invokes[p,p’] and all p’’:Port−p’ | not invokes[p,p’’] } // A port carries
out invocations ∗only∗ on another specific port

12 abstract sig HttpConnT extends Connector {} // ∗∗∗ HTTP Connector ∗∗∗
13 abstract sig Caller, Callee extends Role{} // An http connector has a caller and a callee role
14 fact { all c:HttpConnT | one r:Caller, r’:Callee | r in c.roles and r’ in c.roles }
15 fact { all c:HttpConnT | #c.roles=2 } // Every http connector has ∗exactly∗ two roles
16 one abstract sig AssistanceServiceT extends Component{} // ∗∗∗ Tele Assistance Service ∗∗∗
17 { changeDrugPTS & ports != none and changeDosePTS & ports != none and sendAlarmPTS & ports !=

none and analyzeDataPTS & ports != none} // A TAS has one port for every possible operation
18 abstract sig changeDrugPTS, changeDosePTS, sendAlarmPTS, analyzeDataPTS extends Port{}
19 fact { all p:changeDrugPTS+changeDosePTS+sendAlarmPTS+analyzeDataPTS | p.component in

AssistanceServiceT }
20 fact { all c:AssistanceServiceT | c.ports in

changeDrugPTS+changeDosePTS+sendAlarmPTS+analyzeDataPTS }
21 abstract sig DrugServiceT extends Component{ } // ∗∗∗ Drug Service ∗∗∗
22 { changeDrugPD & ports != none and changeDosePD & ports != none and #ports=2 }
23 abstract sig changeDrugPD, changeDosePD extends Port{}
24 fact { all p:changeDrugPD+changeDosePD | p.component in DrugServiceT }
25 fact { all c:DrugServiceT | c.ports in changeDrugPD+changeDosePD }
26 ... // General structure (allowed invocations among ports in different components)
27 fact { all pt:analyzeDataPTS | one ps:analyzeDataPS | invokesOnly[pt,ps] }
28 fact { all pt:changeDrugPTS | one pd:changeDrugPD | invokesOnly[pt,pd] }
29 ...
30 fact { all t:AssistanceServiceT | one d:DrugServiceT | conn[t,d] } // A TAS connects to ∗only one∗ DS

Listing 1.1. TAS architecture style constraint specification in Alloy (excerpt).
Instantiating Constraints Once the set of structural constraints of the style is formal-
ized, we can instantiate a full relational model that will enable us to apply these con-
straints to a set of concrete instances that realize concrete configurations. Listing 1.2
presents an excerpt of concrete components in TAS that correspond to alternative im-
plementations of services available from various providers. This specification includes



the name of the concrete service implementation, along with its type, which matches
one of the abstract types in the specification of structural constraints in Listing 1.1, and
information related to its quality attributes (Fig 2.a).

Entity definitions are employed to automatically extend the constraints into a full
relational model that includes concrete instances of the different entities in the sys-
tem. Listing 1.3 shows the Alloy code generated to complement the specification in
Listing 1.1. Every instance is encoded into a signature that extends its corresponding
abstract type. The definition of every signature is preceded by a lone quantifier, indicat-
ing that the presence of a specific instance in a valid system configuration is optional.
Quality attribute information is not used to analyze structural aspects of the system,
and hence is abstracted in the Alloy specification. These are used later for behavioral
configuration model generation (Section 5.2).

S1 [type: MedicalServiceT, failureRate: 0.06, responseTime: 22, cost: 9.8];
AS1 [type: AlarmServiceT, failureRate: 0.3, responseTime: 11, cost: 4.1];

Listing 1.2. Concrete service implementation definitions for TAS (excerpt).

lone sig D1 extends DrugServiceT{}
lone sig S1, S2, S3, S4, S5 extends MedicalServiceT{}
lone sig AS1, AS2, AS3 extends AlarmServiceT{}
lone sig TAS1 extends AssistanceServiceT{}

Listing 1.3. Concrete service implementation definitions for TAS in Alloy.
Configuration Synthesis Once a model instantiating the style constraints is available,
we use the Alloy analyzer to find all relational models that describe configurations
satisfying the constraints imposed by the style and employ a set of concrete architecture
elements (e.g., TAS service implementations).

