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Abstract

Development of modern Cyber-Physical Systems (CPS) re-

lies on a number of analysis tools to verify critical prop-

erties. The Architecture Analysis and Design Language

(AADL) standard provides a common architectural model

to which multiple CPS analyses can be applied. Unfortu-

nately, interaction between these analyses can invalidate

their results. In this paper we present ACTIVE, a tool de-

veloped within the OSATE/AADL infrastructure to en-

sure correct analysis interaction. We describe the prob-

lems that occur when multiple analyses are applied to an

AADL model and how these problems invalidate analysis

results. Interactions between analyses, implemented as OS-

ATE plugins, are formally described in ACTIVE in order to

enable automatic verification. In particular, these interac-

tions are captured in an analysis contract consisting of in-

puts, outputs, assumptions, and guarantees. The inputs and

outputs help determine the correct order of execution of

the plugins. Assumptions capture the conditions that must

be valid in order to execute an analysis plugin, while guar-

antees are conditions that are expected to be valid after-

wards. ACTIVE allows the use of any generic verification

tool (e.g., a model checker) to validate these conditions. To

coordinate these activities our tool uses two components:

ACTIVE EXECUTER and ACTIVE VERIFIER. ACTIVE EX-

ECUTER invokes the analysis plugins in the required or-

der and uses ACTIVE VERIFIER to check assumptions and

guarantees. ACTIVE VERIFIER identifies and executes the

verification tool that needs to be invoked based on the tar-

get formula. Together, they ensure that plugins are always

executed in the correct order and under the correct con-

ditions, guaranteeing correct results. To the best of our

knowledge, ACTIVE is the first extensible framework that

integrates independently-developed analysis plugins ensur-

ing provably-correct interactions.
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1. Introduction

Development of Cyber-Physical Systems (CPS) relies on

analysis tools that use their own specialized abstractions.

These abstractions, however, interact with each other. Ne-

glecting these interactions leads to incorrect analysis re-

sults and design choices. For instance, selecting an other-

wise valid scheduling policy may violate the assumptions

of a functional correctness analysis (e.g., model checking)

and lead to a deadlock-prone system being declared safe.

Alternatively, such a scheduling policy could violate the

assumptions of a processor frequency scaling analysis and

lead to a non-schedulable allocation of tasks. Similarly,

modifying a controller algorithm may alter its execution

time and periodicity, thereby affecting schedulability [3].

Verification tools are particularly sensitive to their un-

derlying domain abstractions, and incorrect application of

these abstractions leads to invalid results. For instance,

the original schedulability equations for Rate-Monotonic

Scheduling (RMS) [6] use task abstractions that both re-

strict these tasks to be independent of one another and to

forbid them to pause their computation. The application of

this abstraction to tasks that do not honor these restrictions

leads to incorrect schedulability results via RMS.

Virtual integration aims at addressing the issue of de-

pendent abstractions by providing methods to resolve de-

pendencies and conflicts among tools and models used in

CPS engineering [7]. In our recent work we developed an

approach for virtual integration based on the specification

and verification of contracts between analysis tools [8].

Our approach allows us to describe and verify the interac-

tions between analyses from different scientific domains.

Our contract verification approach relies on specifica-

tion of verification domains, which are comprised of a

set of symbols and their interpretation that enables us to

describe analysis contracts from that domain in a pre-

cise manner. Examples of verification domains include the

scheduling and battery domains, which are concerned with

analyses of properties of real-time threads (e.g., schedula-

bility) and batteries (e.g., thermal runaway), respectively.

Formally, a verification domain is a signature to a mixed-

logic language in which dependencies, assumptions, and

guarantees of each analysis, that belongs to this domain,

are specified as a contract. These contracts are algorithmi-

cally evaluated against a system architecture to verify if the

system satisfies the assumptions of the analyses, and if the

contracts of the analyses are compatible with one another.



Previously, we focused [8] on the theoretical founda-

tions of the analysis contract approach. However, a num-

ber of significant practical issues were not addressed. For

instance, the initialization and execution of CPS analysis

and verification tools have many peculiarities. For exam-

ple, many user-facing tools cannot be easily incorporated

into a bigger toolchain. At the same time, specifications of

verification domains and contracts must be reused to avoid

unnecessary duplication, and, on the other hand, need to

be adjusted correctly to each model’s context. The missing

part is a virtual integration platform to manage tool inter-

actions. One key requirement for such a platform is exten-

sibility: adding new tools and verification domains should

be simple so that analysis integration is practical.

