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Abstract

In recent years, researchers have worked to develop
approaches and models to support software architects in
planning and carrying out major evolutions of software
systems. To date, this line of work has been largely theo-
retical. These new approaches and models are seldom
accompanied by empirical evidence to support them, let
alone subjected to rigorous empirical evaluation.

This paper describes a formal case study examining
architecture evolution in a real-world organization.
Based on content analysis of interview data and ar-
chitectural documentation, the study examines how
practicing architects plan and reason about evolution,
what challenges they face, and whether the modeling
approach developed in our previous work can capture
the concerns that arise in a real-world evolution.

1. Introduction

Software architecture—the discipline of designing
the high-level structure of a software system—is today
widely recognized as an essential element of software
engineering. However, one topic that current approaches
do not adequately address is software architecture evolu-
tion. Architectural change is commonplace; as systems
age, they often require redesign to accommodate new
requirements, support new technologies, or respond to
changing market conditions. Today, architects lack tools
to help them in developing plans for such evolution.

In recent years, we and other researchers have worked
to develop approaches and models to support architects
in reasoning about evolution [1], [2], [3], [4], [5]. To
date, this research has been largely theoretical, with only
tenuous empirical support.

This paper seeks to establish a sounder empirical basis
for this line of research by presenting a new case study
examining the needs of real-world architects and the
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applicability of the approach that we have developed in
previous work. This case study distinguishes itself from
the few existing empirical studies by its careful data
collection procedures, its rigorous analytical method,
and a formal case study design that permits sound
analytic generalization of the results.

The study was designed to answer three questions:
RQ1. How do practicing architects in a real-world

organization plan and reason about evolution?
RQ2. What difficulties do practicing architects face in

planning and carrying out evolution?
RQ3. How well can the modeling framework developed

in our previous work capture the concerns that
arise in a real-world architecture evolution?

In addition, this research makes a methodological
contribution, demonstrating how research methods from
the social sciences can be applied to the field of software
architecture in a novel and useful way. A key goal was
to provide ample information to allow other researchers
to reproduce this work or adapt its methods to other
purposes. To that end, this conference paper is accompa-
nied by a 104-page technical report [6], available online,
which exhaustively documents the study’s methods.

This paper is organized as follows. Section 2 discusses
existing research in this area. Section 3 outlines the case
study design. Section 4 documents the collection of data.
Section 5 describes the analysis procedures. Section 6
summarizes the findings, and Section 7 concludes.

2. Background

Though software evolution has been a vibrant research
area for decades, relatively little attention was devoted
specifically to architectural issues in software evolution
until recently. Within the last decade or so, this has been
changing. Detailed surveys of the burgeoning literature
on architecture evolution now exist [7], [8], so I do not
give a full survey here. Instead, Section 2.1 discusses
how this work has been supported empirically. Then,
Section 2.2 provides a summary of the approach that we
have developed in our own research.



2.1. Related Work

Existing architecture evolution research has tended to
rely heavily on artificial examples. Tamzalit, Le Goaer,
et al., for example, have published a large body of
work proposing formalisms and techniques for reasoning
about architecture evolution (e.g., [2], [9], [10]), but they
seem to have relied mainly on fictitious examples rather
than observing real evolutions. Several of their papers
(e.g., [2]) use an example of a client–server architecture
based on an example from Cheng et al. [11]. Another
paper [9] uses examples of a banking application and
a chat application. Yet another [10] describes an online
store evolving to a client–server architecture. All these
examples seem to be artificial; there is no suggestion
that they were based on observation of real evolutions.

Cuesta et al. [5] present what they call “a real-world
case study” to illustrate their approach. However, it
seems to be a fictitious example rather than an actual
evolution that was carried out.

Wermelinger & Fiadeiro [3], Grunske [4], and Fahmy
& Holt [12] present various approaches for architecture
reconfiguration based on graph transformations, but none
provide a substantial case study. Barais et al. [13], in
their work on specifying architectural transformations,
use a small, artificial example of a banking application.
Spitznagel & Garlan [14], in their work on connector
transformation, carried out a small case study involving
enhancing a Java RMI connector with Kerberos authenti-
cation. However, this was a small example in laboratory
conditions, not an observation of real-world practice.

Erder & Pureur [15] present a case study drawn from
their experience in the banking industry: a loan-servicing
company migrating to a service-oriented architecture.
However, the case study is brief and gives few specifics.

This is not a complete survey, and it is possible to
find solid empirical work that touches on architecture
evolution by looking further afield (see the “Related
Work” section of my dissertation [16]). But the point
holds: most work in this area has not been well supported
empirically. Even when a paper purports to present a
“case study,” it more often turns out to be something
closer to a worked example, or at best an informal
reflection on practice, than to a true case study.