To do that, we invoke the run command and impose a constraint on the cardinality
of the different sets of entities (determined by the maximum available number of com-
ponents of each type) using an additional predicate (Listing 1.4). As an example, we
run the predicate TAS for a maximum number of 10 instances of each signature in the
model, and impose a restriction of one implementation per type of service, except for
AlarmServiceT, for which we impose a maximum of 2 instances.

pred TAS {#DrugServiceT=1 and #AlarmServiceT=2 and #MedicalServiceT=1}
run TAS for 10

Listing 1.4. Synthesizing TAS configurations in Alloy.
Figure 5 shows two TAS configurations, generated from the Alloy model described
in this section. The structure on the left is analogous to the one depicted in Figure 3,
in which TAS is able to invoke a service of each type. However, the structure on the
right describes a configuration in which TAS can invoke alarm services AS2 and AS3,
potentially increasing reliability and performance when an alarm is raised, but probably
at the expense of a higher cost. This second configuration results from the flexibility in
the cardinality constraints imposed by Listing 1.4, line 1, which allows more than one
alarm service to be employed in a configuration.

At this point, we can generate alternative configurations for a system in a given
style, employing a set of concrete elements as building blocks for the configuration.
However, if we want to be able to determine which configurations satisfy some criteria
defined over the behavior or the qualities of the solution, we need to include additional
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Fig. 5. Graphical representation for two TAS configurations synthesized using Alloy.

specifications that go beyond structure. In the next section, we describe how to expand
structures into behavioral models that are amenable to analysis that takes into consider-
ation behavioral and quantitative aspects of system configurations.

5.2 Configuration Behavior Model Generation

The behavior model of a configuration can be obtained by instantiating the behavioral
type of each of the architecture elements in the configuration, and performing the par-
allel composition of the resulting processes. Algorithm 5.2 receives as input the con-
figuration of the system G = (N , E) and the set of behavioral types for the different
architecture elements β, and returns the configuration behavior model for G.

Algorithm 1 Configuration behavior model generation
1: B := ∅
2: for all n ∈ N do
3: Pν := ∅
4: P∗Λ := {t ∈ PΛ | btype(n) = (Sκ, si, PΛ) ∧ ip(t) 6= ⊥}
5: for all t ∈ P∗Λ do
6: At := {(p, r) ∈ E | (parent(p) = n ∨ parent(r) = n) ∧

iptype(p) = ip(t)}
7: for all at ∈ At do
8: Pν := Pν ∪ {states(t) 7→ (prob(t)/|At|, label(at))}
9: end for
10: end for
11: B := B ∪ {(Sκ, si, (PΛ\P∗Λ) ∪ Pν)}
12: end for
13: return (b1|| . . . ||bn) • bi∈{1..|N|} ∈ B

The algorithm starts with
an empty set of behaviors
B (line 1), and incremen-
tally adds the behavior of
each node in the configu-
ration graph, which is in-
stanced by: (1) Determining
the set of transitions P ∗Λ of
the behavioral type that in-
teract with the environment
(line 4). Function ip returns
the interaction point (port or
role type) associated with every element of PΛ in the behavioral type. btype returns the
behavioral type of an architecture element. (2) For each transition identified in (1),
creating an instance of the transition for every other node to which the current one is
attached in the configuration (lines 6-9). In line 6, the set of attachments in the con-
figuration graph for the current node is identified. Here, interaction point type function
iptype identifies the type of a port or role, whereas parent returns the node that a
port or role belongs to. Line 8 adds new transition instances, adjusting the probability
contribution of the transition according to the number of instances created for a given
transition in P ∗Λ.2 Function states return the pair of source and target state for a transi-

2 The semantics of behavioral types are inspired by discrete-time Markov chains, so the original
probability of the transition prob(t) is divided equally among transition instances.



tion, whereas prob returns its associated probability. Function label generates a unique
label for an attachment, defined as a pair port-role. (3) Creating a new behavior instance
incorporating the original elements of btype(n) (line 11). This process describes the be-
havior of graph node n, in which transitions identified in (1) are substituted by the new
set of transition instances Pν identified in (2).
The algorithm finishes returning the parallel composition of the processes in B.

5.3 Quantification, Filtering and Ranking

After obtaining the behavioral models for the possible configurations of the system, we
can assess behavioral, as well as quantitative constraints and properties on them. This
analysis might also include probabilistic aspects in the behavioral and quantitative prop-
erties (e.g., reliability of services on which TAS relies), so we propose to employ prob-
abilistic temporal logics to capture them. We illustrate formalization using PCTL [15],
although these specifications can be adapted to other types of probabilistic temporal
logic for behavioral descriptions inspired by other formalisms (e.g., continuous-time
Markov chains, probabilistic timed automata).