In this paper, we present our tool ACTIVE
1 (Analysis

Contract Integration Verifier), which implements the anal-

ysis integration approach. ACTIVE was developed on top

of the OSATE2 2 toolkit, and uses the AADL [4] archi-

tectural description language. AADL offers a convenient

way to represent the structural aspects of the system that

determine critical quality attributes in real-time systems.

Moreover, AADL provides an annex mechanism to embed

custom sublanguages in its models. We use an AADL an-

nex to define a mixed specification language that includes

first-order logic and Linear Temporal Logic (LTL) [9] to

describe both static and dynamic properties of the system.

This allows us to use state-of-the-art verifiers that target

different parts of the specification.

Given that our goal is to develop an extensible platform

for virtual integration of CPS analyses, we incorporate sev-

eral analysis tools (e.g., a bin packing algorithm for thread-

to-processor allocation) and contract verifiers (like SMT

and Spin) into ACTIVE. To handle tool integration, ACTIVE

includes (i) a language to describe analysis contracts, (ii)

a mechanism to execute analyses in the correct order, and

(iii) a contract verification engine to verify if the analysis

contracts hold. All three parts are extensible with new ver-

ification domains (e.g., controller simulation) and types of

verification (e.g., probabilistic model checking).

The rest of the paper is organized as follows. In Section

2 we break down and discuss the management of analysis

tool interactions on the example of AADL analysis plugins.

Section 3 focuses on the representation of analysis interac-

tions in ACTIVE, while Section 4 and 5 demonstrate our

solutions to behavioral challenges of using multiple analy-

sis and verification tools. Section 6 concludes this paper.

2. Managing Interaction of CPS Analysis

Plugins

AADL provides a description language to capture main

software and hardware structures of a CPS (e.g., threads

and processors) and subsystems they belong to, along with

connections between structures and subsystems. Compo-

nents are annotated with properties from various scientific

domains. Examples of such properties include thread pe-

riod, processor frequency, and scheduling policy (all from

1 Can be downloaded at https://github.com/bisc/active
2 https://wiki.sei.cmu.edu/aadl/index.php/Osate_2

the real-time scheduling domain), and battery dimensions,

cell scheduling algorithm, and required battery voltage

(from the battery domain). A system designer defines com-

ponent types along with their subcomponents, interconnec-

tions, and properties to create the AADL declarative model

of a system. This model is then transformed into an AADL

instance model – an XML-based representation of the ac-

tual system, rather than component types.

In OSATE, analysis algorithms are implemented as plu-

gins that have access to both the declarative and the in-

stance AADL models. AADL allows designers to augment

these models with tool-specific descriptions known as an-

nexes that define sublanguages embedded in AADL de-

scriptions. For example, the error model plugin [4] relies

on an annex to specify error sources and propagations. It

reads components and properties from the instance model

and error annex specifications from the declarative model

to produce, for example, a fault impact report.

While OSATE supports rapid development of analysis

plugins, it does not support controlling undesirable inter-

actions between different plugins in order to prevent incor-

rect results. In particular, OSATE provides extension points

to add annexes (via sub-language grammars and compil-

ers) and analysis invocation actions (via toolbar buttons or

menu items). Once a plugin is invoked, it is given access to

AADL models to carry out the desired operations and re-

turn the control back to the user. Each analysis plugin thus

tends to focus on a specific technical concern, accessing

components, properties, and annex clauses relevant to that

concern, but ignoring the effects of other plugins.

The lack of support to capture and control the effects

that plugins have on each other can lead to incorrect results.

For instance, a plugin that modifies the thread-to-processor

allocation might invalidate the result of any prior schedula-

bility plugin applied to the affected threads and processors.

Similarly, if a plugin depends on the scheduling policy of

a processor (say Rate-Monotonic Scheduling) and another

plugin modifies this policy (to, say, Earliest-Deadline First)

the results could be invalidated. Worst of all, more often

than not, these errors go unnoticed given the lack of an

infrastructure to capture and verify these subtle plugin in-

teractions. Unfortunately, OSATE currently lacks ways to

manage the co-operative execution of analyses, let alone

verify their assumptions formally.

To address the issue of CPS analysis interaction system-

atically, an integration tool needs to manage analysis plu-

gins at the level of the abstractions that these analyses use.