Our own early work [17], in which we proposed our
approach, also relied on artificial examples. However,
in 2012, I published a case study examining the evolution
of a telemetry processing system at NASA [18]. This
was a first step in the direction of establishing empirical
support for our work. The present study distinguishes
itself from this earlier work in several ways:
• Data in the present study was collected through

formal semistructured research interviews of prac-

titioners. In the previous case study, data collection
was conducted informally during an internship.

• The results are based on qualitative content analysis
of the data. The NASA study lacked formal analysis.

• The study’s findings are linked to the data by a rigor-
ous case study design, with explicit consideration of
validity and reliability. The conclusions of the previ-
ous case study were informal and impressionistic.

2.2. Our Approach

In previous work [1], we developed an approach to
help architects to reason about and plan evolutions of
software systems. Here I provide a very brief summary.

Our approach is based on considering possible evolu-
tion paths—ways of evolving from an initial architecture
to a desired target architecture. An evolution path can be
understood in terms of the evolutionary steps necessary
to carry it out, which can in turn be specified as com-
positions of evolution operators—reusable architectural
transformations like add adapter or migrate database.

Once the evolution paths are defined, the next step is
to apply analyses to select the optimal path. To support
the architect in selecting a path, we provide two kinds
of analysis: evolution path constraints, which define
which paths are legal or permissible, and path evaluation
functions, which provide quantitative assessments of
qualities such as duration and cost.

These concepts are simple, but there is a substantial
formal framework supporting them. To formalize path
constraints, for example, we have developed a language
based on linear temporal logic.

3. Case Study Design

The organization that served as the subject of this
case study was Costco Wholesale Corporation, a major
global retailer. A few years ago, the company embarked
on an extensive modernization effort to revamp its aging
software systems. As a result, architectural-level evo-
lution of software systems is now pervasive there. The
contemporaneous overhaul of so many core systems has
posed significant integration challenges. These factors
made the company an appealing candidate for a case
study on architecture evolution.

The case study comprised the following main phases:
Design. I first developed a formal case study design and
secured IRB approval for the study.
Data Collection. I spent two weeks at the organiza-
tion under study, conducting semistructured research
interviews with architects and collecting architectural
documentation (see Section 4).



Analysis. Analysis proceeded in two phases (see Sec-
tion 5). First, I subjected the interview data and collected
architectural documentation to content analysis. Then,
to evaluate the modeling approach developed in our
previous work, I used the output of the content analysis
to develop an evolution model using our approach.
Synthesis of Results. Once the analysis was concluded,
I synthesized the findings and wrote up the study results.

4. Data Collection

I visited Costco headquarters for two weeks to collect
data. The primary data source was interviews with
architects. I adhered to a semistructured interviewing
discipline, which means that although the interviews
were guided by a protocol that defined the topics to be
examined, I was free to devise new questions on the fly to
explore interviewees’ knowledge. This is in contrast to a
structured interview, in which every question is scripted
(useful when the goal is to compare responses across
participants), or an unstructured interview, in which the
interviewer is unconstrained and the interview has no set
format (useful in early exploratory work). I interviewed
six participants in eight sessions with a mean duration of
41 minutes. I recorded and transcribed all interviews. For
details on the transcription method, see the companion
technical report [6].

I was also permitted to access architectural documents
pertaining to the company’s software systems. These
were a useful complement to the interview data.

5. Analysis

This section describes the case study’s analysis proce-
dures. Section 5.1 explains the content analysis, which
was the main phase of analysis. Section 5.2 describes
the construction of an evolution model to evaluate the
applicability of our modeling approach.

5.1. Content Analysis

The main analytical method used in this case study
was content analysis, a research method for extracting
meaning from text. First systematized during the Second
World War, content analysis has become a major research
method in many disciplines. A standard definition is that
given by Krippendorff [19]: “a research technique for
making replicable and valid inferences from texts (or
other meaningful matter) to the contexts of their use.”

A number of variants of content analysis exist. One of
the most important and divisive distinctions is between
quantitative and qualitative content analysis. Content

analysis was first introduced as a quantitative method,
and some methodologists regard qualitative content
analysis as an inferior variant [19]. But although early
qualitative content analyses sometimes lacked the rigor
of the quantitative method, qualitative content analysis
has undergone increasing systematization and formaliza-
tion since the 1980s and is now widely recognized as
capable of producing strong, reliable findings [20].

