
Modeling and Implementing Software Architecture
with Acme and ArchJava

Marwan Abi-Antoun Jonathan Aldrich David Garlan Bradley Schmerl
Nagi Nahas Tony Tseng

Institute for Software Research International, Carnegie Mellon University, Pittsburgh, PA 15213 USA
mabianto+@cs.cmu.edu aldrich+@cs.cmu.edu garlan+@cs.cmu.edu schmerl+@cs.cmu.edu

nnahas@acm.org ttt@alumni.carnegiemellon.edu

ABSTRACT
We demonstrate a tool to incrementally synchronize an Acme
architectural model described in the Acme Architectural
Description Language (ADL) with an implementation in
ArchJava, an extension of the Java programming language that
includes explicit architectural modeling constructs.

Categories and Subject Descriptors
D.2.11 [Software Architecture]: Languages

General Terms
Documentation, Design, Languages, Verification.

1. Introduction
The software architecture of a system defines its high-level
organization as a collection of interacting components,
connectors, and constraints on interaction, along with their
additional properties defining the expected behavior. Over the
past decade, numerous architecture description languages (ADLs)
have been developed and applied to real-world systems. A crucial
link is still missing, namely, ensuring that a software system is
implemented according to its architectural design. We
demonstrate tool support to refine architecture into code as well as
maintain consistency between architecture and implementation.

2. Acme and AcmeStudio
We use Acme as an example of a mature general purpose
architecture description language. Acme supports extensible styles
for different domains, and extensible properties and analyses.
AcmeStudio [2] is a domain-neutral architecture modeling
environment for Acme, implemented as an Eclipse plug-in.

3. ArchJava
We have recently developed ArchJava [1], an extension to Java
that enforces architectural structure within source code:
developers can specify components, connectors, port constructs,
and relate object instances, while completing the implementation
using the Java programming language. However, ArchJava does
not enforce other important architectural properties such as system
behavior or architectural style.

4. Integration between Acme and ArchJava
We have developed additional Eclipse plug-ins with several
capabilities to achieve better integration between the two models.
An architect can model an architecture using AcmeStudio, having
access to AcmeStudio’s analyses to verify desired architectural
properties. The architect can then generate ArchJava starter code
using the refinement plug-in. As developers complete the
implementation to provide the functionality of the system,
ArchJava’s checks help ensure that the implementation conforms
to the architect’s design. Furthermore, any changes made by the
engineers are at least reflected in the ArchJava architecture.
If an existing ArchJava implementation does not have its
architecture specified using an architectural description language,
or if the documented architecture is severely out of date, we can
import an Acme architecture from an existing ArchJava
implementation. This makes it easier to get an overall view of the
architecture, navigate between different levels of architectural
modeling, and re-run the Acme architectural analyses to
incorporate new insights and requirements into the architecture.
We also provide the capability to incrementally synchronize an
Acme architecture and an ArchJava implementation, by pushing
changes to Acme and/or to ArchJava, to keep architecture and
implementation consistent during software evolution.
We build an intermediate representation of the Acme model and
the ArchJava model that includes architectural types and
instances. We then detect structural differences (Figure 2)
between subsets of the two intermediate representations using our
implementation of a tree-to-tree correction algorithm for
unordered labeled trees based on [3]. The selection of the subset
is under user control: if the Acme model does not specify some
information that exists in ArchJava (such as method signatures),
this information can be excluded from the comparison to avoid
false positives. The structural comparison finds matches, and
classifies the differences as inserts, deletes, and renames. The tool
then generates an edit script to make one representation more
consistent with the other. The user can specify additional

Figure 1: An Acme model for the pipe-and-filter CaPiTaLiZe
system; the capitalize component converts characters it
receives from the source component alternatively to upper or
lower case before passing them on to the sink component.

Copyright is held by the author/owner(s).
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
ACM 1-58113-963-2/05/0005.

Research Demo, Proceedings of the 27th International Conference on Software Engineering, May 2005, St. Louis, MS, USA

information that cannot be automatically
retrieved from ArchJava, such as Acme types for
the Acme elements to be created. We currently
only support applying the edit script to the Acme
model (Figure 3); we are still working on nicely
laying out the generated Acme elements, and
changing the ArchJava infrastructure to support
making incremental changes to an existing
ArchJava implementation.
We have validated this tool on additional
examples and variations. When we compared the
same ArchJava implementation used above with
an Acme model where the capitalize component
was replaced with its representation, the tool
correctly detected most of the matching
components. When we compared our earliest
ArchJava implementation of the CaPiTaLiZe
system to the current Acme model, the tool
correctly detected a large number of differences,
consisting of many renames (all component and
port names) and an additional buffer component
in ArchJava: it correctly matched most of the
renames, except for the ArchJava components
split, upper and lower: the ArchJava split was
implemented with one output port, making it
structurally undistinguishable from the ArchJava
upper and lower components (the Acme split
component has two output ports). Indeed, the tool
detected a subtle architectural mismatch. The user
can cancel the synchronization, correct the
mismatch (e.g., modify the ArchJava split
component to have two output ports), and resume
the synchronization. We are also working on
enabling the user to override the automatically
detected differences (e.g., canceling delete edits)
without leaving the synchronization tool.

5. Acknowledgments
This work is supported by a 2004 IBM Eclipse
Innovation Grant and NSF grant CCR-0204047.

6. References
[1] Aldrich, J., Chambers, C., and Notkin, D. ArchJava:

Connecting Software Architecture to Implementation. Proc.
International Conference on Software Engineering, Orlando,
Florida, May 2002. http://www.archjava.org/

[2] Schmerl, B. and Garlan, D. AcmeStudio: Supporting Style-
Centered Architecture Development. Proc. International
Conference on Software Engineering, Edinburgh, Scotland,
May 2004.

[3] Torsello, A., Hidovic, D., and Pelillo, M. Polynomial-Time
Metrics for Attributed Trees. CS-2003-19, Dipartimento di
Informatica, Università Ca’ Foscari di Venezia, 2003.

Figure 2: A comparison between the Acme architecture and the ArchJava
implementation reveals an entirely missing sub-architecture for Acme component
capitalize (components lower, merge, split, and upper have been added to ArchJava)
and ArchJava components dataSource and dataSink match Acme components
source and sink respectively (matching elements are highlighted).

Figure 3: Applying the edit script renames the Acme components
source and sink (not shown) and creates an Acme representation
(shown above) for the capitalize component with the additional
components, ports, connectors, roles, attachments, and bindings.
The layout was manually adjusted.