We identify three parts of this problem: (i) describing plu-

gin interactions with enough detail to not only capture real

conflicts but also avoid signaling false ones; (ii) executing

plugins in a right sequence and at a right time; and (iii)

verifying applicability assumptions of analysis plugins. All

three parts need to be addressed in an extensible way so as

to not lose the benefits of the flexible OSATE design. We

go deeper into each part of the problem below.

2.1 Representing Plugin Interactions

In order to enable reasoning about plugin interactions, we

must model these interactions by representing data flows



between the plugins and the AADL models. In other words,

we must identify the parts of the model that different plu-

gins change. This dataflow description would allow us to

prevent the incorrect order of plugin execution where the

output from one plugin is invalidated by the output from

another plugin executed afterwards.

Also, we must represent the assumptions a plugin

makes about the model under analysis. For example, sev-

eral implementations of schedulability tests rely on rate-

monotonic assumptions without stating them explicitly.

More importantly, plugin assumptions may be related to the

system behavior rather than its structure. Thus predicates

over only the structural models in AADL are inadequate

for expressing such assumptions. For example, one plugin

may assume that a task may only be preempted by others

with shorter deadline than its own. This assumption is triv-

ially satisfied if we used Deadline Monotonic Scheduling.

However, it could also be satisfied with other scheduling

policies under certain specific system configurations. This

can only be discovered with enough information about the

behavior of the system with the different policies.

Finally, the way an analysis is identified in a specifica-

tion must reflect the operations performed by the analysis

on a model precisely. Many plugins come with several re-

lated operations; for example, a resource allocation plugin

provides three operations: allocation of threads to proces-

sors (what we further call bin packing), a utilization-based

schedulability test, and a priority inversion test. Just men-

tioning the name of the resource allocation plugin does not

differentiate the operations properly.

One of the biggest challenges to represent plugin inter-

actions come from the extensibility requirement. First of

all, we must be able to change the plugin interaction spec-

ification independently from the plugin implementation.

This is because the AADL semantics allows different plu-

gins to have slightly different interpretations of the prop-

erties. For instance, we have seen AADL models where

threads are assumed to be periodic by default while other

models explicitly require the use of the Periodic value

in the Dispatch_Protocol property, and yet others

use the Hybrid value for the same property.

Another important aspect of the extensibility is the sup-

port of new domains that may introduce new types of com-

ponents, properties, or even behavioral specification con-

structs. For example, to introduce analyses for multi-cell

reconfigurable batteries, one would have to introduce a new

device type, with new AADL properties (such as battery

cell number and geometry), and runtime properties to cap-

ture dynamic cell connectivity. These changes must affect

only AADL models, and not the plugin integration tool.

2.2 Correct Plugin Execution

To ensure the correct execution of a plugin it is necessary

to respect its data dependencies and ensure that its assump-

tions are never violated as different plugins are executed.

In practice, a correct plugin execution implies the follow-

ing steps: (i) before the plugin is called we need to ensure

that all the other plugins have finished their work and com-

mitted their changes to the AADL model; (ii) the plugin

assumptions must be validated on the model on which the

plugin will be run; (iii) if an analysis plugin ends with an

error, the sequence of execution has to be stopped.

Many OSATE plugin are made with human user inter-

action in mind: they expect to be run from toolbars and

menus. Since OSATE discourages plugin interaction, it is

challenging to invoke plugins programmatically. Once a

plugin has been invoked, monitoring its progress is an-

other challenge: many plugins use tools external to OSATE,

without any feedback. The limited feedback mechanisms

in OSATE were also designed with a human user in mind,

making it difficult to monitor analysis execution and deter-

mine the time when it is safe to start the next analysis.

Like the specification, correct plugin execution needs to

be achieved with minimal changes to existing plugins and

the OSATE tool. Plugins still need to run individually on

user’s command, and major changes to their control flow

are not acceptable. OSATE cannot be profoundly modified

either. In particular, it is important to leave the option open

to run plugins without the proper integration in cases when

specifications have not been completed, or they do not hold.

2.3 Extensible Assumption Verification

An analysis plugin integration tool needs to use state-of-

the-art verifiers to ensure that analyses are only used when

they are known to produce correct results. Since the anal-

ysis plugin integration problem manifests itself in multiple

domains that contribute to CPS, verifiers need to be tai-

lored to domain-specific abstractions and applied in their

corresponding contexts. For example, a dynamic model of

a thread scheduler cannot be used to verify assumptions

about a flight controller behavior. In addition, given the ex-

istence of specifications involving static and dynamic prop-

erties of the system it is necessary to enable the verification

of both types of properties in a scalable way.