I chose qualitative content analysis for use in this
study. Qualitative content analysis excels in cases where
interpretation is needed to analyze data. Here, we are
explicitly concerned with interpretation of the language
architects use. Architectural jargon is not sufficiently
standardized to justify a classical approach in which we
apply our own unexamined interpretations to the data;
even basic terms like architecture and evolution mean
different things to different people. Qualitative content
analysis provides means to deal with such differences
and helps us to avoid imposing our own biases.

Schreier [20] describes a qualitative content analysis
as proceeding in steps: (1) formulation of research
questions, (2) construction of a coding frame, (3) seg-
mentation of the material, (4) piloting the coding frame,
(5) evaluating and revising the coding frame, (6) the
main analysis, and (7) interpretation of the findings. The
construction of the coding frame and the segmentation of
the material are discussed below. Findings are discussed
in Sections 5.2 and 6. For discussion of the other phases,
see the companion technical report [6].

5.1.1. Coding Frame. Coding is an analysis method in
which segments of text are annotated with descriptive
codes or categories. Coding is done in accordance with
a coding frame, which defines the categories to be
applied: main categories that define the dimensions of
the analysis and subcategories that refine them.

It is useful to observe here that the research ques-
tions in Section 1 are of two different characters. RQ1
and RQ2 are questions about how evolution happens
in the real world. They are descriptive of the practice
of architecture. They can be answered directly through
content analysis of the interview data.

RQ3 asks whether our approach to architecture evo-
lution is suitable for representing the concerns of a real
evolution. This question is evaluative of our approach.
RQ3 was addressed via a two-step process in which I first
applied content analysis to data pertaining to a specific
evolution, then used the output of that content analysis
to construct an evolution model using our approach.

It is thus useful to describe the analysis as actually
comprising two separate content analyses: one (CA1)
targeted at the descriptive research questions and one
(CA2) targeted at the evaluative question.



CA1
Evolution motives
– Add features
– [Seven other categories]
Causes of problems
– Lack of experience
– [Six other categories]
Consequences
– Lost sales
– [Four other categories]
Challenges
– Cultural challenges
– [Thirteen other categories]
Approaches
– Experience and intuition
– [Fifteen other categories]

CA2
Classification
– Component
– Connector
– Port or role
– System
– Grouping
– Containment relation
– Evolution operation
– [Three other categories]
Presence in initial architecture
– Present
– Absent
Presence in target architecture
– Present
– Absent

Figure 1: Overview of categories in the content analyses.

The differences between CA1 and CA2 necessitated
that their coding frames also be constructed differently.
It is helpful to consider a distinction drawn in the content
analysis literature: the distinction between concept-
driven (deductive) and data-driven (inductive) coding
frame development [20]. With a concept-driven strategy,
categories are defined a priori, based on preexisting
theory. With a data-driven strategy, categories are derived
through progressive summarization or other bottom-up
strategies. In general, a concept-driven strategy is most
appropriate for testing hypotheses or drawing compar-
isons with prior work, while a data-driven strategy is
most useful for rich description of material.

I adopted a principally data-driven strategy for CA1
and a principally concept-driven strategy for CA2. The
purpose of CA1 was to describe architects’ perceptions
and experiences regarding evolution in detail, so a data-
driven approach was most appropriate. To construct the
coding frame for CA1, I went through the interview data,
marking passages relevant to the research questions, then
consolidated similar passages into categories.

For CA2, a concept-driven approach was appropriate.
The goal of CA2 was not open-ended description, but
rather evaluation of an existing theoretical framework.
This framework formed the basis for the coding frame.

Since its output would be used to produce an evolution
model, CA2 had to identify the elements to appear in
the evolution model. Thus, the coding units in CA2 were
descriptions of architectural elements. The first output
that the content analysis had to yield was the identifica-
tion of these elements. For each element described by
a coding unit, CA2 had to determine how that element
should be modeled—whether it should be characterized
as a component, connector, constraint, operator, or
some other type of element. Thus, the first part of the
coding frame was a classification scheme for elements
of the architecture evolution, with subcategories such as

Challenges: Managing scope and cost (abbreviation: cha-cst)
Description: This category should be applied to challenges in scoping
a project or keeping costs low.

Challenges in reconciling large expenses with a cultural of frugality
should instead be coded “Challenges: Cultural challenges.”
Example: “The biggest concern retailers have about [alternative
payment methods] is the fees they have to pay as part of them”

Figure 2: A category definition from the coding guide.

“Component,” “Constraint,” and so on.
The second output that had to be produced was what

phases of evolution the elements appeared in. For each
element, we wanted to know whether it was present
or absent in the initial architecture, and likewise for
the target architecture. The coding frame for CA2 thus
included “Presence in initial architecture” and “Presence
in target architecture” categories, with subcategories
“Present” and “Absent.” (One could extend this, adding
categories for intermediate states in addition to the initial
and final states, but I opted to keep things simple.)