This step identifies configurations that do not meet a set of properties and constraints
imposed by designers, which may include: (i) behavioral properties (e.g., safety, live-
ness), and (ii) quantitative constraints (e.g., on quality attributes).

Example 4. We want to assess the overall response time, reliability, and cost of configu-
rations in TAS. We define serviceOK , changeDoseOK ∨ changeDrugOK ∨ sendAlarmOK

as a predicate indicating that TAS provided some of the possible service types correctly.
Moreover, we assume the predicate timeout captures failed service invocation.

Based on these predicates, we define properties Rrt=?[F (serviceOK ∨ timeout)]
and Rcost=?[F (serviceOK ∨ timeout)] that employ the reward quantifier of PCTL to
quantify the expected response time and cost of a configuration by accruing the re-
sponse time and cost rewards rt and cost, respectively. Property 1− P=?[F serviceOK]
quantifies the overall reliability of a configuration (i.e., that the system will fail to pro-
vide correct service) by employing the probabilistic quantifier of PCTL.
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Fig. 6. TAS configurations constrained by: (a) cost and reliability (left), (b) cost and performance
(center), and (c) performance and reliability (right).

We present in this section our experimental results. To test our proposal, we ran
a prototype implementation of our approach that employed Alloy 4.2 for synthesizing



configurations and PRISM 4.3.1 for behavioral and quantitative analysis. The experi-
ment was run on an Intel Core i7 2.8GHz with 16 GB RAM. We ran our analysis to
compute the set of feasible solutions for TAS that meet the set of structural constraints
described in Listing 1.1, using the set of service implementations described in Fig. 2.a.

Space size and computation time. Table 1 shows that the overall computation time
for generating and analyzing the solution space was approximately 9 seconds, out of
which 15% was used to generate 90 configurations (Alloy) and 270 behavioral configu-
ration models (90 x 3 possible values for the parameter that specifies number of retries
after a failed service invocation). Checking deadlock freeness and the three quantitative
properties defined in Example 4 took approximately 85% of the time.

# Configurations 90
# Configuration behavioral models 270

Configuration behavior model generation time 1.361 s. ( 15.1 %)
Configuration behavioral model checking time (PRISM) 7.66 s. ( 84.9 %)
Total computation time 9.021 s.

Table 1. Problem instance size and computation time.

Analysis results. The plot on
the left of Figure 6 shows the
best response time that can be
achieved in a system configu-
ration when the cost and fail-
ure rate are constrained to the
thresholds on the horizontal axes. As expected, we observe that lower response times
and failure rates incur higher cost. This is consistent with the properties of service
providers (better response times and reliability are more expensive), and the fact that
having the flexibity to add redundant services (e.g., alarm service) to increase reliability
and reduce response time increases cost. Our technique enables us to identify the thresh-
olds in cost and failure rate for which there are no system configurations satisfying style
constraints (in the range ≤ 19 usd – the red squares on the bottom plane).

The plot in the center shows how failure rate of configurations increases noticeably
with lower costs, whereas with high cost, it is fairly stable and does not vary much with
overall response time, except for very low values.

Finally, the plot on the right shows the overall cost of configurations for different
levels of response time and reliability. As expected, we can observe how higher response
times and failure rates correspond to lower costs, whereas peaks in cost are reached with
lowest failure rates and response times.

An architect can take these results and make informed design decisions based, for
instance, on the available budget for the project and legal constraints on the level of
reliability and timeliness demanded of systems for first-aid response.

7 Related Work

Work related to our proposal can be categorized into: (i) formalization of architectural
styles, and (ii) architecture-based quantitative analysis and optimization.

(1) Formalization of architectural styles: Formalization of styles has been explored
to define formal semantics of modeling languages. Kim and Garlan [14] propose an
automatic translation from Acme into Alloy relational models on which they verify
properties implied by the style. Wong et al. [26] also employ Alloy to check the con-
sistency of rules among multiple styles that might be combined in complex systems. In
addition to property verification, other approaches also explore constraint solving for



synthesizing architectures [3,19]. Bagheri and Sullivan [3] employ architecture synthe-
sis for generating architectural models from architecture-independent application mod-
els, emphasizing the separation of style choices from application description. In con-
trast, Maoz et al. [19] propose an approach that employs synthesis to merge different
partial component-and-connector views. All the aforementioned approaches focus on
structural properties and differ from ours in that they do not consider behavioral, quan-
titative, or probabilistic aspects of system descriptions, being unable to systematically
analyze nondeterministic system behaviors and their effects on quality attributes.