AADL models are hierarchical: a set of threads may be

composed in a thread group, which in turn contributes to a

software subsystem. A software subsystem may be part of

a computational subsystem, which also includes processors

and memory devices. Finally, the computational subsystem

is part of the whole system, which also includes physical

devices (such as rotors) and properties (such as mass).

Choice of a hierarchy is left up to the designer, allowing

multiple ways to describe the same system.

Unfortunately, many verifiers rely on their own system

decomposition, which may not agree with AADL. Tools for

timed automata verification, such as UPPAAL [5], use the

refinement relation rather than an arbitrary composition.

Hence, our challenge is to create mechanisms that use

verifiers (some of which are unknown yet) for a custom-

built AADL model at a proper level of hierarchy. Domain-

specific verifiers, for instance, need to access their relevant

abstractions without being aware of other components.

Management of analysis plugin interactions is a major

obstacle to creating an extensible platform for virtual in-

tegration of CPS analyses. Roughly corresponding to the

parts of this problem, the three following sections present

the main components of our tool ACTIVE. We view our so-

lutions from two positions: functionality – achieving their



goal correctly, and extensibility – allowing addition of new

elements, such as analyses and verifiers, to the platform.

3. Contract Language as AADL Annex

The location of the information that defines the interaction

between analysis plugins is critical to the extensibility of

our platform. We evaluated three potential locations: (i) in-

side the analysis plugin itself; (ii) in the OSATE tool; or

(iii) in the AADL model. Encapsulating the specification

inside the plugin has the benefit that the description always

travels with the plugin. On the other hand, storing the spec-

ification in a central database of specifications inside the

OSATE tool facilitates collaboration and reuse of contracts.

Unfortunately, both of this options diminish extensibility

given that the exact specification of the interactions may

change depending on the project and the plugins used in it,

as discussed in Section 2.1. That is, semantic variations in

the interpretation of AADL in a particular model need to

be accounted for without changing the plugin or OSATE.

In ACTIVE we use an AADL annex (like many analy-

sis plugins do) to represent analysis dependencies and as-

sumptions. In this case, an annex instance is attached to a

declarative AADL model and can be used whenever this

model, or any derived instance model, is used. We refer

to our analysis interaction specification as an analysis con-

tract. An analysis contract has the following parts:

• Name: names the analysis contract and the plugin wrap-

per to be called when an analysis is invoked (in Section

4 we explain analysis plugin wrappers in detail).

• Input: a comma-separated list of elements: AADL

component types (e.g., thread) and property names

(e.g., thread.Period). The property names are pre-

fixed with a component type to identify the dependency

more precisely. By including a component type in its in-

put, an analysis plugin declares that it accesses the set

of components; and by including a property, it declares

that it reads the property values from an instance model.

If a property is included as part of the input or output,

the related component is also included implicitly.

• Output: a list of same type of elements as that of the

input. The only difference is semantic: the analysis de-

clares that it changes the set of components or the val-

ues of a property. Although the specification of inputs

and outputs is in terms of AADL types, the changes are

meant to be done to the instance model.

• Assumes: a set of assumptions that must hold for an

analysis to be applicable. Each assumption is a logi-

cal formula, as explained below. Given that we may not

have a complete definition of when an analysis is appli-

cable, assumptions describe at least the sufficient condi-

tions of its applicability. If an analysis is always appli-

cable, this part can be omitted.

• Guarantees: a set of formulas that must hold on the

model after the analysis terminates. These formulas

are syntactically equivalent to the assumption formulas.

They can be used to satisfy the assumptions of other

contracts. In such a case, these assumptions do not need

to be reverified. However, if the guarantee are not met,

the assumptions of other contracts that depend on it

must be reverified.

Assumes and guarantees contract formulas have the fol-

lowing syntax in ACTIVE:

ContractFormula ::=

(

<Quan>

(<Var>:<Type> ’,’)+

( ’|’ <PredicateExpression> )?

’:’

)?

<LTLExpression>

Contract formulas consist of two subformulas: an op-

tional first-order quantification and a mandatory main ex-

pression, often written in LTL. In the first subformula,

<Quan> is a first-order quantifier, taking a value of ei-

ther forall or exists. <Var> introduces a quan-

tified variable name of an AADL component having

type Type. Variables are quantified over <Predicate-

Expression>, which is a logical predicate over the

AADL’s model components and properties with the

usual logical operators and, or, and not. The <LTL-

Expression> encodes a domain-specific behavioral

property using a combination of logical operators above

and the LTL modalities Globally G, Eventually F, and Un-

til U. However, if necessary, <LTLExpression> can be

limited to predicate logic.