The point of using content analysis to guide model
construction (rather than building a model based on
informal impressions, as is often done in architecture
research) is that it reliably ties the model to the re-
search data, giving us confidence that our conclusions
are supported by the data. Because segmentation (i.e.,
identification of model elements) and coding (i.e., clas-
sification of elements) are conducted according to well-
defined methods, we can be surer that, for example, an
element that we identify as a connector truly represents
a connector in the system as described in the data.

The category hierarchies appear in Figure 1. The full
coding guide, which appears in the companion technical
report [6], runs 18 pages and provides detailed inclusion
criteria for each category. Figure 2 shows one of the
simpler category definitions from CA1 as an example.

5.1.2. Segmentation. In content analysis, codes are not
applied at will to arbitrary passages of text, as in some
coding methods. Rather, the text is first divided into
coding units, then the researcher analyzes the material
segment by segment. This avoids the risk that the
researcher will ignore portions of the text or devote too
much attention to the passages that are most striking.

Segmentation was handled separately for CA1 and
CA2. For CA1, the interview material was segmented
thematically—divided into coding units so that each unit
pertained to one topic or category. Figure 3 shows an
interview excerpt as it was segmented and later coded.

Segmentation was more complex for CA2. The goal
of CA2 was to soundly and reliably identify the archi-
tectural elements described in the data—to identify and
distinguish among components, connectors, evolution
operators, and so on, so that a model could be built.



Researcher: When you say you generally have
an idea of where you want to go and how you want
to get there—you just can’t necessarily execute on
it as easily as you’d like to—how do you develop
that plan? [. . . ] Do you have processes to help you,
or is it mostly just intuition and experience?

Participant: A9〈Mostly intuition and experience,
yeah.〉 A10〈You look to the industry to see what’s
going on〉, A11〈but ultimately, [. . . ] in this business,
you tend to lean toward simplicity. The next system
you build is going to last twenty years, and it needs
to be maintainable [. . . ], so you really don’t try to
get too crazy with it. We’re not launching shuttles
here, we’re selling mayonnaise and toilet paper, so
let’s keep it in perspective.〉

A9: Approaches:
Experience
and intuition

A10: Approaches:
Industry
practices

A11: Approaches:
Rules of
thumb and
informal
strategies

Figure 3: A segmented and coded passage from an
interview transcript.

One challenge that this posed was how to deal with
multiple mentions of the same element. Correctly identi-
fying and coding an element would require consideration
of all its mentions throughout the material. This stands
in contrast to the piecemeal interpretative process that
is more typical of content analysis, in which each
segment is coded in isolation. This required the use of
noncontiguous coding units; I treated multiple mentions
of a single referent (e.g., a particular component) as
together constituting a coding unit.

Another challenge was that not all of the “text” was
textual; in addition to the interview material and written
prose, there were a number of diagrams in the archi-
tectural documentation. Fortunately, this is not a real
problem as far as content analysis is concerned. Content
analysis has been used for decades to analyze images,
multimedia, and other nontextual material. In principle,
we can segment and code diagrammatic elements—
boxes, lines, clouds—in much the same way that we
can segment and code phrases and paragraphs.

Even so, the heterogeneity of the data created some
challenges. A coding unit in CA2 is much more complex
and multifaceted than a coding unit in a typical content
analysis. While in a typical content analysis a coding
unit is just a phrase or passage, here a coding unit is an
aggregation of words, phrases, and passages (occurring
in both transcribed speech and written documentation)
as well as diagrammatic elements.

5.2. Evolution Model Construction

After the content analysis was finished, I constructed
of an evolution model based on the output of CA2, to
evaluate the applicability of our modeling approach. This
involved the definition of initial and target architectures,
evolution operators, evolution constraints, and evaluation
functions, all directly based on the content analysis.

The subject of CA2 was the evolution of Costco’s
point-of-sale (POS) system. The goal of the evolution is
to replace the off-the-shelf POS package at the core of
the system with a more modern package. At the same
time, many changes are occurring in systems with which
the POS system integrates. See the companion technical
report [6] for further background.

5.2.1. Initial and Target Architectures. I modeled the
initial and target architectures in the Acme architecture
description language [21]. Since the content analysis
had already identified and classified the system elements
and determined which appeared in the initial and target
architectures, modeling initial and target architectures
was straightforward.