(2) Architecture-based quantitative analysis and optimization: Other approaches fo-
cus on analyzing and optimizing quantitative aspects of architectures using mechanisms
that include stochastic search and/or Pareto analysis [1,5,20]. PerOpteryx [20] takes as
input an architectural model described using the Palladio component model and tries to
automatically improve it by searching for pareto-optimal solutions employing a genetic
algorithm. ArcheOpterix [1] uses an evolutionary algorithm for optimizing the archi-
tecture of embedded systems. DeepCompass [5] is a framework that analyzes different
architectural alternatives along the dimensions of performance and cost to find pareto-
optimal solutions. While these and other approaches in systems engineering (e.g., [17])
can give estimates and optimize quantitative aspects of designs, they do not support
synthesis of configurations (which have to be manually specified), and do not provide
any formal guarantees concerning the behavior or quantitative properties of the variants.

Other approaches [4, 7] have recently combined architecture synthesis with simu-
lation and dynamic analysis to provide estimates of quantitative properties of system
variants. TradeMaker [4] synthesizes design spaces for object-relational database map-
pings, in which individual designs are subject to static and dynamic analysis to extract
performance metrics. Dwivedi et al. [7] propose using architectural models coupled
with automated design space generation for making fidelity and timeliness tradeoffs.
These approaches share with ours the idea of synthesizing a solution space from a set
of constraints and analyzing individual solutions independently. However, they do not
explore exhaustively the state space of individual solutions and hence are unable to
provide guarantees about solution behaviors or their interaction with system qualities.

8 Conclusions and Future Work

We have presented an approach to help architects explore the design space of families
of software systems, giving them a tool to make informed design decisions by providing
insight into the formal guarantees of solutions and tradeoffs among their qualities. Our
approach enables the analysis of behavioral (i.e., safety, liveness) and quality properties
(e.g., quantitative constraints, optimality) of solutions, considering interactions among
them, as well as uncertainties captured via probabilities in models.

Concerning generality, the current embodiment of the approach is inspired by a
specific model of formal architectural description (Acme) and behavioral formalism
(DTMC). However, most constructs employed to formalize the architectural style are
fairly standard and the approach for synthesis of configurations is adaptable to other
languages and underlying models. In terms of behavior descriptions, DTMCs constrain
the analysis to a discrete time model and average case of probabilities/rewards, although



straightforward adaptations can be carried out to adapt behavioral analysis to other
probabilistic behavior descriptions such as MDPs (for worst-case scenario analysis)
or PTAs for finer-grained time analysis. We will explore these areas in future work.

Moreover, although in this paper we have focused on spaces in which design de-
cisions are dominated by the selection and composition of pre-existing components,
design spaces in which a non-trivial part of the system components have to be built
from scratch have been left out of scope. We plan on extending our approach for such
systems by exploring probabilistic parametric model checking techniques [10] to auto-
matically find the ranges for quality attribute values that components to be implemented
would have to provide to satisfy global system constraints on qualities.

A third direction for future work concerns scalability. The degree of formal assur-
ance on configurations provided by the approach is computationally expensive, and
entails risks on the computation cost of configuration synthesis (derived from the cost
of finding instances of configurations in a rich configuration space) and configuration
behavior analysis (derived from exploring potentially large state spaces of individual
configuration behavior). These risks can be mitigated by exploiting the hierarchical
structure and relations that are naturally present in complex architectures in which com-
ponents interact in a structured way. Hence, synthesis of different subsystems with local
constraints can be done independently and then composed, reducing the cost of config-
uration synthesis. This approach has been successfully used in other works that exploit
mappings between specifications defined at different levels of abstraction [13], or in-
cremental analysis techniques [2]. This mitigation also allows exploiting parallelism in
the analysis, during which the behavior of configurations of subsystems can be indepen-
dently analyzed using assume-guarantee compositional quantitative verification [12]. In
this case, the computation time for the analysis would be dominated by the largest sub-
system that can be independently analyzed (prior experience with PRISM suggest times
under 10s for configurations of 250+ components, including probabilistic behavior [6]).
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