The operator “:” is implicative when used in a

forall formula (where it denotes that “all variable valua-

tions that satisfy condition <PredicateExpression>

should also satisfy <LTLExpression>”) and conjunc-

tive when used in a exists formula (where it de-

notes that “all variable valuations that satisfy condition

<PredicateExpression> should also satisfy <LTL-

Expression>”). We choose our mixed-logic language

over Quantified LTL [9] because the latter prevents a

cleaner split of formulas between general-purpose SMT

solvers and domain-specific verifiers (see details in Section

5), and brings in unnecessary complexity.

Consider an example from the scheduling domain. Fig-

ure 1 shows a contract for a processor frequency scaling

analysis. The goal of this analysis is to minimize the pro-

cessor frequency to limit energy expenditure of the sys-

tem. It reads threads, processors, thread deadlines, and

thread bindings (allocations) to processors. It outputs the

CPU frequency. An implicit assumption of this analysis

is that threads run under the deadline monotonic schedul-

ing policy. This is captured in a formula stating that “ev-

ery pair of distinct threads allocated on the same proces-

sor should behave as if scheduled by a deadline-monotonic

policy.” The first part of the formula (before the colon) in-

dicates the condition for which all possible pairs of threads

should be evaluated. The second part (after the colon) is an

LTL expression that features a domain-specific predicate

CanPreempt, which is true in any runtime state iff t1 is

executing but t2 is ready to execute, but not executing.



Figure 1: A contract for frequency scaling analysis.

Figure 2: A contract for the LLREK analysis.

Figure 3: Annex subclause indicating the analyses to use.

Another example of an analysis is verification of safe

concurrency based on the tool LLREK [1]: the tool takes

source code of each thread annotated with safety assertions

and determines whether the assertions are met. A contract

for this analysis is shown in Figure 2. The analysis reads

a number of thread properties and outputs whether the sys-

tem was found to be safe with respect to its annotated asser-

tions. LLREK has two assumptions: first, implicit deadline

tasks, i.e., tasks whose relative deadlines are equal to their

periods; second, it assumes fixed-priority scheduling, i.e.,

thread pre-emption is acyclic. In other words, if thread t1

preempts thread t2, then t2 never preempts t1. Other ex-

amples of contracts, for instance for electric and thermal

analysis of multi-cell batteries, can be found in [8].

To improve convenience and reuse of contracts, we sep-

arate the definition of contracts (as in Figures 1 and 2),

which we call a library of contracts, from the application

of these contracts to a system, which we call a usage sub-

clause (shown in Figure 3). Usage subclauses enable the

association of analyses to models. In this way a user can

control applicability of analyses at a macro-level, reusing

the same contracts across different models.

Our approach explained in [8] relies not only on the

specification of contracts (where the mapping between con-

ceptual and practical aspects is more straightforward), but

also on verification domains that define the formal under-

pinnings for both the specification and the analysis of the

contracts within a verification tool (e.g., Spin). Formally,

a verification domain σ is comprised of domain atoms A,

static functions S , runtime functions R, execution seman-

tics T , and domain interpretation for atoms and static func-

tions [[·]]σ . These elements are augmented by an architec-

tural model that provides the interpretation [[·]]M. Existence

of a verification domain, with a semantics defined within

a verification tool that automatically explores its behavior,

guarantees correctness of our analysis contracts approach.

In ACTIVE, verification domains are not specified in one

place, but are comprised of various elements of AADL and

contract annexes. For some atoms a ∈ A, [[a]]σ is provided

by OSATE. For example, integers, booleans, and reals are

standard types in AADL. Other elements of A are inter-

preted by the [[·]]M, e.g., threads, processes, memory ele-

ments, processors, systems, and other sets of components.

Static functions S map directly to AADL’s properties,

some of which are standard and some of which are defined

by users in a declarative model. Only static functions can be

used in <PredicateExpression> so that the seman-

tics of <PredicateExpression> could be fully con-

structed based on the AADL instance model values. Stan-

dard types have a default value, which contributes to [[S]]σ .

For the most part, however, interpretation of static func-

tions comes from [[S]]M in the form of values that properties

have in a particular AADL instance model.