Of course, the content analysis was not sufficient, on
its own, to specify the initial and target architectures
fully. The interviews and documentation seldom got
into the specifics of attachment points and element
types. Nonetheless, the big decisions about system
structure had already been made. The content analysis
thus succeeded in systematizing and formalizing the
major decisions involved in architecture representation.

Space constraints prevent inclusion of the initial and
target architectures; see instead the technical report [6].

5.2.2. Evolution Operators. Because the POS evolu-
tion is large and complex, architects mostly spoke in
terms of its major stages rather than individual opera-
tions. Even so, the content analysis did identify some
operations at a finer granularity—13 in total. Examples
included removing a legacy element and upgrading the
operating system of warehouse controllers.

Obviously, a paltry 13 operators are not alone suf-
ficient to describe all the many changes in the POS
evolution—to transform the initial architecture into the
target architecture. But the operators mentioned in the
data are a good basis on which to evaluate our approach.
These operators are likely to be no easier to model than
typical evolution operators. On the contrary, operators
specifically mentioned by architects in a high-level
discussion of an evolution might be more complex on
average than the typical evolution operator, if anything.

I attempted to model each of the 13 operators using the
specification notation introduced in our prior work [1].
The operator “removing a legacy element” was the easi-
est; it could be modeled as a simple deletion operator:

operator removeElement(e) { transformations { delete e; }}

Modeling other operators was more complex. For details
of all 13, see the technical report [6]. However, none
posed great challenges. Even those that were conceptu-
ally complex could be expressed with a specification of
at most 20 lines. Though we cannot draw too broad a



conclusion from this small set, this suggests that real-
world operators may often be fairly simple to specify.

5.2.3. Constraints. CA2 identified 16 constraints. As
with operators, this is certainly not a complete list of
constraints relevant to the evolution, but it is a good basis
on which to validate the applicability of our method.

In the content analysis, I took an inclusive view of
what constitutes a “constraint.” I included anything
amounting to a constraint on the evolution, without
considering whether it was an architectural constraint or
lower-level, or whether it was amenable to formalization.

Of the 16 constraints, eight were easily representable
as evolution path constraints or operator preconditions.
For example, a constraint that all components attached
to the integration architecture should eventually use
the integration architecture for communication could
be represented in our temporal constraint language by

♦�intArchUsedWhenAvailable(system),

where intArchUsedWhenAvailable is an architectural
predicate that checks whether all participating systems
communicate through the integration architecture. The
companion technical report [6] shows how this predicate
can be defined in the Armani constraint language.

Four were high-level constraints, not specific enough
to model directly, such as a constraint that a system
should have 99.999% availability.

Three were too low-level to model architecturally. For
example, one architect described certain constraints on
the user interface, such as how receipts are printed.

One would be representable only with significant
modifications to the model, because it requires a notion
of multiplicity not well supported by the model I built.

5.2.4. Evaluation Functions. CA2 identified seven di-
mensions of concern relevant to the evolution. Five could
be modeled as evaluation functions with little trouble.
For example, one dimension identified as important to
the evolution was cost. In our approach, cost can be
modeled as a property of operators, and then an operator
analysis can simply add up all the operators within an
evolution path to get an estimate of the path’s total cost:

function analyzeCost(states, transitions) {
var total = 0;
transitions.forEach(function (transition) {

transition.operators.forEach(function (operator) {
total += operator.analysis.costInDollars; }); });

return total;
}

Of the two remaining dimensions, one referred to low-
level details not relevant at an architectural level.

The other was flexibility. The architects I spoke with
emphasized that a key goal of the evolution was making

the system flexible and open to future changes. System
flexibility is difficult to estimate based on an architectural
model. Most existing methods for architectural analysis
of flexibility are not model-based, but instead rely on
procedures such as definition of change scenarios [22]
or interviews with stakeholders [23]. Such methods lie
beyond the scope of our approach.

6. Findings

Section 5.2 discussed the findings of the modeling
phase following CA2. We now turn to CA1. CA1 had
five top-level categories (Figure 1). For space reasons,
I discuss only two here. The others are covered in the
companion technical report [6].

6.1. Motives for Evolution

There is a great deal of research on reasons for
software changes. One of the first influential taxonomies
of software change was that proposed by Swanson [24]
in 1976, which identified three kinds of software main-
tenance: corrective, adaptive, and perfective. Swanson’s
taxonomy was later incorporated into ISO/IEC 14764,
with the addition of a fourth type: preventive mainte-
nance. More modern ontologies of software maintenance
have been developed that refine this early work, such as
that of Chapin et al. [25].