Unlike some static functions, runtime functions R are

strictly domain-specific, e.g., CanPreempt. Their inter-

pretation comes from a domain-specific verifier and, as far

as AADL models are concerned, these functions do not

exist. Finally, the execution semantics T is defined by a

combination of static function specified by the model (e.g.,

thread periods and deadlines) and verifier-specific runtime

behavior (e.g., how the state of system changes when a new

thread arrives). Thus, all formal elements of σ are covered

in ACTIVE, to which the formal conclusions of correctness

can now be transferred.

4. ACTIVE EXECUTER

Ensuring that a set of analysis plugins is executed correctly

requires more than the specification and verification of in-

dividual analysis contracts. Specifically, it requires coor-

dination and proper sequencing of the execution of these

analysis and their verifiers. This section describes ACTIVE

EXECUTER– a plugin execution controller in our tool. The

purpose of this controller is, on the one hand, to interact

with the user and, on the other hand, to coordinate the ex-

ecution of analyses. The scheme of ACTIVE EXECUTER is

shown in Figure 4.

From the OSATE user’s perspective, ACTIVE EXE-

CUTER identifies dependencies between analyses, builds a

dependency graph, and presents it to the user to allow him

to select an analysis to run. When invoked on an instance



Figure 4: Operation of ACTIVE EXECUTER.

model, ACTIVE EXECUTER parses all usage subclauses that

are in the scope of the system, retrieving the used contracts

from annex libraries, and creating the dependency graph.

In this graph, each vertex represents a contract with its cor-

responding analysis plugin. Edges in this graph represent

input-output dependences between two contracts.

Here we say that an analysis plugin depends on another

if the former reads a property or a component set that the

latter modifies. Since inputs and outputs are specified in

terms of component types and properties, any plugin that

writes a component type depends on any plugin that reads a

property of this type because, formally, the former changes

the function’s domain. The opposite is not true: changing a

property does not constitute a change in components.

A user selects an analysis to run from the dependency

graph. ACTIVE’s selection dialog is shown in Figure 5: the

rectangles represent analysis plugins and the arrows show

the dependency relationships. Once a selection is made,

ACTIVE EXECUTER finds a correct sequence of analyses

leading up to the selected one (the formal details can be

found in [8]). For example, for the analyses in Figure 5, the

frequency scaling plugin would first require the execution

of the secure allocation plugin followed by the binpacking

plugin. The analyses in the sequence are then executed one

by one, exchanging their data through the instance model.

Currently, ACTIVE only supports acyclic dependencies.

In practice a cyclic dependency can be a symptom of in-

correct contract specifications. However, when this is not

the case and the cycle is not an error it may be possible

to execute each analysis in the cycle repeatedly till con-

vergence (i.e., executing any analysis in the cycle does not

change the system further, or in other words, a fixed point

is reached). We leave this investigation as future research.

Invoking the right analysis plugin is not as trivial as

the theoretical aspects of our work make it appear. If AC-

TIVE’s code were to call analysis plugins directly, ACTIVE

would have a direct dependency on a concrete set of plug-

ins and would not be deployable separately from these plu-

gins. Even further, plugins developed for human user have

external access points such as toolbar buttons and menus,

that cannot be called programmatically from another OS-

ATE plugin. Hence, a more complex approach to invoking

plugins is needed to achieve the desired extensibility.

To overcome these limitations and use analysis plugins

without substantial changes to their external interface, we

Figure 5: Analysis selection dialog in ACTIVE.

Figure 6: A plugin wrapper’s command interface for bin-

packing analysis.

developed analysis plugin wrappers – a method to execute

analysis plugins using the Eclipse Command Framework 3.

A wrapper creates a command interface around the user

action. A command, unlike an action, can be called pro-

grammatically, and results in a call of the associated action.

Each plugin wrapper thus consists of a command interface

– which is an addition to the plugin’s configuration exem-

plified in Figure 6 – and a direct command invocation that

can be exercised by ACTIVE EXECUTER.

Another factor of correct plugin execution is under-

standing when it is safe to start the execution of the next

plugin in a dependency chain. Starting a plugin too early

would result in its reading of transient data that would be

overwritten by the previous plugin. Therefore, the execu-

tion of every plugin needs to be monitored. Unfortunately,

there is no direct way to do so in the original implemen-

tation of OSATE. Our ACTIVE EXECUTER relies on the

plugin wrappers to perform this monitoring. Specifically,

when a wrapper starts a command associated with an ac-

tion, the progress of this command is tracked using the

identity of the associated action. Once the wrapper reports

that the plugin has finished, the next plugin is safely started.