But little research has been done on motivations
for architecture evolution specifically. Of course, many
motivations for low-level software maintenance can also
be motivations for architecture evolution, but there are
likely important differences. Williams & Carver [26]
present a taxonomy categorizing architectural changes
along a number of dimensions, including a change’s
motivation. However, this taxonomy is based on a review
of software maintenance research generally rather than
work focusing on architectural change. Thus, while it
purports to be a taxonomy of architectural change, it is
not based on architecture research. Similarly, Jamshidi et
al. [8], in their classification framework for “architecture-
centric” evolution, borrow the ISO/IEC 14764 typology
for their “Need for Evolution” dimension.

There is at least one empirical study that has examined
causes of architecture evolution specifically. Ozkaya et
al. [27], in an interview-based survey of nine software
architecture projects, collected data on the causes of
the evolutions that the survey participants described.
Responses included new features, market change, tech-
nology obsolescence, and scalability.

Clearly, more research investigating motivations for
architectural change is needed. Of course, our objective
here is not to develop a general taxonomy of motivations



Freq.
Add features 12

Improve interoperability 9
Modernize technology 5

Keep apace of business needs 3
Improve reliability 3
Improve flexibility 3

Improve performance 2

Table 1: Stated motivations for architecture evolution.

for architecture evolution. Data from a single case study
would be insufficient to support such a taxonomy even
were it our wish to construct one. But what this data
can do is help inform us as to how architects in a real
software organization think about causes of evolution.

The interviewees mentioned various motivations for
evolution, which I coded in seven categories; see Table 1.
Each frequency in the table is the number of coding units
to which a category was applied. For other frequency
measures, see the companion technical report [6].

The most frequently mentioned motive was to add a
new feature. A wide range of specific features were men-
tioned, such as member personalization features, legal
compliance features, and improved sales forecasting.

Several categories—improving flexibility, improv-
ing performance, improving reliability, improving
interoperability—fall under the general heading of im-
proving architectural qualities. By far the most prevalent
was improving interoperability. One architect explained:

We’re going from a very proprietary, inflexible point-of-
sale to a much more open, easily adapted point-of-sale
that can talk to most systems, so that fits in with what
we’re trying to do overall in modernization.

In summary, most reasons for architecture evolution
fell into three broad classes: evolutions motivated by
a need to improve architectural qualities, evolutions
motivated by new feature requirements, and evolutions
driven by a desire for technology modernization.

6.2. Challenges

An interview-based study provides a unique oppor-
tunity to learn about the challenges that practitioners
face. Software architecture research is often driven by re-
searchers’ beliefs about what will help architects. These
beliefs are often founded on subjective impressions,
generalizations from our own experiences, and informal
conversations with practitioners. However, it is important
to ground these beliefs with empirical data whenever
possible, and one of the best ways to do so is to interview
architects about the challenges they face.

“Challenges” should be understood broadly. I col-
lected data on all kinds of challenges, not just those

Freq.
Communication, coordination, and integration challenges 22

Dealing with rapid change and anticipating the future 13
Business justification 9

Dealing with legacy systems 9
Scalability, reliability, and performance 8

Managing expectations and experiences of users, stakeholders 7
Managing people 7

[Six categories with freq. < 7] 26

Table 2: Stated challenges of architecture evolution.

addressable through our approach. Encouraging archi-
tects to speak freely about the challenges they face,
rather than just asking them about those which we aim to
address, gives us the broadest and least biased picture of
architects’ needs and helps us to understand the role that
approaches like ours can play in addressing a subset.

Frequencies appear in Table 2. The commonest code
was “Communication, coordination, and integration
challenges.” This suggests that participants view commu-
nication and coordination challenges as a critical factor
in architecture evolution.

One theme that emerged from multiple participants
was integration issues among simultaneously evolving
systems. One architect explained:

It’s not enough to say I’m going to upgrade my point-of-
sale system, which is a huge and daunting task in and
of itself here at Costco. When you talk about all of the
dependencies and all of the different components that are
going to be interacting with point-of-sale, now you’ve
got a unfathomable challenge in front of you, and it really
takes a lot of focus to keep from getting into trouble.

After communication and coordination issues, the next
most frequently occurring category was “Dealing with
rapid change and anticipating the future,” which captures
various challenges involved in making decisions in a
rapidly changing environment. The high frequency of
this category suggests that this is viewed as a particularly
important challenge. As one participant explained:

You really have to have that ability to shift gears and
change directions quickly, because the technology land-
scape changes so fast, and when you’re on a project that’s
going to run three to five years, changes are inevitable.