To check whether the assumptions of a plugin hold be-

fore its execution, or if its guarantees hold afterwards, the

ACTIVE EXECUTER calls ACTIVE VERIFIER – another key

component of ACTIVE – passing over a contract and a for-

mula to verify before and after the plugin’s execution. We

discuss the details of this process in the next section.

5. ACTIVE VERIFIER

The verification of analysis assumptions is the most com-

plex aspect of ACTIVE since it requires the combination

3 wiki.eclipse.org/Platform_Command_Framework



of abstractions coming from diverse scientific fields into a

common logic. Its goal is to take a contract formula and

verify it against the current AADL instance model. This

verification is, however, not limited to the AADL model,

which abstracts away most of the behavioral system dy-

namics due to the model’s architectural nature. A further

complication comes from assumption formulas with ab-

stractions and properties from different verification do-

mains, which manifest at different levels of the hierarchy

in an AADL model. Last but not least, the addition of new

verification tools and models, which is at the core of virtual

integration, needs to be facilitated by minimizing changes

from each such addition to the ACTIVE or verifier structure.

To address the challenges of multi-domain verification,

we created the component ACTIVE VERIFIER. The first

step in its operation is to deconstruct the contract for-

mula to subformulas that can be processed by an indi-

vidual verifier. The first subformula, including <Quan>,

<Var>, and <PredicateExpression>, can be pro-

cessed with a general-purpose SMT solver: as we showed

in Section 3, all atoms and operators of <Predicate-

Expression> are determined from the AADL models,

thus rendering quantified <PredicateExpression>

amenable to an efficient validity check. The practical pur-

pose of <PredicateExpression> is to identify the

part of a model that the formula should apply to, thus pro-

viding a convenient access to the hierarchy and bypassing

irrelevant parts. This way, the frequency scaling plugin, for

instance, can indicate that it targets only pairs of threads

running on the same processor (Figure 1), even if the pro-

cessor is located in a hardware subsystem, separated from

threads by several AADL hierarchy levels.

ACTIVE VERIFIER reduces the search for variable

valuations that satisfy <PredicateExpression>4 to

a SMT formula χ generated from the AADL compo-

nents and properties with an added assertion of negated

<PredicateExpression>. To construct χ, ACTIVE

VERIFIER only explores the subset of the AADL model

that includes the components and properties mentioned in

the contract formula. It then checks the satisfiability of χ

using an off-the-shelf SMT solver (currently Z3 [2]). If χ

is SAT, the solution is recoded and blocked for the next

run. If χ is UNSAT, the search is stopped, and the verifica-

tion moves to process the <LTLExpression>. Thus, by

using “blocking clauses” incrementally, ACTIVE VERIFIER

generates all solutions of χ.

The verification of <LTLExpression>, however,

cannot rely on a general-purpose SMT solver since <LTL-

Expression> may contain domain-specific runtime

functions like CanPreempt and modal LTL operators.

Thus, an <LTLExpression> needs to be matched with

a domain-specific verifier, based on the verifier’s fitness.

Specifically, we say that a verifier matches a formula if

and only if this verifier can give an interpretation to ev-

ery atom (such as set or function) and every operator in the

formula. Typically this matching is somewhat known to en-

4 The algorithm is the same for <LTLExpression> without domain-

specific atoms or LTL operators.

gineers familiar with particular verifiers, but not explicitly

documented in a machine-readable form. Without a proper

representation of matching, we would risk an error of run-

ning a verifier on an inappropriate formula and producing

invalid results. For example, a non-preemptive scheduler

model would report non-schedulability on many systems

where a preemptive scheduler would report schedulability.

The problem of matching verifiers to contract formu-

las led us to develop verification engines – an abstraction

to simplify the access to verifiers and determine formula

matching. Each verifier is augmented with a verification

engine that governs the application and execution of the

verifier through the following functions:

• Verifier’s initialization and parameter selection. For in-

stance, to run the Spin verifier, used in the scheduling

domain, it is necessary to translate AADL properties

into Promela instructions to complete the template of

a Promela program for preemptive schedulers.

• Declaration of atoms and operators that can be in-

terpreted by the verifier. For example, the scheduling

Spin verification engine reports atom CanPreempt

and LTL operators G, F, and U. A formula matches a

verifier iff the formula’s atoms and operators are a sub-

set of the ones interpreted by the verifier.

• Declaration of AADL model parts that are required to

achieve full a semantic interpretation of T . E.g., to

generate traces of a thread scheduler, a Spin program

needs to read thread periods from an AADL model.