The third most frequent category was “Business
justification,” which captures challenges in relating
architectural efforts to business goals. One participant
characterized executive support for architecture as the
biggest issue that the industry faces with respect to
architecture evolution:

The biggest challenges are executive buy-in on the
architecture function in general, because when you throw
architects in at the beginning (goodness, I hope it’s at
the beginning) of a project, you’re adding time to it [. . . ].
We’ve been fortunate that we’ve got CIO buy-in of what
we’re doing. But [. . . ] when I meet with other people
who run EA and solutions architectures groups from



other companies, they always say that that’s the largest
challenge they face.

7. Conclusion

7.1. Answers to the Research Questions

We now return to the research questions of Section 1.

RQ1. How do practicing architects in a real-world
software organization plan and reason about evo-
lution? This was addressed by CA1, particularly the
“Approaches” category, which was not covered in detail
in this paper. See instead the companion technical
report [6]. The most prominent category was “Communi-
cation and coordination practices.” Other frequently men-
tioned approaches included organizational techniques,
consultation of expert sources, and various informal
rules of thumb. We also found that architects often
reason about evolution in terms of phases, with explicit
consideration of evolution alternatives. This suggests
that our approach, which is based on modeling potential
evolution paths in terms of discrete steps, is compatible
with the way architects already think about evolution.

RQ2. What difficulties do practicing architects face
in planning and carrying out evolution? This re-
search question was also addressed by CA1, particularly
the “Challenges” category. The most prominent class
of challenges was “Communication, coordination, and
integration challenges.” This aligns neatly with the result
that “Communication and coordination practices” was
the most frequent subcategory of “Approaches” and re-
inforces the point that communication and coordination
issues are extraordinarily important in managing archi-
tecture evolution. Other challenges appear in Table 2.

RQ3. How well can our modeling framework cap-
ture the concerns that arise in a real-world architec-
ture evolution? This research question was addressed
by CA2 and the model constructed based on it. As de-
tailed in Section 5.2, the great majority of the operators,
constraints, and evaluation functions identified by the
content analysis could be modeled using our approach,
although some were too low-level (pertaining to imple-
mentation details rather than architecture) or too high-
level (encompassing a broad range of considerations that
were not understood in sufficient detail to model).

7.2. Reliability and Validity

Although these results are encouraging, we must also
consider issues of reliability and validity.

% agreement α

CA1 91.5% 0.912
CA2: “Classification” 94.7% 0.936

CA2: “Presence in initial architecture” 91.8% 0.874
CA2: “Presence in target architecture” 93.8% 0.900

Table 3: Intrarater reliability measures.

7.2.1. Reliability. The best-known treatment of reliabil-
ity in content analysis is that of Krippendorff [19], who
distinguishes among three kinds of reliability: stability,
the degree to which repeated applications of the method
will produce the same result; reproducibility, the degree
to which application of the method by other analysts
working under different conditions would yield the same
result; and accuracy, the degree to which a method
conforms to a standard. Accuracy is rarely relevant in
content analysis, because it requires some preexisting
gold standard, such as judgments by an expert panel.
Such standards are rarely available. Thus, only stability
and reproducibility are practically relevant.

We begin with stability. The most direct way of
assessing the stability of an instrument is with a test-
retest procedure, in which the instrument is reapplied to
the same data and the results compared. I incorporated a
test-retest procedure into my analysis. For each content
analysis, I conducted a second round of coding more than
two weeks after the first. (Schreier [20] recommends that
at least 10–14 days elapse between successive codings by
one researcher.) With two rounds of coding completed, I
compared the results to evaluate intrarater agreement.

Intrarater agreement can be quantified using any of
the standard metrics that are used to measure interrater
agreement in studies with multiple coders. The simplest
is percent agreement, but this metric is problematic
because it does not account for agreement that would
occur merely by chance. Various coefficients have been
developed to address this defect, the most popular of
which are Scott’s π, Cohen’s κ, and Krippendorff’s α.
The differences among them are irrelevant here, since
all three are nearly equal for our data.

Our intrarater reliability figures appear in Table 3. For
CA1, only one set of measures is shown, since each
coding unit could be assigned exactly one category from
the coding frame. For CA2, there is one row for each
main category, because in CA2 each coding unit could
be assigned one subcategory of each main category.

The reliability coefficients in Table 3 range from 0.87
to 0.94. Though there is no universal threshold for what
constitutes “enough” reliability, these numbers are high
by any standard (see the technical report [6] for further
discussion). Stability is thus adequately demonstrated.

This leaves the other main reliability criterion: re-
producibility, usually measured through interrater agree-



ment. In a single-coder study, interrater reliability cannot
be assessed. Schreier [20] recommends that in a content
analysis with one coder, a second round of coding may
be used as a substitute for assessing interrater reliability.
Similarly, Ritsert [28] writes, “In an analysis by an
individual, the important possibility of intersubjective
agreement as to the coding process is precluded, but the
methods of ‘split half’ or ‘test retest’ can still provide
an individual with information on the consistency and
reliability of his judgments” (translation mine).1

But even in the absence of interrater agreement, repro-
ducibility remains an important goal. Fortunately, there
are other ways of getting at this quality. Steinke [29]
suggests that in qualitative studies where strong no-
tions of intersubject verifiability are not applicable,
researchers should instead strive “to produce an inter-
subjective comprehensibility of the research process on
the basis of which an evaluation of results can take place.”
She suggests that this intersubjective comprehensibility
can be demonstrated in three ways. First, the research
process should be thoroughly documented so that “an
external public is given the opportunity to follow the
investigation step by step and to evaluate the research
process.” Second, interpretations can be cross-checked
in groups. Steinke writes that a strong form of this is peer
debriefing, “where a project is discussed with colleagues
who are not working on the same project.” Third, the use
of codified procedures contributes to intersubjectivity.
These methods were used in abundance in this study.

7.2.2. Validity. The situation with validity is more
muddled than that with reliability. There is a bewildering
array of flavors of validity: internal validity, external
validity, construct validity, content validity, face validity,
social validity, criterion validity, ecological validity, and
many others. In the companion technical report [6], I
untangle this knot of concepts and examine the validity
of this research from many angles.

For space reasons, I focus here on one type of validity
that is likely to be of particular interest: external validity,
or generalizability. Generalization is one of the most
important aspects of the validation of a case study that
seeks to have implications beyond the case it examines.

It is important to bear in mind that a case study is
not generalizable in the same way that a study based
on statistical sampling is generalizable. In a case study,
the goal is not statistical generalizability, but instead
transferability or analytic generalizability.2 The case

1. There is significant disagreement on this. Krippendorff [19], for
example, argues that stability “is too weak to serve as a reliability
measure in content analysis.”

2. There is disagreement on the handling of generalization in
qualitative research [30]. Some methodologists hold that transferability

studied is unique, but the findings of the case study can
still be applied to other contexts.

Another key point is that generalizability is not all-
or-nothing. That is, the question is not whether a case
study is generalizable, but in what respects and to which
contexts it is generalizable.

In evaluating case study generalizability, we must
consider what properties of the case may have influenced
our findings. For example, in this study, “Dealing with
legacy systems” was one of the most frequently men-
tioned evolution challenges. However, legacy challenges
have a great deal to do with the history of a company.
At companies whose software systems have a similar
history—companies with complex, decades-old software
systems built using now-archaic technologies—this re-
sult would be transferable. And in fact, there are many
companies with such a history. But at a company with a
very different history, the result might be different.

On the other hand, the top challenge that emerged
was “Communication, coordination, and integration
challenges.” There was no a priori reason to expect such
challenges to be particularly acute in this case. On the
contrary, the organization studied has taken significant
measures to ameliorate these difficulties, but significant
challenges remain. Moreover, on a theoretical basis,
we might expect that challenges in integrating systems
and communicating with personnel are highly relevant
to architecture evolution in general. Thus, our result
on the prominence of communication and integration
challenges has good analytic generalizability.

What about the results on the applicability of our
modeling approach? Again, there are some aspects of the
case studied that limit generalization. For example, our
analysis took advantage of the fact that the POS system
can be understood well from a component-and-connector
architectural perspective. In a system where different
architectural view types are important, the coding frame
and the modeling procedures would require revision.

But the overall result—that our approach can capture
the main elements of a real-world evolution—seems
to be one that has a good deal of generalizability.
There was no a priori theoretical reason to believe that
the POS evolution would be especially easy to model
with our approach. We picked that evolution because
of the availability of personnel familiar with it, not
because of any special properties that would render

is the proper generalizability criterion. The goal of a case study, they
say, is not to discover some kind of law that is of general applicability,
but rather to achieve rich understanding of a single case through thick,
naturalistic description, so that findings can be transferred on a case-
by-case basis to other contexts.

Others espouse some notion of theoretical generalization. Yin [31],
for example, argues that a case study can serve to validate a previously
developed theory, an approach he calls analytic generalization.



it more amenable to our approach. Thus, the main
evaluative result seems to have fairly strong external
validity. But of course this generalizability has limits.
For example, it would be questionable to transfer this
result to evolutions with special properties that we have
theoretical reasons to believe might be hard to model
(e.g., significant uncertainty). Ultimately, case study
generalization involves a clear understanding of relevant
theory, careful attention to the specifics of the case being
generalized, and a good deal of judgment.
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