• Interpretation of the results from the verifier. While in

theory a verifier could have only two answers ⊤ and

⊥, in practice other options are possible: a verifier may

detect a syntax error or run out of memory. These results

do not constitute a violation of contract, and verification

engines report those as “verification not possible,” thus

making user interaction more transparent.

Thus, verification engines allow ACTIVE to handle di-

verse verifiers using a common interface.

The pseudocode of the end-to-end algorithm for verify-

ing a contract formula is shown in Figure 7. In this algo-

rithm ACTIVE EXECUTER first calls the function VERIFY,

with a contract formula and a model. If the SMT solver can

fully handle the formula (i.e., there are no domain-specific

atoms or operators), ACTIVE VERIFIER takes a shortcut and

delegates the verification exclusively to the SMT. If this

shortcut is not possible, ACTIVE VERIFIER searches for a

matching verifier (function MATCH) and runs the selected

verifier on every valuation of the variables (function RUN).

Up to this point we have discussed coordinated applica-

tion of a set of verifiers. However, another important fac-

tor in simplifying the addition of new verifiers is the ac-

cess to the parts of the model referenced by contract for-

mulas. In particular, without a generic model access ap-

proach it would be necessary to write custom code for

each verifier to access parts of the model located at dif-

ferent levels of its hierarchy. To simplify data collection

for verifiers, we introduced the shared-data interface that

helps to decouple domain-specific verifiers from the hierar-



1: function VERIFY(ContractFormula f , Model m)

2: if ¬f .isDomainSpecific() then

3: return SMT.isValid(f )

4: v ← MATCH(f,m)
5: if v 6= null then

6: return RUN(f, v)

7: else

8: return error

9: function MATCH(ContractFormula f , Model m)

10: ltlExp← f .<LTLExpression>

11: for all VerificationEngine v do

12: if v.canInterpretAtoms(ltlExp) ∧

v.canInterpretOperators(ltlExp) ∧

v.hasFullInterpretation(m) then

13: return v

14: return null

15: function RUN(ContractFormula f , VerificationEngine

v)

16: if f.<Var> = null then

17: return

v.VERIFY (null, f.<LTLExpression>,m)

18: varEvals←

SMT.solve(f.<PredicateExpression>,m)

19: if f.<Quan> = "forall" then

20: res← true

21: for all ve ∈ varEvals do

22: res← res ∧

v.VERIFY (ve, f.<LTLExpression>,m)

23: else if f.<Quan> = "exists" then

24: res← false

25: for all ve ∈ varEvals do

26: res← res ∨

v.VERIFY (ve, f.<LTLExpression>,m)

27: return res

Figure 7: Algorithm of ACTIVE VERIFIER

chy of the AADL model. The data interface provides SMT

and domain-specific verifiers with SQL-based access to

the AADL instance model data. All components are given

unique identifiers and stored in a single table. Each AADL

property is represented with a table of the same name that

lists the values in a format appropriate for the property type,

as well as the owner component of the property. This way,

all components and properties are easily accessible to ver-

ifiers without the need to traverse levels of hierarchy in

AADL. The downside of the shared-data interface is that

it does not support composition of data types of arbitrary

depth (e.g., a sequence of records, each having a field that

is a set of other records). However, we are yet to see a plu-

gin that uses more than three levels of recursion. We use a

MySQL database to implement the shared-data interface.

6. Conclusion

In this paper we presented ACTIVE, a tool addressing the

problem of AADL analysis plugin interactions. In partic-

ular, we discussed how analysis plugin integration errors

pose a risk of invalidating analysis results without user’s

knowledge. Solving this problem entails, first of all, repre-

senting analysis interactions in a formal way to enable au-

tomatic reasoning. The specification of these interactions,

in the form of inputs, outputs, assumptions, and guarantees,

allows us to determine the correct order in which plugins

must execute. Finally, the assumptions and guarantees need

to be verified using a potentially wide variety of verification

tools. Using an AADL annex-based contract language al-

lows ACTIVE EXECUTER to manage the proper startup and

monitoring of the analysis plugins, making the appropriate

calls to ACTIVE VERIFIER, which in turn invokes general-

purpose SMT solvers (e.g., Z3) and domain-specific model

checkers (e.g., Spin) for in-depth behavioral verification.

These major ACTIVE components were designed to be ex-

tensible to accommodate new verification domains, anal-

ysis plugins, and domain-specific verifiers. To the best of

our knowledge ACTIVE is the first extensible framework

able to integrate analysis plugins guaranteeing their correct

interaction and execution.
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